首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Dendritic cells (DCs) play a central role as major targets of dengue virus (DV) infections and initiators of antiviral immune responses. Previous observations showed that DCs are activated by infection, presumably acquiring the capacity to promote cell-mediated immunity. However, separate evaluations of the maturation profiles of infected and uninfected bystander cells show that infection impairs the ability of DCs to upregulate cell surface expression of costimulatory, maturation, and major histocompatibility complex molecules, resulting in reduced T-cell stimulatory capacity. Infected DCs failed to respond to tumor necrosis factor alpha as an additional maturation stimulus and were apoptotic. Interleukin 10 (IL-10) was detected in supernatants from cultures of DV-infected DCs and cocultures of DCs and T cells. Taken together, these results constitute an immune evasion strategy used by DV that directly impairs antigen-presenting cell function by maturation blockade and induction of apoptosis.  相似文献   

2.
We have previously shown that dengue virus (DV) productively infects immature human dendritic cells (DCs) through binding to cell surface DC-specific ICAM-3-grabbing nonintegrin molecules. Infected DCs are apoptotic, refractory to TNF-alpha stimulation, inhibited from undergoing maturation, and unable to stimulate T cells. In this study, we show that maturation of infected DCs could be restored by a strong stimulus, CD40L. Addition of CD40L significantly reduced apoptosis of DCs, promoted IL-12 production, and greatly elevated the IFN-gamma response of T cells, but yet did not restore T cell proliferation in MLR. Increased viral infection of DCs was also observed; however, increased infection did not appear to be mediated by DC-specific ICAM-3-grabbing nonintegrin, but rather was regulated by decreased production of IFN-alpha and decreased apoptotic death of infected DCs. Because CD40L is highly expressed on activated memory (but not naive) T cells, the observation that CD40L signaling results in enhanced DV infection of DC suggests a possible T cell-dependent mechanism for the immune-mediated enhancement of disease severity associated with some secondary dengue infections.  相似文献   

3.
4.
Dengue virus (DV) infection is a major problem in public health. It can cause fatal diseases such as Dengue hemorrhagic fever and Dengue shock syndrome. Dendritic cells (DC) are professional APCs required for establishing a primary immune response. Here, we investigated the role of human PBMC-derived DC in DV infection. Using different techniques, including plaque assay, flow cytometry analysis, nested RT-PCR, and confocal microscope and electron microscope examinations, we show that DV can enter cultured human DC and produce virus particles. After entrance, DV could be visualized in cystic vesicles, vacuoles, and the endoplasmic reticulum. The DV-infected DC also showed proliferation and hypertrophy of the endoplasmic reticulum as well as the swollen mitochondria. In addition, the DV-stimulated DC could express maturation markers such as B7-1, B7-2, HLA-DR, CD11b, and CD83. Furthermore, the infection of DC by DV induced production of TNF-alpha and IFN-alpha, but not IL-6 and IL-12. Although DC underwent spontaneous apoptosis in the absence of feeding cytokines, this process appeared to be delayed after DV infection. Our observations provide important information in understanding the pathogenesis of DV infection.  相似文献   

5.
Modified vaccinia virus Ankara (MVA) is an attenuated poxvirus strain, currently under evaluation as a vaccine vector in various clinical settings. It has been reported that human dendritic cells (DCs) mature after infection with MVA, but reports on the functionality of DCs have so far been controversial. In this work, we studied the phenotype and functionality of MVA-infected DCs. As previously reported, we found that human monocyte-derived DCs upregulated CD86 and HLA-DR in response to MVA infection. Moreover, infected DCs produced a broad array of chemokines and cytokines and were able to activate and induce gamma interferon (IFN-γ) production both in CD4(+) and in CD8(+) allogeneic T cells and in specific autologous peripheral blood lymphocytes (PBLs). Analysis of DC maturation following infection with a recombinant green fluorescent protein (GFP)-expressing MVA revealed that upregulation of CD86 expression was mainly observed in GFP(neg) (bystander) cells. While GFP(pos) (infected) DCs produced tumor necrosis factor alpha (TNF-α), they were unable to produce CXCL10 and were less efficient at inducing IFN-γ production in CEF-specific autologous PBLs. Maturation of bystander DCs could be achieved by incubation with supernatant from infected cultures or with apoptotic infected cells. Type I IFNs were partially responsible for the induction of CXCL10 on bystander DCs. Our findings demonstrate for the first time that, in MVA-infected DC cultures, the leading role with respect to functionality and maturation characteristics is achieved by the bystander DCs.  相似文献   

