首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Phagocytic cells form the first line of defense against infections by the human fungal pathogen Candida albicans. Recent in vitro gene expression data suggest that upon phagocytosis by macrophages, C. albicans reprograms its metabolism to convert fatty acids into glucose by inducing the enzymes of the glyoxylate cycle and fatty acid beta-oxidation pathway. Here, we asked whether fatty acid beta-oxidation, a metabolic pathway localized to peroxisomes, is essential for fungal virulence by constructing two C. albicans double deletion strains: a pex5Delta/pex5Delta mutant, which is disturbed in the import of most peroxisomal enzymes, and a fox2Delta/fox2Delta mutant, which lacks the second enzyme of the beta-oxidation pathway. Both mutant strains had strongly reduced beta-oxidation activity and, accordingly, were unable to grow on media with fatty acids as a sole carbon source. Surprisingly, only the fox2Delta/fox2Delta mutant, and not the pex5Delta/pex5Delta mutant, displayed strong growth defects on nonfermentable carbon sources other than fatty acids (e.g., acetate, ethanol, or lactate) and showed attenuated virulence in a mouse model for systemic candidiasis. The degree of virulence attenuation of the fox2Delta/fox2Delta mutant was comparable to that of the icl1Delta/icl1Delta mutant, which lacks a functional glyoxylate cycle and also fails to grow on nonfermentable carbon sources. Together, our data suggest that peroxisomal fatty acid beta-oxidation is not essential for virulence of C. albicans, implying that the attenuated virulence of the fox2Delta/fox2Delta mutant is largely due to a dysfunctional glyoxylate cycle.  相似文献   

3.
Summary The membrane lipid composition of Saccharomyces was manipulated by growing cells anaerobically with or without ergosterol and unsaturated fatty acid. Cells low in ergosterol but enriched in unsaturated fatty acid residues on membrane phospholipids produced high concentrations, 13–15.5% w/v, of ethanol at substrate conversion efficiencies of around 90%.  相似文献   

4.
Cultured cardiac myocytes were depleted of ATP by incubation with oligomycin (1 mg/ml). Then the ability of the cells to oxidize various substrates and to restore ATP levels was studied. Following ATP depletion, the cells were found to be able to oxidize glucose given alone, but not palmitate. However, with both substrates, palmitate was oxidized in the presence of glucose and ATP recovery was enhanced. Pyruvate had a minor effect on palmitate oxidation, while acetate given alone was oxidized, but did not enhance cellular ATP content. These results show that glucose is essential for restoration of mitochondrial function and the coupling between oxidation and ATP synthesis.  相似文献   

5.
Inhibition of the oxidation of fatty acids methyl esters by oregano essential oil was studied using capillary gas chromatography. A mixture of fatty acids which contained saturated, mono-, di-, and polyunsaturated acids with 16–24 carbon atoms was extracted from mice brain. Changes in the composition of esters in hexane solutions both in the presence of oregano essential oil and without it were examined during their autooxidation in light for 1 year. It was found that the oxidation rate of unsaturated fatty acids increases with increasing degree of their unsaturation. Oregano essential oil inhibited the oxidation process. Antioxidant activity of the oil increased with increase of its concentration. It was shown that carvacrol and thymol are the main antioxidant components of oregano oil.  相似文献   

6.
Caspases, a family of cysteine proteases, are critical mediators of apoptosis. To address the importance of caspases in thymocyte development, we have generated transgenic mice that express the baculovirus protein p35, a viral caspase inhibitor, specifically in the thymus. p35 expression inhibited Fas (CD95)-, CD3-, or peptide-induced caspase activity in vitro and conferred resistance to Fas-induced apoptosis. However, p35 did not block specific peptide-induced negative selection in OT1 and HY TCR transgenic mouse models. Even the potent pharmacological caspase inhibitor zVAD-FMK (benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl-ketone) could not prevent peptide-induced deletion of OT1 thymocytes, although it improved basal thymocyte survival in vitro. Moreover, the developmental block observed in rag1-/- thymocytes, which lack pre-TCR signaling, was also not rescued by p35 expression. These results indicate that caspase-independent signal transduction pathways can mediate thymocyte death during normal T cell development.  相似文献   

