首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Memory T cells can be divided into effector memory (T(EM)) and central memory (T(CM)) subsets based on their effector function and homing characteristics. Although previous studies have demonstrated that TCR and cytokine signals mediate the generation of the two memory subsets of CD8(+) T cells, the mechanisms for generation of the CD4(+) T(EM) and T(CM) cell subsets are unknown. We found that OX40-deficient mice showed a marked reduction in the number of CD4(+) T(EM) cells, whereas the number of CD4(+) T(CM) cells was normal. Adoptive transfer experiments using Ag-specific CD4(+) T cells revealed that OX40 signals during the priming phase were indispensable for the optimal generation of the CD4(+) T(EM), but not the CD4(+) T(CM) population. In a different transfer experiment with in vitro established CD4(+)CD44(high)CD62L(low) (T(EM) precursor) and CD4(+)CD44(high)CD62L(high) (T(CM) precursor) subpopulations, OX40-KO T(EM) precursor cells could not survive in the recipient mice, whereas wild-type T(EM) precursor cells differentiated into both T(EM) and T(CM) cells. In contrast, T(CM) precursor cells mainly produced T(CM) cells regardless of OX40 signals, implying the dispensability of OX40 for generation of T(CM) cells. Nevertheless, survival of OX40-KO T(EM) cells was partially rescued in lymphopenic mice. During in vitro recall responses, the OX40-KO T(EM) cells that were generated in lymphopenic recipient mice showed impaired cytokine production, suggesting an essential role for OX40 not only on generation but also on effector function of CD4(+) T(EM) cells. Collectively, the present results indicate differential requirements for OX40 signals on generation of CD4(+) T(EM) and T(CM) cells.  相似文献   

2.
In response to infection, CD8(+) T cells integrate multiple signals and undergo an exponential increase in cell numbers. Simultaneously, a dynamic differentiation process occurs, resulting in the formation of short-lived effector cells (SLECs; CD127(low)KLRG1(high)) and memory precursor effector cells (CD127(high)KLRG1(low)) from an early effector cell that is CD127(low)KLRG1(low) in phenotype. CD8(+) T cell differentiation during vesicular stomatitis virus infection differed significantly than during Listeria monocytogenes infection with a substantial reduction in early effector cell differentiation into SLECs. SLEC generation was dependent on Ebi3 expression. Furthermore, SLEC differentiation during vesicular stomatitis virus infection was enhanced by administration of CpG-DNA, through an IL-12-dependent mechanism. Moreover, CpG-DNA treatment enhanced effector CD8(+) T cell functionality and memory subset distribution, but in an IL-12-independent manner. Population dynamics were dramatically different during secondary CD8(+) T cell responses, with a much greater accumulation of SLECs and the appearance of a significant number of CD127(high)KLRG1(high) memory cells, both of which were intrinsic to the memory CD8(+) T cell. These subsets persisted for several months but were less effective in recall than memory precursor effector cells. Thus, our data shed light on how varying the context of T cell priming alters downstream effector and memory CD8(+) T cell differentiation.  相似文献   

3.
As acute infections resolve, most effector CD8(+) T cells die, whereas some persist and become memory T cells. Recent work showed that subsets of effector CD8(+) T cells, identified by reciprocal expression of killer cell lectin-like receptor G1 (KLRG1) and CD127, have different lifespans. Similar to previous reports, we found that effector CD8(+) T cells reported to have a longer lifespan (i.e., KLRG1(low)CD127(high)) have increased levels of Bcl-2 compared with their shorter-lived KLRG1(high)CD127(low) counterparts. Surprisingly, we found that these effector KLRG1(low)CD127(high) CD8(+) T cells also had increased levels of Bim compared with KLRG1(high)CD127(low) cells. Similar effects were observed in memory cells, in which CD8(+) central memory T cells expressed higher levels of Bim and Bcl-2 than did CD8(+) effector memory T cells. Using both pharmacologic and genetic approaches, we found that survival of both subsets of effector and memory CD8(+) T cells required Bcl-2 to combat the proapoptotic activity of Bim. Interestingly, inhibition or absence of Bcl-2 led to significantly decreased expression of Bim in surviving effector and memory T cells. In addition, manipulation of Bcl-2 levels by IL-7 or IL-15 also affected expression of Bim in effector CD8(+) T cells. Finally, we found that Bim levels were significantly increased in effector CD8(+) T cells lacking Bax and Bak. Together, these data indicate that cells having the highest levels of Bim are selected against during contraction of the response and that Bcl-2 determines the level of Bim that effector and memory T cells can tolerate.  相似文献   