6.
7.
8.
Vascular leakage and shock are the major causes of death in patients with dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). It has been suggested that patients with an elevated level of the free soluble form of dengue virus (DV) nonstructural protein 1 (sNS1) are at risk of developing DHF. To understand the role of sNS1 in blood, we searched for the host molecule with which NS1 interacts in human plasma by affinity purification using a GST-fused NS1. Complement inhibitory factor clusterin (Clu), which naturally inhibits the formation of terminal complement complex (TCC), was identified by mass spectrometry. A recombinant sNS1 produced from 293T cells and sNS1 from DV-infected Vero cells interacted with human Clu. Since an activated complement system reportedly causes vascular leakage, the interaction between sNS1 and Clu may contribute to the progression of DHF.  相似文献   

9.
10.
The activation of dendritic cells (DC) leads to increased costimulatory activity (termed DC maturation) and, in some instances, production of immunomodulatory cytokines such as IL-12. Both innate and T cell-derived signals can promote DC activation but it is unclear to what extent the two classes of stimuli are interchangeable or regulate distinct aspects of DC function. In this study, we show that signals from newly activated CD4(+) T cells cannot initiate IL-12 synthesis although they can amplify secretion of bioactive IL-12 p70 by DC exposed to an appropriate innate stimulus. This occurs exclusively in cis and does not influence IL-12 synthesis by bystander DC that do not present Ag. In marked contrast, signals from newly activated CD4(+) T cells can induce an increase in DC costimulatory activity in the absence of any innate priming. This occurs both in cis and in trans, affecting all DC in the microenvironment, including those that do not bear specific Ag. Consistent with the latter, we show that newly activated CD4(+) T cells in vivo can deliver "help" in trans, effectively lowering the number of MHC/peptide complexes required for proliferation of third-party naive CD4(+) T cells recognizing Ag on bystander DC. These results demonstrate that DC maturation and cytokine production are regulated distinctly by innate stimuli vs signals from CD4(+) T cells and reveal a process of trans activation of DC without secretion of polarizing cytokines that takes place during T cell priming and may be involved in amplifying immune responses.  相似文献   

11.
登革病毒对人树突状细胞感染性的研究   总被引:1,自引:0,他引:1  
探讨登革病毒对人树突状细胞(DC)的感染性。人外周新鲜血常规分离单核细胞,经细胞因子GMCSF、IL4诱导培养成DC,通过形态学特征、细胞表型和淋巴细胞刺激能力鉴定。用登革病毒2型(DV2)感染DC,于作用后6h、24h、48h、72h、96h分别收集上清液和细胞,甲基纤维素微量空斑试验测定病毒滴度,间接免疫荧光法检测细胞上病毒抗原表达,透射电镜观察病毒在细胞内的定位。病毒感染后6h即可在培养上清中测出病毒,病毒滴度在48h达到高峰,以后逐渐下降。间接免疫荧光法证明感染的DC胞浆及胞膜上携带病毒抗原。透射电镜下在病毒感染48h后DC胞浆内可见大量病毒颗粒。树突状细胞是登革病毒感染的靶细胞,病毒可感染DC并产生大量病毒颗粒,可能在其发病机制中起重要作用。  相似文献   

