首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In addition to its role on water conservation, vasopressin (VP) regulates pituitary ACTH secretion by potentiating the stimulatory effects of corticotropin releasing hormone (CRH). The pituitary actions of VP are mediated by plasma membrane receptors of the V1b subtype, coupled to calcium-phospholipid signaling systems. VP is critical for adaptation of the hypothalamic-pituitary-adrenal (HPA) axis to stress as indicated by preferential expression of VP over CRH in parvocellular neurons of the hypothalamic paraventricular nucleus, and the upregulation of pituitary VP receptors during stress paradigms associated with corticotroph hyperresponsiveness. V1b receptor mRNA levels and coupling of the receptor to phospolipase C are stimulated by glucocorticoids, effects which may contribute to the refractoriness of VP-stimulated ACTH secretion to glucocorticoid feedback. The data suggest that vasopressinergic regulation of the HPA axis is critical for sustaining corticotroph responsiveness in the presence of high circulating glucocorticoid levels during chronic stress.  相似文献   

2.
3.
4.
Glucocorticoids are essential for normal hypothalamic-pituitary-adrenal (HPA) axis activity; however, recent studies warn that exposure to excess endogenous or synthetic glucocorticoid during a specific period of prenatal development adversely affects HPA axis stability. We administered dexamethasone (DEX) to pregnant rats during the last week of gestation and investigated subsequent HPA axis regulation in adult male offspring in unrestrained and restraint-stressed conditions. With the use of real-time PCR and RIA, we examined the expression of regulatory genes in the hippocampus, hypothalamus, and pituitary, including corticotropin-releasing hormone (CRH), arginine vasopressin (AVP), glucocorticoid receptors (GR), mineralcorticoid receptors (MR), and 11-beta-hydroxysteroid dehydrogenase-1 (11beta-HSD-1), as well as the main HPA axis hormones, adrenal corticotropic hormone (ACTH) and corticosterone (CORT). Our results demonstrate that the DEX-exposed group exhibited an overall change in the pattern of gene expression and hormone levels in the unrestrained animals. These changes included an upregulation of CRH in the hypothalamus, a downregulation of MR with a concomitant upregulation of 11beta-HSD-1 in the hippocampus, and an increase in circulating levels of both ACTH and CORT relative to unrestrained control animals. Interestingly, both DEX-exposed and control rats exhibited an increase in pituitary GR mRNA levels following a 1-h recovery from restraint stress; however, the increased expression in DEX-exposed rats was significantly less and was associated with a slower return to baseline CORT compared with controls. In addition, circulating levels of ACTH and CORT as well as hypothalamic CRH and hippocampal 11beta-HSD-1 expression levels were significantly higher in the DEX-exposed group compared with controls following restraint stress. Taken together, these data demonstrate that late-gestation DEX exposure in rats is associated with persistent changes in both the modulation of HPA axis activity and the HPA axis-mediated response to stress.  相似文献   

5.
In adult rodents, leptin has been shown to significantly alter the activity of several neuroendocrine functions, including the activity of the hypothalamic-pituitary-adrenal (HPA) axis. Leptin is generally believed to be inhibitory to HPA activity in adults. Developing rat pups have high circulating levels of leptin, which begs the question of leptin's physiological role in controlling basal and stress-induced adrenocortical activity in neonatal rats. In this study, we treated rat pups daily from days 2-9 (or 6-10) of life with either vehicle or leptin (1 or 3 mg/kg body wt, ip) and determined the effects on body weight gain, fat pad deposits, and HPA activity in 10-day-old pups. We measured hypothalamic CRF mRNA levels in vehicle- and leptin-treated pups by in situ hybridization and determined plasma ACTH, corticosterone, and leptin concentrations under basal conditions or following exposure to a 3-min ether stress. Because leptin activates sympathetic activity and energy expenditure in adults and possibly also in rat pups, and because litter temperature is an important determinant of maternal behavior, we also investigated whether chronic leptin administration would modify aspects of maternal care that are important for the maintenance of HPA function. Chronic leptin treatment increased circulating levels of leptin and had significant dose-related metabolic effects, including reduced body weight gain and fat pad weight in 10-day-old pups. Basal expression of CRF mRNA in the PVN or secretion of ACTH and corticosterone was not modified by leptin treatment. In contrast, chronically elevated leptin concentrations during the neonatal period significantly lowered CRF expression in the PVN 60 min after stress and reduced the duration of the ACTH response to stress in pups, suggesting that glucocorticoid feedback on the HPA axis might be altered by this treatment. In addition, mothers caring for pups injected with leptin displayed longer bouts of anogenital licking of pups than mothers of vehicle-treated rats. Given that this particular type of pup stimulation has been shown to influence stress responsiveness, it is possible that the maternal response modulates the effects of exogenous leptin treatment. In conclusion, our results demonstrate that the leptin signal is functional during the early developmental period and that leptin can modulate the hormonal response to stress in young rats either by a direct effect on the HPA axis or indirectly through changing some aspects of maternal behavior.  相似文献   