4.
Functional CD8 T cell effector and memory responses are generated and maintained during murine γ-herpesvirus 68 (γHV68) persistent infection despite continuous presentation of viral lytic Ags. However, the identity of the CD8 T cell subpopulations that mediate effective recall responses and that can participate in the generation of protective memory to a γ-herpesvirus infection remains unknown. During γHV68 persistence, ~75% of γHV68-specific CD8 T cells coexpress the NK receptors killer cell lectin-like receptor G1 (KLRG1) and NKG2A. In this study, we take advantage of this unique phenotype to analyze the capacity of CD8 T cells expressing or not expressing KLRG1 and NKG2A to mediate effector and memory responses. Our results show that γHV68-specific KLRG1(+)NKG2A(+) CD8 T cells have an effector memory phenotype as well as characteristics of polyfunctional effector cells such us IFN-γ and TNF-α production, killing capacity, and are more efficient at protecting against a γHV68 challenge than their NKG2A(-)KLRG1(-) counterparts. Nevertheless, γHV68-specific NKG2A(+)KLRG1(+) CD8 T cells express IL-7 and IL-15 receptors, can survive long-term without cognate Ag, and subsequently mount a protective response during antigenic recall. These results highlight the plasticity of the immune system to generate protective effector and proliferative memory responses during virus persistence from a pool of KLRG1(+)NKG2A(+) effector memory CD8 T cells.  相似文献   

5.
Killer cell lectin-like receptor G1 (KLRG1) is one of several inhibitory killer cell lectin-like receptors expressed by NK cells and T lymphocytes, mainly CD8(+) effector/memory cells that can secrete cytokines but have poor proliferative capacity. Using multiparameter flow cytometry, we studied KLRG1 expression on CD8(+) T cells specific for epitopes of CMV, EBV, influenza, and HIV. Over 92% of CD8(+) cells specific for CMV or EBV expressed KLRG1 during the latent stage of these chronic infections. CD8(+) T cell cells specific for HIV epitopes were mostly (72-89%) KLRG1(+), even though not quite at the level of predominance noted with CMV or EBV. Lower frequency of KLRG1 expression was observed among CD8(+) cells specific for influenza (40-73%), a resolved infection without a latent stage. We further observed that CD8(+) cells expressing CD57, a marker of replicative senescence, also expressed KLRG1; however, a population of CD57(-)KLRG1(+) cells was also identified. This population may represent a "memory" phenotype, because they also expressed CD27, CD28, CCR7, and CD127. In contrast, CD57(+)KLRG1(+) cells did not express CD27, CD28, and CCR7, and expressed CD127 at a much lower frequency, indicating that they represent effector cells that are truly terminally differentiated. The combination of KLRG1 and CD57 expression might thus aid in refining functional characterization of CD8(+) T cell subsets.  相似文献   