12.
Dengue viruses (DV), composed of four distinct serotypes (DV1 to DV4), cause 50 to 100 million infections annually. Durable homotypic immunity follows infection but may predispose to severe subsequent heterotypic infections, a risk conferred in part by the immune response itself. Antibody-dependent enhancement (ADE), a process best described in vitro, is epidemiologically linked to complicated DV infections, especially in Southeast Asia. Here we report for the first time the ADE phenomenon in primary human dendritic cells (DC), early targets of DV infection, and human cell lines bearing Fc receptors. We show that ADE is inversely correlated with surface expression of DC-SIGN (DC-specific intercellular adhesion molecule-3-grabbing nonintegrin) and requires Fc gamma receptor IIa (FcgammaRIIa). Mature DC exhibited ADE, whereas immature DC, expressing higher levels of DC-SIGN and similar FcgammaRIIa levels, did not undergo ADE. ADE results in increased intracellular de novo DV protein synthesis, increased viral RNA production and release, and increased infectivity of the supernatants in mature DC. Interestingly, tumor necrosis factor alpha and interleukin-6 (IL-6), but not IL-10 and gamma interferon, were released in the presence of dengue patient sera but generally only at enhancement titers, suggesting a signaling component of ADE. FcgammaRIIa inhibition with monoclonal antibodies abrogated ADE and associated downstream consequences. DV versatility in entry routes (FcgammaRIIa or DC-SIGN) in mature DC broadens target options and suggests additional ways for DC to contribute to the pathogenesis of severe DV infection. Studying the cellular targets of DV infection and their susceptibility to ADE will aid our understanding of complex disease and contribute to the field of vaccine development.  相似文献   

13.
Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infections in children, the elderly, and immune-compromised individuals. CD4 and CD8 T cells play a crucial role in the elimination of RSV from the infected lung, but T cell memory is not sufficient to completely prevent reinfections. The nature of the adaptive immune response depends on innate immune reactions initiated after interaction of invading pathogens with host APCs. For respiratory pathogens myeloid dendritic cell (DC) precursors that are located underneath the epithelial cell layer lining the airways may play a crucial role in primary activation of T cells and regulating their functional potential. In this study, we investigated the role of human monocyte-derived DC in RSV infection. We showed that monocyte-derived DC can be productively infected, which results in maturation of the DC judged by the up-regulation of CD80, CD83, CD86, and HLA class II molecules. However, RSV infection of DC caused impaired CD4 T cell activation characterized by a lower T cell proliferation and ablation of cytokine production in activated T cells. The suppressive effect was caused by an as yet unidentified soluble factor produced by RSV-infected DC.  相似文献   

14.
Dengue fever is an important tropical illness for which there is currently no virus-specific treatment. To shed light on mechanisms involved in the cellular response to dengue virus (DV), we assessed gene expression changes, using Affymetrix GeneChips (HG-U133A), of infected primary human cells and identified changes common to all cells. The common response genes included a set of 23 genes significantly induced upon DV infection of human umbilical vein endothelial cells (HUVECs), dendritic cells (DCs), monocytes, and B cells (analysis of variance, P < 0.05). Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), one of the common response genes, was identified as a key link between type I and type II interferon response genes. We found that DV induces TRAIL expression in immune cells and HUVECs at the mRNA and protein levels. The induction of TRAIL expression by DV was found to be dependent on an intact type I interferon signaling pathway. A significant increase in DV RNA accumulation was observed in anti-TRAIL antibody-treated monocytes, B cells, and HUVECs, and, conversely, a decrease in DV RNA was seen in recombinant TRAIL-treated monocytes. Furthermore, recombinant TRAIL inhibited DV titers in DV-infected DCs by an apoptosis-independent mechanism. These data suggest that TRAIL plays an important role in the antiviral response to DV infection and is a candidate for antiviral interventions against DV.  相似文献   