6.
7.
Higher corticosterone (CORT) responses to acute stress have previously been reported in quail selected for short (STI) duration of tonic immobility (TI) than for long TI (LTI), although behavioral studies indicated that LTI quail were more fearful. To investigate adrenal and pituitary function in these quail lines and their possible involvement in the differences in hypothalamic-pituitary-adrenal (HPA) axis reactivity, we measured CORT responses to adrenocorticotropin (1-24 ACTH), corticotropin-releasing factor (CRF), and arginine vasotocin (AVT) after characterizing the nucleotide acid sequences of these peptides in quail. Although maximum adrenal responses, assessed by ACTH challenge, were higher in STI quail, adrenal sensitivity was comparable for the two genotypes. It is therefore unlikely that differences in HPA axis reactivity involved the adrenal level. AVT and ACTH induced comparable CORT responses in both genotypes, whereas those induced by CRF were much lower. AVT is thus more potent than CRF in quail, but the respective maximum pituitary capacity of both genotypes to secrete ACTH was similar, and it is doubtful that the AVT pathway is involved in the difference in HPA axis reactivity between genotypes. On the other hand, the higher CORT responses induced by CRF in STI quail suggest that CRF might be involved in the differences in HPA axis reactivity between LTI and STI genotypes.  相似文献   

8.
The present study tested the hypothesis that action of sex steroids on the hypothalamus-pituitary-adrenal (HPA) axis is measurable in the hypothalamus. Late-gestation fetal sheep were treated (5 mg/21 days) with either estradiol, androstenedione, or tamoxifen and compared to age-matched control fetuses. Tamoxifen significantly increased hypothalamic corticotropin releasing factor (CRF) and arginine vasopressin (AVP) concentrations, and androstenedione significantly decreased hypothalamic CRF concentration. Adult sheep were treated with estrone (10 mg/21 days), and responded with significant increases in hypothalamic AVP concentration, but not in immunoreactive ACTH concentration or processing within the pituitary. The results demonstrate that the effect of estrogen on the HPA axis is measurable in the hypothalamus, and is therefore not primarily at the anterior pituitary.  相似文献   

9.
10.
There is increasing evidence that neuropeptide Y (NPY) affects the release of pituitary hormones, including adrenocorticotropic hormone (ACTH). The present study was designed to clarify the mechanism by which NPY activates the hypothalamic-pituitary-adrenal (HPA) axis in the dog. Mongrel dogs were equipped with a chronic cannula allowing intra-third (i.t.v.) or intra-lateral (i.l.v.) cerebroventricular administration. A 1.19 nmol, i.t.v. dose of NPY produced as great an ACTH and cortisol response as did equimolar ovine corticotropin releasing factor (CRF). This action of NPY was dose-dependent and shared by peptide YY (PYY) and pancreatic polypeptide (PP), other members of the PP family peptide. Intravenously (i.v.) administered NPY (1.19-11.9 nmol) was much less potent than i.v. CRF in stimulating ACTH and cortisol secretion. However, i.v. NPY significantly increased plasma ACTH and cortisol concentrations, raising the possibility that NPY may modulate the activity of corticotrophs. We have next investigated the possible relationship between NPY and CRF on the HPA axis. Pretreatment with a novel CRF antagonist, alpha-helical CRF9-41 (130.9 nmol i.t.v. or 261.8 nmol i.v.), partly but significantly attenuated the ACTH and cortisol responses to i.t.v. NPY (1.19 nmol). Furthermore, adding a subthreshold dose of i.t.v. NPY (0.119 nmol) to i.t.v. CRF (1.19 nmol) or i.v. NPY (2.38 nmol) to i.v. CRF (0.595 nmol) resulted in the potentiation of CRF-induced ACTH secretion. These results indicate that NPY may activate the HPA axis in concert with CRF probably at hypothalamic and/or pituitary levels. The present findings that NPY evokes ACTH secretion and potentiates the effectiveness of CRF as a secretagogue, together with high concentrations of NPY in the hypothalamus and pituitary portal blood, suggest that NPY is involved in the multihormonal control of ACTH release.  相似文献   