6.
IFN-gamma-producing CD8(+) T lymphocytes are essential effector cells that mediate protective immunity during murine toxoplasmosis, and yet their effector development remains poorly characterized. Vaccination with the carbamoyl phosphate synthase (CPS) mutant strain of Toxoplasma gondii was used to examine the CD8(+) T cell response in the peritoneal effector site. Four CTL subpopulations with varying effector potentials were defined based on the expression of effector molecules and the cell surface activation markers CD62L and killer cell lectin-like receptor G1 (KLRG1). Further phenotypic analysis revealed that the acquisition of KLRG1 among effector subpopulations correlated with the down-regulation of both IL-7R and CD27, suggesting that KLRG1 marks dominant, end-stage effector cells. Using gene-targeted mice, we tested the in vivo requirements of key IL-12 signaling components for effector CTL differentiation. Contrary to established models of viral and bacterial infection, CD8(+) T cell-intrinsic IL-12 signaling was required for the generation of IFN-gamma-producing CTLs in response to T. gondii. Importantly, the development of the KLRG1(+) effector subpopulations, but not the memory precursor-containing KLRG1(-) effector subset, was critically reliant on IL-12. Furthermore, IL-12 signaling-dependent T-bet expression was also found to be important for differentiation of KLRG1(+) effectors. Our results underscore a vital role for IL-12 in not only the induction of IFN-gamma expression but also in the development of heterogeneous subpopulations of effector CD8(+) T cells generated in response to the intracellular parasite T. gondii.  相似文献   

7.
Several members of the TNFR superfamily, including OX40 (CD134), 4-1BB (CD137), and CD27 provide critical costimulatory signals that promote T cell survival and differentiation in vivo. Although several studies have demonstrated that OX40 engagement can enhance CD4 T cell responses, the mechanisms by which OX40-mediated signals augment CD8 T cell responses are still unclear. Previously, we and others have shown that OX40 engagement on Ag-specific CD8 T cells led to increased CD8 T cell expansion, survival, and the generation of greater numbers of long-lived memory cells. Currently, we demonstrate that provision of an OX40 agonist during the activation of naive CD8 T cells primed in vivo with either soluble or tumor-associated Ag significantly augments granzyme B expression and CD8 T cell cytolytic function through an IL-2-dependent mechanism. Furthermore, augmented CTL function required direct engagement of OX40 on the responding CD8 T cells and was associated with increased antitumor activity against established prostate tumors and enhanced the survival of tumor-bearing hosts. Thus, in the absence of danger signals, as is often the case in a tumor-bearing host, provision of an OX40 agonist can overcome defective CD8 T cell priming and lead to a functional antitumor response in vivo.  相似文献   

8.
T cell depletion is a widely used approach in clinical transplantation. However, not all T cells are equally sensitive to depletion therapies and a significant fraction of T cells persists even after aggressive treatment. The functional attributes of such T cells and the mechanisms responsible for their resistance to depletion are poorly studied. In the present study, we showed that CD4(+) T cells that are resistant to polyclonal anti-lymphocyte serum (ALS) mediated depletion exhibit phenotypic features of memory cells and uniformly express OX40 on the cell surface. Studies using the foxp3gfp knockin mice revealed that the remaining CD4(+)OX40(+) cells consist of Foxp3(+) Tregs and Foxp3(-) T effector/memory cells. The ALS-resistant CD4(+)OX40(+) cells failed to mediate skin allograft rejection upon adoptive transferring into congenic Rag(-/-) mice, but removal of Foxp3(+) Tregs from the OX40(+) cells resulted in prompt skin allograft rejection. Importantly, OX40 is critical to survival of both Foxp3(+) Tregs and T effector/memory cells. However, OX40 exhibits opposing effects on the functional status of Foxp3(+) Tregs and T effector/memory cells, as stimulation of OX40 on T effector cells induced amplified cell proliferation but stimulation of OX40 on the Foxp3(+) Tregs impaired their suppressor functions. Our study demonstrates that OX40 is a critical molecule in regulating survival and functions of depletion-resistant T cells; and these findings may have important clinical implications.  相似文献   