7.
Brown adipose tissue has a central role in thermogenesis to maintain body temperature through energy dissipation in small mammals and has recently been verified to function in adult humans as well. Here, we demonstrate that the heart-type fatty acid-binding protein, FABP3, is essential for cold tolerance and efficient fatty acid oxidation in mouse brown adipose tissue, despite the abundant expression of adipose-type fatty acid-binding protein, FABP4 (also known as aP2). Fabp3(-/-) mice exhibit extreme cold sensitivity despite induction of uncoupling and oxidative genes and hydrolysis of brown adipose tissue lipid stores. However, using FABP3 gain- and loss-of-function approaches in brown adipocytes, we detected a correlation between FABP3 levels and the utilization of exogenous fatty acids. Thus, Fabp3(-/-) brown adipocytes fail to oxidize exogenously supplied fatty acids, whereas enhanced Fabp3 expression promotes more efficient oxidation. These results suggest that FABP3 levels are a determinant of fatty acid oxidation efficiency by brown adipose tissue and that FABP3 represents a potential target for modulation of energy dissipation.  相似文献   

8.
Fatty acids (FA) are an important energy source during exercise. In addition to its role as an energy supply for skeletal muscle, FA may activate signaling pathways that regulate gene expression. FA translocase/cluster of differentiation 36 (CD36) and G protein-coupled receptor GPR120 are long-chain FA receptors. In this study, we investigated the impact of CD36 or GPR120 deletion on energy metabolism during exercise. CD36 has been reported to facilitate cellular transport and oxidation of FA during endurance exercise. We show that CD36 deletion decreased exogenous FA oxidation during exercise, using a combination of 13C-labeled FA oxidation measurement and indirect calorimetry. In contrast, GPR120 deletion had no observable effect on energy metabolism during exercise. Our results further substantiate that CD36-mediated FA transport plays an essential role in efficient FA oxidation during exercise.  相似文献   

9.
This project examined the effects of repeated, resting cold-water immersion on metabolic heat production and core temperature defence during subsequent rest and exercising immersions. Seven males undertook 15 days of cold-water adaptation, immersed to the fourth intercostal space, with cold-water stress tests (CWST) on days 1, 8 and 15 (18.1 SD 0.1 degree C: 60 min seated, followed by 30 min cycling (1 W.kg-1)), and 90-min resting immersions (18.4 SD 0.4 degree C) on each of the intervening days. Adaptation elicited an habituated thermogenic response during the rest phase of CWST3 beyond 20 min, compared to CWST1 (P < 0.05), with oxygen consumption averaging 11.15 (+/- 0.25) ml.kg-1.min-1 and 8.61 (+/- 0.90) ml.kg-1.min-1 by 50 min, for CWST1 and CWST3, respectively. During exercise, this metabolic blunting was only apparent over the first 10-min period (60-70 min). No significant differences were observed during either the rest or exercise phases of the CWSTs for oesophageal temperature (Tes). While repeated cold-water exposures produced an habituated-thermogenic response, for an equivalent drop in Tes during rest, neither this response, nor an elevated thermogenesis, were apparent during subsequent cold-water exercise.  相似文献   

10.
Bacterial acyl carrier protein (ACP) is a small, acidic, and highly conserved protein that supplies acyl groups for biosynthesis of a variety of lipid products. Recent modelling studies predict that residues primarily in helix II of Escherichia coli ACP (Glu-41, Ala-45) are involved in its interaction with the condensing enzyme FabH of fatty acid synthase. Using recombinant Vibrio harveyi ACP as a template for site-directed mutagenesis, we have shown that an acidic residue at position 41 is essential for V. harveyi fatty acid synthase (but not acyl-ACP synthetase) activity. In contrast, various replacements of Ala-45 were tolerated by both enzymes. None of the mutations introduced dramatic structural changes based on circular dichroism and native gel electrophoresis. These results confirm that Glu-41 of ACP is a critical residue for fatty acid synthase, but not for all enzymes that utilize ACP as a substrate.  相似文献   