11.
Changes in activity of the hypothalamic–pituitary–adrenal (HPA) axis were examined in adult, prenatally stressed male rats in the experimental depression model of ‘learned helplessness’. It was shown that in males descending from intact mothers a depressive-like state was accompanied by an increase in activity of the entire HPA axis. Namely, expression of corticotropin-releasing hormone (CRH) in the hypothalamic paraventricular nucleus (PVN) increased coupled to a rise in plasma levels of ACTH and corticosterone as well as in adrenal weight. At the same time, in males born to mothers who suffered stress during the last week of pregnancy a decrease was detected in activity both of the central (hypothalamus) and peripheral (adrenal cortex) parts of this regulatory hormonal axis, analogous to that we revealed previously in the ‘stress–restress’ experimental model. It is concluded that prenatal stress modifies the sensitivity of animals to inescapable intense stress impacts, as manifested in the specific pattern of HPA axis activity after stressing.  相似文献   

12.
It is known that heroin dependence and withdrawal are associated with changes in the hypothalamic–pituitary–adrenal (HPA) axis. The objective of these studies in rats was to systematically investigate the level of HPA activity and response to a heroin challenge at two time points during heroin withdrawal, and to characterize the expression of associated stress-related genes 30 min after each heroin challenge. Rats received chronic (10-day) intermittent escalating-dose heroin administration (3 × 2.5 mg/kg/day on day 1; 3 × 20 mg/kg/day by day 10). Hormonal and neurochemical assessments were performed in acute (12 h after last heroin injection) and chronic (10 days after the last injection) withdrawal. Both plasma ACTH and corticosterone levels were elevated during acute withdrawal, and heroin challenge at 20 mg/kg (the last dose of chronic escalation) at this time point attenuated this HPA hyperactivity. During chronic withdrawal, HPA hormonal levels returned to baseline, but heroin challenge at 5 mg/kg decreased ACTH levels. In contrast, this dose of heroin challenge stimulated the HPA axis in heroin naïve rats. In the anterior pituitary, pro-opiomelanocortin (POMC) mRNA levels were increased during acute withdrawal and retuned to control levels after chronic withdrawal. In the medial hypothalamus, however, the POMC mRNA levels were decreased during acute withdrawal, and increased after chronic withdrawal. Our results suggest a long-lasting change in HPA abnormal responsivity during chronic heroin withdrawal.  相似文献   

13.
Hypersecretion of corticotropin-releasing factor (CRF) has been hypothesized to occur in depression. To investigate CRF receptor (CRFR) response to the increased production of CRF in chronically stressed rats, we measured by in situ hybridization the expression of CRFR mRNA in the locus coeruleus (LC) concomitant with measuring plasma adrenocorticotropin (ACTH). The expression of both CRFR mRNA in the LC and the plasma level of ACTH increased significantly in "depression-model rats" which exhibit reduced activity following exposure to 14 days forced walking stress (FWS), but not in "spontaneous recovery rats" whose activity was restored after the long-term stress. These results suggest that the LC neurons continue to be stimulated by CRF, and that the hypothalamic-pituitary-adrenal (HPA) axis is hyperfunctioning in the depression-model rats.  相似文献   

14.
Cholestatic patients often present with clinical features suggestive of adrenal insufficiency. In the bile duct-ligated (BDL) model of cholestasis, the hypothalamic-pituitary-adrenal (HPA) axis is suppressed. The consequences of this suppression on cholangiocyte proliferation are unknown. We evaluated 1) HPA axis activity in various rat models of cholestasis and 2) effects of HPA axis modulation on cholangiocyte proliferation. Expression of regulatory molecules of the HPA axis was determined after BDL, partial BDL, and α-naphthylisothiocyanate (ANIT) intoxication. The HPA axis was suppressed by inhibition of hypothalamic corticotropin-releasing hormone (CRH) expression by central administration of CRH-specific Vivo-morpholinos or by adrenalectomy. After BDL, the HPA axis was reactivated by 1) central administration of CRH, 2) systemic ACTH treatment, or 3) treatment with cortisol or corticosterone for 7 days postsurgery. There was decreased expression of 1) hypothalamic CRH, 2) pituitary ACTH, and 3) key glucocorticoid synthesis enzymes in the adrenal glands. Serum corticosterone and cortisol remained low after BDL (but not partial BDL) compared with sham surgery and after 2 wk of ANIT feeding. Experimental suppression of the HPA axis increased cholangiocyte proliferation, shown by increased cytokeratin-19- and proliferating cell nuclear antigen-positive cholangiocytes. Conversely, restoration of HPA axis activity inhibited BDL-induced cholangiocyte proliferation. Suppression of the HPA axis is an early event following BDL and induces cholangiocyte proliferation. Knowledge of the role of the HPA axis during cholestasis may lead to development of innovative treatment paradigms for chronic liver disease.  相似文献   