9.
10.
OX40 is a member of the TNFR superfamily and has potent T cell costimulatory activities. OX40 also inhibits the induction of Foxp3(+) regulatory T cells (Tregs) from T effector cells, but the precise mechanism of such inhibition remains unknown. In the present study, we found that CD4(+) T effector cells from OX40 ligand-transgenic (OX40Ltg) mice are highly resistant to TGF-beta mediated induction of Foxp3(+) Tregs, whereas wild-type B6 and OX40 knockout CD4(+) T effector cells can be readily converted to Foxp3(+) T cells. We also found that CD4(+) T effector cells from OX40Ltg mice are heterogeneous and contain a large population of CD44(high)CD62L(-) memory T cells. Analysis of purified OX40Ltg naive and memory CD4(+) T effector cells showed that memory CD4(+) T cells not only resist the induction of Foxp3(+) T cells but also actively suppress the conversion of naive CD4(+) T effector cells to Foxp3(+) Tregs. This suppression is mediated by the production of IFN-gamma by memory T cells but not by cell-cell contact and also involves the induction of T-bet. Importantly, memory CD4(+) T cells have a broad impact on the induction of Foxp3(+) Tregs regardless of their origins and Ag specificities. Our data suggest that one of the mechanisms by which OX40 inhibits the induction of Foxp3(+) Tregs is by inducing memory T cells in vivo. This finding may have important clinical implications in tolerance induction to transplanted tissues.  相似文献   

11.
In this study we examined the role and regulation of OX40 signals during CD4 T cell priming on dendritic cells (DCs). Contrary to expectation, OX40-deficient cells proliferated more rapidly than their normal counterparts, particularly when stimulated with peptide in the absence of added cytokines. This proliferative advantage was not apparent for Th2-differentiated cells. When the reasons for this were investigated, we found that the cytokine IL-4 specifically down-regulated expression of OX40 ligand on T, B, and DCs, but not on the CD4(+)CD3(-) cells linked with selection of Th2 cells into the memory compartment. OX40 ligand expression was also down-regulated on rapidly proliferating Th1 effectors. These data are compatible with OX40 signals acting during priming as a check on naive T cell proliferation while T cells integrate additional DC signals. This would serve to limit inappropriate T cell responses. In contrast, OX40 signals from CD4(+)CD3(-) cells located in the outer T zone select proliferating Th2 effectors into the memory T cell pool.  相似文献   

12.
Ag-specific CD4 T cells transferred into unirradiated Ag-bearing recipients proliferate, but survival and accumulation of proliferating cells is not extensive and the donor cells do not acquire effector functions. We previously showed that a single costimulatory signal delivered by an agonist Ab to OX40 (CD134) promotes accumulation of proliferating cells and promotes differentiation to effector CD4 T cells capable of secreting IFN-gamma. In this study, we determined whether OX40 costimulation requires supporting costimulatory or differentiation signals to drive acquisition of effector T cell function. We report that OX40 engagement drives effector T cell differentiation in the absence of CD28 and CD40 signals. Two important regulators of Th1 differentiation, IL-12R and T-bet, also are not required for acquisition of effector function in CD4 T cells responsive to OX40 stimulation. Finally, we show that CD25-deficient CD4 T cells produce little IFN-gamma in the presence of OX40 costimulation compared with wild type, suggesting that IL-2R signaling is required for efficient OX40-mediated differentiation to IFN-gamma secretion.  相似文献   

13.
This report defines a cell surface receptor (OX40) expressed on effector CD4 T cells, which when engaged in conjunction with a danger signal, rescues Ag-stimulated effector cells from activation-induced cell death in vivo. Specifically, three signals were necessary to promote optimal generation of long-lived CD4 T cell memory in vivo: Ag, a danger signal (LPS), and OX40 engagement. Mice treated with Ag or superantigen (SAg) alone produced very few SAg-specific T cells. OX40 ligation or LPS stimulation, enhanced SAg-driven clonal expansion and the survival of responding T cells. However, when SAg was administered with a danger signal at the time of OX40 ligation, a synergistic effect was observed which led to a 60-fold increase in the number of long-lived, Ag-specific CD4 memory T cells. These data lay the foundation for the provision of increased numbers of memory T cells which should enhance the efficacy of vaccine strategies for infectious diseases, or cancer, while also providing a potential target (OX40) to limit the number of auto-Ag-specific memory T cells in autoimmune disease.  相似文献   

