首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reaction catalyzed by E. coli Pfk-2 presents a dual-cation requirement. In addition to that chelated by the nucleotide substrate, an activating cation is required to obtain full activity of the enzyme. Only Mn(2+) and Mg(2+) can fulfill this role binding to the same activating site but the affinity for Mn(2+) is 13-fold higher compared to that of Mg(2+). The role of the E190 residue, present in the highly conserved motif NXXE involved in Mg(2+) binding, is also evaluated in this behavior. The E190Q mutation drastically diminishes the kinetic affinity of this site for both cations. However, binding studies of free Mn(2+) and metal-Mant-ATP complex through EPR and FRET experiments between the ATP analog and Trp88, demonstrated that Mn(2+) as well as the metal-nucleotide complex bind with the same affinity to the wild type and E190Q mutant Pfk-2. These results suggest that this residue exert its role mainly kinetically, probably stabilizing the transition state and that the geometry of metal binding to E190 residue may be crucial to determine the catalytic competence.  相似文献   

2.
The activities of the eight mutant proteins of Escherichia coli RNase HI, in which the four carboxylic amino acids (Asp(10), Glu(48), Asp(70), and Asp(134)) involved in catalysis are changed to Asn (Gln) or Ala, were examined in the presence of Mn(2+). Of these proteins, the E48A, E48Q, D134A, and D134N proteins exhibited the activity, indicating that Glu(48) and Asp(134) are dispensable for Mn(2+)-dependent activity. The maximal activities of the E48A and D134A proteins were comparable to that of the wild-type protein. However, unlike the wild-type protein, these mutant proteins exhibited the maximal activities in the presence of >100 microM MnCl(2), and their activities were not inhibited at higher Mn(2+) concentrations (up to 10 mM). The wild-type protein contains two Mn(2+) binding sites and is activated upon binding of one Mn(2+) ion at site 1 at low ( approximately 1 microM) Mn(2+) concentrations. This activity is attenuated upon binding of a second Mn(2+) ion at site 2 at high (>10 microM) Mn(2+) concentrations. The cleavage specificities of the mutant proteins, which were examined using oligomeric substrates at high Mn(2+) concentrations, were identical to that of the wild-type protein at low Mn(2+) concentrations but were different from that of the wild-type protein at high Mn(2+) concentrations. These results suggest that one Mn(2+) ion binds to the E48A, E48Q, D134A, and D134N proteins at site 1 or a nearby site with weaker affinities. The binding analyses of the Mn(2+) ion to these proteins in the absence of the substrate support this hypothesis. When Mn(2+) ion is used as a metal cofactor, the Mn(2+) ion itself, instead of Glu(48) and Asp(134), probably holds water molecules required for activity.  相似文献   

3.
The cytosolic malic enzyme from the pigeon liver is sensitive to chemical denaturant urea. When monitored by protein intrinsic fluorescence or circular dichroism spectral changes, an unfolding of the enzyme in urea at 25 degrees C and pH 7.4 revealed a biphasic phenomenon with an intermediate state detected at 4-5 m urea. The enzyme activity was activated by urea up to 1 m but was completely lost before the intermediate state was detected. This suggests that the active site region of the enzyme was more sensitive to chemical denaturant than other structural scaffolds. In the presence of 4 mm Mn(2+), the urea denaturation pattern of malic enzyme changed to monophasic. Mn(2+) helped the enzyme to resist phase I urea denaturation. The [urea](0.5) for the enzyme inactivation shifted from 2.2 to 3.8 m. Molecular weight determined by the analytical ultracentrifuge indicated that the tetrameric enzyme was dissociated to dimers in the early stage of phase I denaturation. In the intermediate state at 4-5 m urea, the enzyme showed polymerization. However, the polymer forms were dissociated to unfolded monomers at a urea concentration greater than 6 m. Mn(2+) retarded the polymerization of the malic enzyme. Three mutants of the enzyme with a defective metal ligand (E234Q, D235N, E234Q/D235N) were cloned and purified to homogeneity. These mutant malic enzymes showed a biphasic urea denaturation pattern in the absence or presence of Mn(2+). These results indicate that the Mn(2+) has dual roles in the malic enzyme. The metal ion not only plays a catalytic role in stabilization of the reaction intermediate, enol-pyruvate, but also stabilizes the overall tetrameric protein architecture.  相似文献   