11.
The purpose of this study was to investigate fatty acid (FA) oxidation in isolated mitochondrial vesicles (mit) and its relation to training status, fiber type composition, and whole body FA oxidation. Trained (Vo(2 peak) 60.7 +/- 1.6, n = 8) and untrained subjects (39.5 +/- 2.0 ml.min(-1).kg(-1), n = 5) cycled at 40, 80, and 120 W, and whole body relative FA oxidation was assessed from respiratory exchange ratio (RER). Mit were isolated from muscle biopsies, and maximal ADP stimulated respiration was measured with carbohydrate-derived substrate [pyruvate + malate (Pyr)] and FA-derived substrate [palmitoyl-l-carnitine + malate (PC)]. Fiber type composition was determined from analysis of myosin heavy-chain (MHC) composition. The rate of mit oxidation was lower with PC than with Pyr, and the ratio between PC and Pyr oxidation (MFO) varied greatly between subjects (49-93%). MFO was significantly correlated to muscle fiber type distribution, i.e., %MHC I (r = 0.62, P = 0.03), but was not different between trained (62 +/- 5%) and untrained subjects (72 +/- 2%). MFO was correlated to RER during submaximal exercise at 80 (r = -0.62, P = 0.02) and 120 W (r = -0.71, P = 0.007) and interpolated 35% Vo(2 peak) (r = -0.74, P = 0.004). ADP sensitivity of mit respiration was significantly higher with PC than with Pyr. It is concluded that MFO is influenced by fiber type composition but not by training status. The inverse correlation between RER and MFO implies that intrinsic mit characteristics are of importance for whole body FA oxidation during low-intensity exercise. The higher ADP sensitivity with PC than that with Pyr may influence fuel utilization at low rate of respiration.  相似文献   

12.
The present study examined the role of the cytokine IL-6 in the regulation of fatty acid metabolism during exercise in humans. Six well-trained males completed three trials of 120 min of cycle ergometry at 70% peak O(2) consumption (Vo(2 peak); MOD) and 40% Vo(2 peak) with (LOW + IL-6) and without (LOW) infusion of recombinant human (rh)IL-6. The dose of rhIL-6 during LOW + IL-6 elicited IL-6 concentration similar to those during MOD but without altering the circulating hormonal milieu seen in MOD. Palmitate rate of appearance (R(a)), rate of disappearance (R(d)), and oxidation were measured by means of a constant infusion of [U-(13)C]palmitate (0.015 micromol.kg(-1).min(-1), prime NaHCO(3), 1 micromol/kg). Palmitate R(a), R(d), and oxidation were not affected by rhIL-6 infusion, remaining similar to LOW at all times. Palmitate R(a) and oxidation were significantly greater in the MOD trial (P < 0.05) compared with the LOW + IL-6 and LOW trials. Our data show that a low dose of rhIL-6, administered during low-intensity exercise without altering the hormonal milieu, does not alter fatty acid metabolism. These data suggest that the increase in fatty acid utilization seen during exercise at moderate compared with low intensity is not mediated via alterations in plasma IL-6.  相似文献   

13.
The protease inhibitor (PI) ritonavir (RTV) has been associated with elevated resting lipolytic rate, hyperlipidemia, and insulin resistance/glucose intolerance. The purpose of this study was to examine relationships between lipolysis and fatty acid (FA) oxidation during rest, moderate exercise and recovery, and measures of insulin sensitivity/glucose tolerance and fat redistribution in HIV-positive subjects taking RTV (n=12), HAART but no PI (n=10), and HIV-seronegative controls (n=10). Stable isotope tracers [1-(13)C]palmitate and [1,1,2,3,3-(2)H5]glycerol were continuously infused with blood and breath collection during 1-h rest, 70-min submaximal exercise (50% VO2 peak), and 1-h recovery. Body composition was evaluated using DEXA, MRI, and MRS, and 2-h oral glucose tolerance tests with insulin monitoring were used to evaluate glucose tolerance and insulin resistance. Lipolytic and FA oxidation rates were similar during rest and recovery in all groups; however, they were lower during moderate exercise in both HIV-infected groups [glycerol Ra: HIV+RTV 5.1+/-1.2 vs. HIV+no PI 5.9+/-2.8 vs. Control 7.4+/-2.2 micromol.kg fat-free mass (FFM)-1.min-1; palmitate oxidation: HIV+RTV 1.6+/-0.8 vs. HIV+no PI 1.6+/-0.8 vs. Control 2.5+/-1.7 micromol.kg FFM.min, P<0.01]. Fasting and orally-challenged glucose and insulin values were similar among groups. Lipolytic and FA oxidation rates were blunted during moderate exercise in HIV-positive subjects taking HAART. Lower FA oxidation during exercise was primarily due to impaired plasma FA oxidation, with a minor contribution from lower nonplasma FA oxidation. Regional differences in adipose tissue lipolysis during rest and moderate exercise may be important in HIV and warrant further study.  相似文献   