14.
Independent studies have shown that CD27, 4-1BB, and OX40 can all promote survival of activated CD8+ T cells. We have therefore compared their impact on CD8+ memory T cell formation and responsiveness within one, physiologically relevant model system. Recombinant mice, selectively lacking input of one or two receptors, were challenged intranasally with influenza virus, and the immunodominant virus-specific CD8+ T cell response was quantified at priming and effector sites. Upon primary infection, CD27 and (to a lesser extent) 4-1BB made nonredundant contributions to accumulation of CD8+ virus-specific T cells in draining lymph nodes and lung, while OX40 had no effect. Interestingly though, in the memory response, accumulation of virus-specific CD8+ T cells in spleen and lung critically depended on all three receptor systems. This was explained by two observations: 1) CD27, 4-1BB, and OX40 were collectively responsible for generation of the same memory CD8+ T cell pool; 2) CD27, 4-1BB, and OX40 collectively determined the extent of secondary expansion, as shown by adoptive transfers with standardized numbers of memory cells. Surprisingly, wild-type CD8+ memory T cells expanded normally in primed OX40 ligand- or 4-1BB ligand-deficient mice. However, when wild-type memory cells were generated in OX40 ligand- or 4-1BB ligand-deficient mice, their secondary expansion was impaired. This provides the novel concept that stimulation of CD8+ T cells by OX40 and 4-1BB ligand during priming imprints into them the capacity for secondary expansion. Our data argue that ligand on dendritic cells and/or B cells may be critical for this.  相似文献   

15.
CD40 stimulation is one of the many signals that can activate APCs and we have recently shown it to have a unique function in generating maximum primary CD8(+) T cell responses. However, whether CD40 signaling plays a role in memory CD8(+) T cell responses is still not completely understood. In this study, we show that in the absence of CD40 on all APCs or specifically on dendritic cells, memory CD8(+) T cells are generated but at significantly reduced levels. This reduction is due to a contribution of CD40 at several different steps in the generation of CD8(+) memory. In the initial T cell response, CD40 contributes to maximizing not only the number of effector cells that are generated but also the programming of ones that will differentiate into memory. Subsequently, CD40 is needed to maintain maximal numbers of the committed memory cells in a manner that is independent of the immunizing Ag. Finally, when memory CD8(+) T cells are reactivated there is a variable requirement for CD40 depending on whether CD40 or CD4(+) Th cells were present during the primary response. Therefore, CD40 signaling on APCs plays an important role in all phases of a memory CD8(+) T cell response.  相似文献   

16.
Members of the TNFR family are thought to deliver costimulatory signals to T cells and modulate their function and survival. In this study, we compare the role of two closely related TNFR family molecules, OX40 and 4-1BB, in generating effector CD8 T cells to Ag delivered by adenovirus. OX40 and 4-1BB were both induced on responding naive CD8 T cells, but 4-1BB exhibited faster and more sustained kinetics than OX40. OX40-deficient CD8 T cells initially expanded normally; however, their accumulation and survival at late times in the primary response was significantly impaired. In contrast, 4-1BB-deficient CD8 T cells displayed hyperresponsiveness, expanding more than wild-type cells. The 4-1BB-deficient CD8 T cells also showed enhanced maturation attributes, whereas OX40-deficient CD8 T cells had multiple defects in the expression of effector cell surface markers, the synthesis of cytokines, and in cytotoxic activity. These results suggest that, in contrast to current ideas, OX40 and 4-1BB can have a clear functional dichotomy in modulating effector CD8 T cell responses. OX40 can positively regulate effector function and late accumulation/survival, whereas 4-1BB can initially operate in a negative manner to limit primary CD8 responses.  相似文献   