4.
Ramakrishnan B  Boeggeman E  Qasba PK 《Biochemistry》2004,43(39):12513-12522
Beta-1,4-galactosyltransferase (beta4Gal-T1) in the presence of manganese ion transfers galactose from UDP-galactose (UDP-Gal) to N-acetylglucosamine (GlcNAc) that is either free or linked to an oligosaccharide. Crystallographic studies on bovine beta4Gal-T1 have shown that the primary metal binding site is located in the hinge region of a long flexible loop, which upon Mn(2+) and UDP-Gal binding changes from an open to a closed conformation. This conformational change creates an oligosaccharide binding site in the enzyme. Neither UDP nor UDP analogues efficiently induce these conformational changes in the wild-type enzyme, thereby restricting the structural analysis of the acceptor binding site. The binding of Mn(2+) involves an uncommon coordination to the Sdelta atom of Met344; when it is mutated to His, the mutant M344H, in the presence of Mn(2+) and UDP-hexanolamine, readily changes to a closed conformation, facilitating the structural analysis of the enzyme bound with an oligosaccharide acceptor. Although the mutant M344H loses 98% of its Mn(2+)-dependent activity, it exhibits 25% of its activity in the presence of Mg(2+). The crystal structures of M344H-Gal-T1 in complex with either UDP-Gal.Mn(2+) or UDP-Gal.Mg(2+), determined at 2.3 A resolution, show that the mutant enzyme in these complexes is in a closed conformation, and the coordination stereochemistry of Mg(2+) is quite similar to that of Mn(2+). Although either Mn(2+) or Mg(2+), together with UDP-Gal, binds and changes the conformation of the M344H mutant to the closed one, it is the Mg(2+) complex that engages efficiently in catalyses. Thus, this property enabled us to crystallize the M344H mutant for the first time with the acceptor substrate chitobiose in the presence of UDP-hexanolamine and Mn(2+). The crystal structure determined at 2.3 A resolution reveals that the GlcNAc residue at the nonreducing end of chitobiose makes extensive hydrophobic interactions with the highly conserved Tyr286 residue.  相似文献   

5.
Harris TK  Wu G  Massiah MA  Mildvan AS 《Biochemistry》2000,39(7):1655-1674
The MutT enzyme catalyzes the hydrolysis of nucleoside triphosphates (NTP) to NMP and PP(i) by nucleophilic substitution at the rarely attacked beta-phosphorus. The solution structure of the quaternary E-M(2+)-AMPCPP-M(2+) complex indicated that conserved residues Glu-53, -56, -57, and -98 are at the active site near the bound divalent cation possibly serving as metal ligands, Lys-39 is positioned to promote departure of the NMP leaving group, and Glu-44 precedes helix I (residues 47-59) possibly stabilizing this helix which contributes four catalytic residues to the active site [Lin, J. , Abeygunawardana, C., Frick, D. N., Bessman, M. J., and Mildvan, A. S. (1997) Biochemistry 36, 1199-1211]. To test these proposed roles, the effects of mutations of each of these residues on the kinetic parameters and on the Mn(2+), Mg(2+), and substrate binding properties were examined. The largest decreases in k(cat) for the Mg(2+)-activated enzyme of 10(4.7)- and 10(2.6)-fold were observed for the E53Q and E53D mutants, respectively, while 97-, 48-, 25-, and 14-fold decreases were observed for the E44D, E56D, E56Q, and E44Q mutations, respectively. Smaller effects on k(cat) were observed for mutations of Glu-98 and Lys-39. For wild type MutT and its E53D and E44D mutants, plots of log(k(cat)) versus pH exhibited a limiting slope of 1 on the ascending limb and then a hump, i.e., a sharply defined maximum near pH 8 followed by a plateau, yielding apparent pK(a) values of 7.6 +/- 0.3 and 8.4 +/- 0.4 for an essential base and a nonessential acid catalyst, respectively, in the active quaternary MutT-Mg(2+)-dGTP-Mg(2+) complex. The pK(a) of 7.6 is assigned to Glu-53, functioning as a base catalyst in the active quaternary complex, on the basis of the disappearance of the ascending limb of the pH-rate profile of the E53Q mutant, and its restoration in the E53D mutant with a 10(1.9)-fold increase in (k(cat))(max). The pK(a) of 8.4 is assigned to Lys-39 on the basis of the disappearance of the descending limb of the pH-rate profile of the K39Q mutant, and the observation that removal of the positive charge of Lys-39, by either deprotonation or mutation, results in the same 8.7-fold decrease in k(cat). Values of k(cat) of both wild type MutT and the E53Q mutant were independent of solvent viscosity, indicating that a chemical step is likely to be rate-limiting with both. A liganding role for Glu-53 and Glu-56, but not Glu-98, in the binary E-M(2+) complex is indicated by the observation that the E53Q, E53D, E56Q, and E56D mutants bound Mn(2+) at the active site 36-, 27-, 4.7-, and 1.9-fold weaker, and exhibited 2.10-, 1.50-, 1.12-, and 1.24-fold lower enhanced paramagnetic effects of Mn(2+), respectively, than the wild type enzyme as detected by 1/T(1) values of water protons, consistent with the loss of a metal ligand. However, the K(m) values of Mg(2+) and Mn(2+) indicate that Glu-56, and to a lesser degree Glu-98, contribute to metal binding in the active quaternary complex. Mutations of the more distant but conserved residue Glu-44 had little effect on metal binding or enhancement factors in the binary E-M(2+) complexes. Two-dimensional (1)H-(15)N HSQC and three-dimensional (1)H-(15)N NOESY-HSQC spectra of the kinetically damaged E53Q and E56Q mutants showed largely intact proteins with structural changes near the mutated residues. Structural changes in the kinetically more damaged E44D mutant detected in (1)H-(15)N HSQC spectra were largely limited to the loop I-helix I motif, suggesting that Glu-44 stabilizes the active site region. (1)H-(15)N HSQC titrations of the E53Q, E56Q, and E44D mutants with dGTP showed changes in chemical shifts of residues lining the active site cleft, and revealed tighter nucleotide binding by these mutants, indicating an intact substrate binding site. (ABSTRACT TRUNCATED)  相似文献   