14.
Summary Spodoptera frugiperda (Sf-9) insect cells are fully capable of growth and proliferation in a glutamine, glutamate and aspartate-free medium, provided that ammonium ions are supplied. S. frugiperda (Sf-21) and Mamestra brassicae cells (IZD-MB-0503) also grow in glutamine-free media but not Trichoplusia ni cells (BTI-TN 5B1-4). The yield of -galactosidase in Sf-9 cells infected with a recombinant baculovirus under glutamine-free conditions was even higher than the yield obtained in glutamine containing cultures.  相似文献   

15.
The intestinal fatty acid binding protein (I-FABP) belongs to a family of 15 kDa clamshell-like proteins that are found in many different tissues. So far, nine types have been identified. Their primary structures are highly conserved between species but somewhat less so among the different types. The function of these proteins, many of which are highly expressed, is not well understood. Their ability to bind lipid ligands suggests a role in lipid metabolism, but direct evidence for this idea is still lacking. We tested the hypothesis that I-FABP serves an essential role in the assimilation of dietary fatty acids by disrupting its gene (Fabpi) in the mouse. We discovered that Fabpi-/- mice are viable, but they display alterations in body weight and are hyperinsulinemic. Male Fabpi-/- mice had elevated plasma triacylglycerols and weighed more regardless of the dietary fat content. In contrast, female Fabpi-/- mice gained less weight in response to a high-fat diet. The results clearly demonstrate that I-FABP is not essential for dietary fat absorption. We propose that I-FABP functions as a lipid-sensing component of energy homeostasis that alters body weight gain in a gender-specific fashion.  相似文献   

16.
Seed priming is a technique of controlled hydration and drying that results in more rapid gemination when the seeds are reimbibed. Advancement of radicle meristem cells into the S and G2 phases of the cell cycle, increasing the percentage of nuclei having a 4C DNA content, has been reported to occur during priming. It has been suggested that the efficiency of priming is related to the accumulation of 4C nuclei in the radicle meristem, but the extent of cell cycle activity varied among different treatments and seed lots. A wide range of priming treatments across temperatures, water potentials and durations can be compared on a common basis using the hydrothermal priming time model. Flow cytometry was used to monitor cell cycle activity in a number of tomato (Lycopersicon esculentum Mill.) seed lots during priming in relation to the accumulation of hydrothermal priming time and the subsequent germination rate response. In some seed lots, the percentage of 4C nuclei in the radicle meristems prior to emergence increased in proportion to accumulated hydrothermal priming time, while in other lots, no increase in nuclear DNA content was detected. All lots, however, demonstrated rapid radicle emergence following priming. Thus, replicative DNA synthesis in radicle meristem nuclei often occurred during seed priming, but an increase in the percentage of 4C nuclei was not essential for germination advancement.  相似文献   

17.
18.
To determine the role of AMP-activated protein kinase (AMPK) activation on the regulation of fatty acid (FA) uptake and oxidation, we perfused rat hindquarters with 6 mM glucose, 10 microU/ml insulin, 550 microM palmitate, and [14C]palmitate during rest (R) or electrical stimulation (ES), inducing low-intensity (0.1 Hz) muscle contraction either with or without 2 mM 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR). AICAR treatment significantly increased glucose and FA uptake during R (P < 0.05) but had no effect on either variable during ES (P > 0.05). AICAR treatment significantly increased total FA oxidation (P < 0.05) during both R (0.38 +/- 0.11 vs. 0.89 +/- 0.1 nmol x min(-1) x g(-1)) and ES (0.73 +/- 0.11 vs. 2.01 +/- 0.1 nmol x min(-1) x g(-1)), which was paralleled in both conditions by a significant increase and significant decrease in AMPK and acetyl-CoA carboxylase (ACC) activity, respectively (P < 0.05). Low-intensity muscle contraction increased glucose uptake, FA uptake, and total FA oxidation (P < 0.05) despite no change in AMPK (950.5 +/- 35.9 vs. 1,067.7 +/- 58.8 nmol x min(-1) x g(-1)) or ACC (51.2 +/- 6.7 vs. 55.7 +/- 2.0 nmol x min(-1) x g(-1)) activity from R to ES (P > 0.05). When contraction and AICAR treatment were combined, the AICAR-induced increase in AMPK activity (34%) did not account for the synergistic increase in FA oxidation (175%) observed under similar conditions. These results suggest that while AMPK-dependent mechanisms may regulate FA uptake and FA oxidation at rest, AMPK-independent mechanisms predominate during low-intensity muscle contraction.  相似文献   