15.
Dengue virus (DV) causes a non-specific febrile illness known as Dengue fever (DF), and a severe life-threatening illness, Dengue hemorrhagic fever/Dengue shock syndrome (DHF/DSS). Hemostatic changes induced by this virus involve three main factors: thrombocytopenia, endothelial cell damage, and significant abnormalities of the coagulation and fibrinolysis systems. The pathogenesis of bleeding in DV infections remains unknown. In this article, we focused on the DV activating endothelial cells and altering the parameters of hemostasis system. The expression of hemostasis-related factors, Thrombomodulin, TF, TFPI, t-PA, and PAI-1, in DV-infected cells were determined by RT-PCR. Flow cytometry analysis and immunofluorescence staining confirmed that the expression levels of TM in the DV-infected HMEC-1 and THP-1 cells were increased. In addition, the purified recombinant domain III of the envelope glycoprotein of DV (EIII) could induce the expression of TM in the HMEC-1 cells and THP-1 cells. The TM expression induced by DV or EIII in the endothelial cells and monocytic cells suggests that the EIII of DV plays an important role in the pathogenesis of DHF/DSS.  相似文献   

16.
Leishmania braziliensis infections are often associated with exaggerated immune responses that can sometimes lead to severe disease associated with high levels of IFN-gamma and TNF-alpha. To explore the role played by dendritic cells (DCs) in these responses, we characterized DCs that were exposed to L. braziliensis. We found that DCs cultured with L. braziliensis parasites up-regulated DC activation markers and produced IL-12 and TNF-alpha. However, not all DCs in the culture became infected, and an analysis of infected and uninfected DCs demonstrated that the up-regulation of activation markers and IL-12 production was primarily confined to the uninfected (bystander) DCs. Further studies with Transwell chambers and parasite fractions indicated that the activation of bystander DCs was mediated by a soluble parasite product, in a type 1 IFN- and MyD88-independent, but TNF-alpha-dependent fashion, and that the activated DCs were more efficient at presenting Ag than control DCs. In contrast, L. braziliensis-infected DCs failed to up-regulate activation markers, but exhibited a dramatic enhancement in their ability to produce TNF-alpha in response to LPS as compared with uninfected DCs. These findings uncover a dual role for DCs in L. braziliensis infection: T cell activation by bystander DCs due to enhanced Ag-presenting capacity following exposure to soluble parasite products, and increased production of TNF-alpha by infected cells that may contribute to the local control of the parasites, but concomitantly induce immunopathology.  相似文献   

17.
Chen YC  Wang SY 《Journal of virology》2002,76(19):9877-9887
Dengue virus (DV) primarily infects blood monocytes (MO) and tissue macrophages (M phi). We have shown in the present study that DV can productively infect primary human MO/M phi regardless of the stage of cell differentiation. After DV infection, the in vitro-differentiated MO/M phi secreted multiple innate cytokines and chemokines, including tumor necrosis factor alpha, alpha interferon (IFN-alpha), interleukin-1 beta (IL-1 beta), IL-8, IL-12, MIP-1 alpha, and RANTES but not IL-6, IL-15, or nitric oxide. Secretion of these mediators was highlighted by distinct magnitude, onset, kinetics, duration, and induction potential. A chemokine-to-cytokine hierarchy was noted in the magnitude and induction potential of secretion, and a chemokine-to-cytokine-to-chemokine/Th1 cytokine cascade could be seen in the production kinetics. Furthermore, we found that terminally differentiated MO/M phi cultured for more than 45 days could support productive DV infection and produce innate cytokines and chemokines, indicating that these mature cells were functionally competent in the context of a viral infection. In addition, DV replication in primary differentiated human MO/M phi was enhanced and prolonged in the presence of lipopolysaccharide (LPS), and LPS-mediated synergistic production of IFN-alpha could be seen in DV-infected MO/M phi. The secretion of innate cytokines and chemokines by differentiated MO/M phi suggests that regional accumulation of these mediators may occur in various tissues to which DV has disseminated and may thus result in local inflammation. The LPS-mediated enhancement of virus replication and synergistic IFN-alpha production suggests that concurrent bacterial infection may modulate cytokine-mediated disease progression during DV infection.  相似文献   