15.
Dakine N  Oliver C  Grino M 《Life sciences》2000,67(23):2827-2844
Hypothyroid pups were obtained by adding methimazole in the mother's drinking water from day 15 of gestation and sacrificed at 4, 8 or 15 days. Circulating corticosterone decreased at all ages, while CBG concentrations diminished at day 4, increased at day 8 and did not change at day 15 in hypothyroid rats. As opposed to controls, plasma ACTH concentrations decreased steadily with age while there was an accumulation of ACTH in the anterior pituitary of hypothyroid 15-day-old rats. Anterior pituitary POMC contents were unaffected by the treatment. In the hypothalamic PVN, CRF mRNA levels in the total population of CRF-synthesizing cells and in the CRF+/AVP+ subpopulation were below those of controls whatever the age considered while AVP mRNA in the CRF+/AVP+ subpopulation did not change at day 4 and decreased at day 8 and 15 in hypothyroid animals. Both the number of cell bodies expressing detectable levels of CRF mRNA and the percentage of CRF and AVP colocalization decreased at day 4 and were unchanged thereafter. CRF and AVP immunoreactivity in the zona externa of the median eminence increased with age but was not affected by methimazole treatment. The concentration of AVP mRNA in the magnocellular cell bodies of the PVN and the SON as well as AVP immunoreactivity in the zona interna of the median eminence were not changed by the treatment at days 4 and 8. In hypothyroid 15-day-old rats, SON AVP mRNA increased, AVP immunoreactivity decreased while plasma osmolality was enhanced. In conclusion, our data demonstrate that experimental hypothyroidism impairs specifically the maturation of hypothalamic parvocellular CRF and AVP gene expression during the stress hyporesponsive period. These observations suggest that the physiological peak in plasma thyroxine concentrations that occur between day 8-12 may participate in the maturation of hypothalamic CRF- and AVP-synthesizing cells.  相似文献   

16.
Corticotropin-releasing factor (CRF) is involved in a variety of physiological functions including regulation of hypothalamo-pituitary-adrenal axis activity during stressful periods. Urocortins (Ucns) are known to be members of the CRF family peptides. CRF has a high affinity for CRF receptor type 1 (CRF(1) receptor). Both Ucn2 and Ucn3 have very high affinity for CRF receptor type 2 (CRF(2) receptor) with little or no binding affinity for the CRF(1) receptor. Gonadotropin-releasing hormone (GnRH) is known to be involved in the regulation of the stress response. Gonadotropin-inhibitory hormone (GnIH) neurons interact directly with GnRH neurons, and the action of GnIH is mediated by a novel G-protein coupled receptor, Gpr147. This study aimed to explore the possible function of CRF family peptides and the regulation of GnRH mRNA in hypothalamic GnRH cells. Both mRNA and protein expression of the CRF(1) receptor and CRF(2) receptor were found in hypothalamic GnRH N39 cells. CRF suppressed GnRH mRNA levels via the CRF(1) receptor, while Ucn2 increased the levels via the CRF(2) receptor. Both CRF and Ucn2 increased Gpr147 mRNA levels. The results indicate that CRF and Ucn2 can modulate GnRH mRNA levels via each specific CRF receptor subtype. Finally, CRF suppressed GnRH protein levels, while Ucn2 increased the levels. Differential regulation of GnRH by CRF family peptides may contribute to the stress response and homeostasis in GnRH cells.  相似文献   