17.
Aging is associated with depressed naive T cell responses, but it is less clear whether T cell memory established early in life also becomes impaired with age. This is particularly important for T cells responding to latent persistent infection, which need to remain functional and capable of controlling the infection over the lifetime; however, repeated stimulation over the lifetime may dysregulate their maintenance or function, potentially contributing to impaired immunity in the elderly. Systemic infection with HSV-1, a persistent latent virus, is associated with memory inflation of virus-specific CD8 T cells. We tested how these inflated memory cells are maintained from adulthood into old age. We found no significant differences in the numbers (i.e., blood, spleen), ex vivo Ag-specific IFN-γ production, and in vivo recall response to HSV-1 (i.e., proliferation, IFN-γ production, cytolysis) between adult and old memory T cells. There was a discrete shift from dominantly effector memory phenotype in the adults to a central memory-like phenotype in the old mice, with fewer old cells expressing the killer cell lectin-like receptor G1 (KLRG1). Adult and old KLRG1(+) memory CD8 T cells were functionally identical: both produced IFN-γ but could minimally proliferate in response to viral challenge. Interestingly, regardless of age, KLRG1(+) cells retained the ability to proliferate and survive in response to homeostatic signals, both in vitro (culture with IL-7 and IL-15) and in vivo (expansion following transfer into lymphopenic recipients). This finding demonstrates that functional effector memory T cells, including those expressing KLRG-1, are maintained and are functional for life, despite the presence of persistent viral infection.  相似文献   

18.
Constitutive OX40/OX40 ligand interaction induces autoimmune-like diseases   总被引:10,自引:0,他引:10  
The interaction between OX40 and OX40 ligand (OX40L) is suggested to provide T cells with an effective costimulatory signals during T cell-APC interaction. To examine the in vivo effect of constitutive OX40/OX40L interaction during immune regulation, we report the establishment of OX40L-transgenic (OX40L-Tg) mice that constitutively express OX40L on T cells. Markedly elevated numbers of effector memory CD4(+) T cells, but not CD8(+) T cells, were observed in the secondary lymphoid organs of OX40L-Tg mice. Upon immunization with keyhole limpet hemocyanin in the absence of adjuvant, profound T cell proliferative responses and cytokine productions were seen in the OX40L-Tg mice as compared with wild-type mice. Furthermore, in OX40L-Tg mice administrated with superantigen, this constitutive OX40/OX40L interaction on CD4(+) T cells completely prevented normal in vivo clonal T cell deletion. Interestingly, OX40L-Tg mice on the C57BL/6 background spontaneously developed interstitial pneumonia and inflammatory bowel disease that was accompanied with a significant production of anti-DNA Ab in the sera. Surprisingly, these diseases were not evident on the OX40L-Tg mice on the BALB/c strain. However, such inflammatory diseases were successfully reproducible in recombination-activating gene (RAG)2-deficient mice upon transfer of OX40L-Tg CD4(+) T cells. Blockade of OX40/OX40L interaction in the recipient RAG2-deficient mice completely prevented disease development. The present results orchestrated in this study indicate that OX40/OX40L interaction may be a vital link in our understanding of T cell-mediated organ-specific autoimmunity.  相似文献   

19.
The TNFR family member OX40 (CD134) is critical for optimal clonal expansion and survival of T cells. However, the intracellular targets of OX40 in CD8 T cells are not fully understood. Here we show that A1, a Bcl-2 family protein, is regulated by OX40 in effector CD8 T cells. In contrast to wild-type T cells, OX40-deficient CD8 T cells failed to maintain A1 expression driven by antigen. Conversely, enforced OX40 stimulation promoted A1 expression. In both situations, the expression of A1 directly correlated with CD8 T cell survival. In addition, exogenous expression of A1 in OX40-deficient CD8 T cells reversed their survival defect in vitro and in vivo. Moreover, forced expression of A1 in CD8 T cells from OX40-deficient mice restored the ability of these T cells to suppress tumor growth in a murine model. These results indicate that OX40 signals regulate CD8 T cell survival at least in part through maintaining expression of the anti-apoptotic molecule A1, and provide new insight into the mechanism by which OX40 may impact anti-tumor immunity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号