19.
The effect of relative body fat mass on exercise-induced stimulation of lipolysis and fatty acid oxidation was evaluated in 15 untrained men (5 lean, 5 overweight, and 5 obese with body mass indexes of 21 +/- 1, 27 +/- 1, and 34 +/- 1 kg/m2, respectively, and %body fat ranging from 12 to 32%). Palmitate and glycerol kinetics and substrate oxidation were assessed during 90 min of cycling at 50% peak aerobic capacity (VO2 peak) by use of stable isotope-labeled tracer infusion and indirect calorimetry. An inverse relationship was found between %body fat and exercise-induced increase in glycerol appearance rate relative to fat mass (r2 = 0.74; P < 0.01). The increase in total fatty acid uptake during exercise [(micromol/kg fat-free mass) x 90 min] was approximately 50% smaller in obese (181 +/- 70; P < 0.05) and approximately 35% smaller in overweight (230 +/- 71; P < 0.05) than in lean (354 +/- 34) men. The percentage of total fatty acid oxidation derived from systemic plasma fatty acids decreased with increasing body fat, from 49 +/- 3% in lean to 39 +/- 4% in obese men (P < 0.05); conversely, the percentage of nonsystemic fatty acids, presumably derived from intramuscular and possibly plasma triglycerides, increased with increasing body fat (P < 0.05). We conclude that the lipolytic response to exercise decreases with increasing adiposity. The blunted increase in lipolytic rate in overweight and obese men compared with lean men limits the availability of plasma fatty acids as a fuel during exercise. However, the rate of total fat oxidation was similar in all groups because of a compensatory increase in the oxidation of nonsystemic fatty acids.  相似文献   

20.
The purpose of this study was to determine the role of direct hepatic adrenergic stimulation in the control of endogenous glucose production (R(a)) during moderate exercise in poorly controlled alloxan-diabetic dogs. Chronically catheterized and instrumented (flow probes on hepatic artery and portal vein) dogs were made diabetic by administration of alloxan. Each study consisted of a 120-min equilibration, 30-min basal, 150-min moderate exercise, 30-min recovery, and 30-min blockade test period. Either vehicle (control; n = 6) or alpha (phentolamine)- and beta (propranolol)-adrenergic blockers (HAB; n = 6) were infused in the portal vein. In both groups, epinephrine (Epi) and norepinephrine (NE) were infused in the portal vein during the blockade test period to create suprapharmacological levels at the liver. Isotopic ([3-(3)H]glucose, [U-(14)C]alanine) and arteriovenous difference methods were used to assess hepatic function. Arterial plasma glucose was similar in controls (345 +/- 24 mg/dl) and HAB (336 +/- 23 mg/dl) and was unchanged by exercise. Basal arterial insulin was 5 +/- 1 mU/ml in controls and 4 +/- 1 mU/ml in HAB and fell by approximately 50% during exercise in both groups. Basal arterial glucagon was similar in controls (56 +/- 10 pg/ml) and HAB (55 +/- 7 pg/ml) and rose similarly, by approximately 1.4-fold, with exercise in both groups. Despite greater arterial Epi and NE levels in HAB compared with controls during the basal and exercise periods, exercise-induced increases in catecholamines from basal were similar in both groups. Gluconeogenic conversion from alanine and lactate and the intrahepatic efficiency of this process were increased by twofold during exercise in both groups. R(a) rose similarly by 2.9 +/- 0.7 and 2.7 +/- 1.0 mg. kg(-1). min(-1) at time = 150 min during exercise in controls and HAB. During the blockade test period, arterial plasma glucose and R(a) rose to 454 +/- 43 mg/dl and 11.3 mg. kg(-1). min(-1) in controls, respectively, but were essentially unchanged in HAB. The attenuated response to the blockade test in HAB substantiates the effectiveness of the hepatic adrenergic blockade. In conclusion, these results demonstrate that direct hepatic adrenergic stimulation does not play a role in the stimulation of R(a) during exercise in poorly controlled diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号