18.
Dengue disease is an increasing global health problem that threatens one-third of the world's population. Despite decades of efforts, no licensed vaccine against dengue is available. With the aim to develop an affordable vaccine that could be used in young populations living in tropical areas, we evaluated a new strategy based on the expression of a minimal dengue antigen by a vector derived from pediatric live-attenuated Schwarz measles vaccine (MV). As a proof-of-concept, we inserted into the MV vector a sequence encoding a minimal combined dengue antigen composed of the envelope domain III (EDIII) fused to the ectodomain of the membrane protein (ectoM) from DV serotype-1. Immunization of mice susceptible to MV resulted in a long-term production of DV1 serotype-specific neutralizing antibodies. The presence of ectoM was critical to the immunogenicity of inserted EDIII. The adjuvant capacity of ectoM correlated with its ability to promote the maturation of dendritic cells and the secretion of proinflammatory and antiviral cytokines and chemokines involved in adaptive immunity. The protective efficacy of this vaccine should be studied in non-human primates. A combined measles-dengue vaccine might provide a one-shot approach to immunize children against both diseases where they co-exist.  相似文献   

19.
SP Ong  LM Lee  YF Leong  ML Ng  JJ Chu 《PloS one》2012,7(7):e41932
High mobility group box 1 (HMGB1) protein is released from cells as a pro-inflammatory cytokine in response to an injury or infection. During dengue hemorrhagic fever (DHF)/dengue shock syndrome (DSS), a number of pro-inflammatory cytokines are released, contributing to disease pathogenesis. In this study, the release of HMGB1 from human myelogenous leukemia cell line K562 and primary peripheral blood monocytes (PBM) cells was examined during dengue virus (DV)-infection. HMGB1 was shown to translocate from cell nuclei to the cytoplasm in both K562- and PBM-infected cells. The translocation of HMGB1 from the nucleus to the cytoplasm was shown to be mediated by the host cell p300/CBP-associated factor (PCAF) acetylase complex in K562 cells. In addition, DV capsid protein was observed to be the putative viral protein in actuating HMGB1 migration from the nucleus to cytoplasm through the involvement of PCAF acetylase. HMGB1 was released from DV-infected K562 cells into the extracellular milieu in a multiplicity of infection (M.O.I.)-independent manner and its release can be inhibited by the addition of 1-5 mM of ethyl pyruvate (EP) in a dose-dependent manner. Application of DV-infected K562 cell culture supernatants to primary endothelial cells induced vascular permeability. In contrast, supernatants from DV-infected K562 cells treated with EP or HMGB1 neutralizing antibody were observed to maintain the structural integrity of the vascular barrier.  相似文献   

20.
In this study, we analyzed the phenotypic and physiological consequences of the interaction of plasmacytoid dendritic cells (pDCs) with human immunodeficiency virus type 1 (HIV-1). pDCs are one cellular target of HIV-1 and respond to the virus by producing alpha/beta interferon (IFN-alpha/beta) and chemokines. The outcome of this interaction, notably on the function of bystander myeloid DC (CD11c+ DCs), remains unclear. We therefore evaluated the effects of HIV-1 exposure on these two DC subsets under various conditions. Blood-purified pDCs and CD11c+ DCs were exposed in vitro to HIV-1, after which maturation markers, cytokine production, migratory capacity, and CD4 T-cell stimulatory capacity were analyzed. pDCs exposed to different strains of infectious or even chemically inactivated, nonreplicating HIV-1 strongly upregulated the expression of maturation markers, such as CD83 and functional CCR7, analogous to exposure to R-848, a synthetic agonist of toll-like receptor-7 and -8. In addition, HIV-1-activated pDCs produced cytokines (IFN-alpha and tumor necrosis factor alpha), migrated in response to CCL19 and, in coculture, matured CD11c+ DCs, which are not directly activated by HIV. pDCs also acquired the ability to stimulate na?ve CD4+ T cells, albeit less efficiently than CD11c+ DCs. This HIV-1-induced maturation of both DC subsets may explain their disappearance from the blood of patients with high viral loads and may have important consequences on HIV-1 cellular transmission and HIV-1-specific T-cell responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号