17.
Secondary stressors in long-term hypoxic (LTH) fetal sheep lead to altered function of the hypothalamic-pituitary-adrenal axis. Although ACTH is considered the primary mediator of glucocorticoid production in fetal sheep, proopiomelanocortin (POMC) and 22-kDa pro-ACTH (22-kDa ACTH) have been implicated in the regulation of cortisol production in the ovine fetus. This study was designed to determine whether POMC expression and processing are altered after LTH. Pregnant ewes were maintained at high altitude (3,820 m) from day 30 of gestation to near term, when the animals were transported to the laboratory. Reduced Po2 was maintained by nitrogen infusion through a maternal tracheal catheter. On days 139-141, fetal anterior pituitaries were collected from normoxic control and LTH fetuses. We measured POMC and corticotrophin-releasing factor type 1 receptor (CRF1-R) mRNA using quantitative real-time PCR, and we used Western blot analysis for quantitation of ACTH, ACTH precursor, and CRF1-R proteins. We measured plasma ACTH1-39 using a two-site immunoradiometric assay specific for ACTH1-39. Plasma ACTH precursors were measured by ELISA. Anterior pituitary POMC mRNA levels were not different between groups, whereas CRF1-R levels were significantly higher in the LTH anterior pituitaries compared with control (P<0.05). In contrast, protein levels of POMC, CRF1-R, 22-kDa ACTH, and ACTH1-39 were significantly lower in the LTH group. Plasma concentrations of both ACTH precursors and ACTH1-39 were significantly elevated in LTH fetuses, whereas the ratio of plasma precursors to ACTH was significantly lower. We conclude that LTH results in enhanced POMC processing and/or release to ACTH and increased hypothalamic drive.  相似文献   

18.
Repeated exposure to lipopolysaccharide (LPS) induces desensitization of hypothalamus-pituitary-adrenal axis (HPA) responses and hypophagia. We investigated the interplay between the neural circuitries involved in the control of food intake and HPA axis activity following single or repeated LPS injections. Male Wistar rats received a single or repeated i.p. injection of LPS (100 microg/kg) for 6 days and were subdivided into four groups: 6 saline, 5 saline+1 LPS, 5 LPS+1 saline and 6 LPS. Animals with a single exposure to LPS showed increased plasma levels of ACTH, CORT, PRL, TNF-alpha and also CRF mRNA in the paraventricular nucleus of the hypothalamus. These animals exhibited a reduced food intake and body weight associated with an increase of CART expression in the arcuate nucleus (ARC). Leptin plasma levels were not altered. On the other hand, repeated LPS administration did not alter ACTH, CORT, PRL and TNF-alpha, but it reduced leptin level, compared to single LPS or saline treatment. Furthermore, repeated LPS administration did not increase CRF or CART mRNA expression. Food intake and weight gain after repeated LPS injections were not different from saline-treated animals. There was no change in NPY and POMC mRNA expression in the ARC after single or repeated injections of LPS. In conclusion, desensitization induced by repeated exposure to LPS involves the blockade of HPA axis activation and anorexigenic response, which are both associated with an unresponsiveness of TNF-alpha production and CRF and CART expression in the hypothalamus.  相似文献   

19.
Mice lacking the substance P (SP) neurokinin-1 (NK1) receptor (NK1R?/?mice) were used to investigate whether SP affects serotonin (5-HT) function in the brain and to assess the effects of acute immobilisation stress on the hypothalamic–pituitary–adrenocortical (HPA) axis and 5-HT turnover in individual brain nuclei. Basal HPA activity and the expression of hypothalamic corticotropin-releasing hormone (CRH) in wild-type (WT)- and NK1R?/? mice were identical. Stress-induced increases in plasma ACTH concentration were considerably higher in NK1R?/? mice than in WT mice while corticosterone concentrations were equally elevated in both mouse lines. Acute stress did not alter the expression of CRH. In the dorsal raphe nucleus (DRN), basal 5-HT turnover was increased in NK1R?/? mice and a 15 min stress further magnified 5-HT utilisation in this region. In the frontoparietal cortex, medial prefrontal cortex, central nucleus of amygdala, and the hippocampal CA1 region, stress increased 5-HT and/or 5-hydroxyindoleacetic acid (5-HIAA) concentrations to a similar extent in WT and NK1R?/? mice. 5-HT turnover in the hypothalamic paraventricular nucleus was not affected by stress, but stress induced similar increases in 5-HT and 5-HIAA in the ventromedial and dorsomedial hypothalamic nuclei in WT and NK1R?/? mice. Our findings indicate that NK1 receptor activation suppresses ACTH release during acute stress but does not exert sustained inhibition of the HPA axis. Genetic deletion of the NK1 receptor accelerates 5-HT turnover in DRN under basal and stress conditions. No differences between the responses of serotonergic system to acute stress in WT and NK1R?/? mice occur in forebrain nuclei linked to the regulation of anxiety and neuroendocrine stress responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号