6.
3-Deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS), the first enzyme of the aromatic biosynthetic pathway in microorganisms and plants, catalyzes the aldol-like condensation of phosphoenolpyruvate (PEP) and D-erythrose 4-phosphate (E4P) with the formation of DAHP. The native and the selenomethionine-substituted forms of the phenylalanine-regulated isozyme [DAHPS(Phe)] from Escherichia coli were crystallized in complex with PEP and a metal cofactor, Mn(2+), but the crystals displayed disorder in their unit cells, preventing satisfactory refinement. However, the crystal structure of the E24Q mutant form of DAHPS(Phe) in complex with PEP and Mn(2+) has been determined at 1.75 A resolution. Unlike the tetrameric wild-type enzyme, the E24Q enzyme is dimeric in solution, as a result of the mutational perturbation of four intersubunit salt bridges that are critical for tetramer formation. The protein chain conformation and subunit arrangement in the crystals of E24Q and wild-type DAHPS are very similar. However, the interaction of Mn(2+) and PEP in the enzymatically active E24Q mutant complex differs from the Pb(2+)-PEP and Mn(2+)-phosphoglycolate interactions in two enzymatically inactive wild-type complexes whose structures have been determined previously. The geometry of PEP bound in the active site of the E24Q enzyme deviates from planarity due to a 30 degrees twist of the carboxylate plane relative to the enol plane. In addition, seven water molecules are within contact distance of PEP, two of which are close enough to its C2 atom to serve as the nucleophile required in the reaction.  相似文献   

7.
The hepatitis C virus nonstructural 5B protein (NS5B) protein has been shown to require either magnesium or manganese for its RNA-dependent RNA polymerase activity. As a first step toward elucidating the nature and the role(s) of the metal ions in the reaction chemistry, we have utilized endogenous tryptophan fluorescence to quantitate the interactions of magnesium and manganese ions with this protein. The association of either Mg(2+) or Mn(2+) ions with the enzyme resulted in a decrease in the intensity of the tryptophan emission spectrum. This decrease was used to determine the apparent dissociation constants for both ions. The apparent K(d) values for the binding of Mg(2+) and Mn(2+) ions to the free enzyme were 3.1 and 0.3 mm, respectively. Dual ligand titration experiments demonstrated that both ions bind to a single common site, for which they compete. The kinetics of real time metal ion binding to the NS5B protein were also investigated. Based on the results of our fluorescence and near-UV circular dichroism experiments, we show that NS5B undergoes conformational changes upon the binding of metal ions. However, this process does not significantly stimulate the binding to the RNA or NTP substrates. We envisage that the ion-induced conformational change is a prerequisite for catalytic activity by both correctly positioning the side chains of the residues located in the active site of the enzyme and also contributing to the stabilization of the intermediate transition state.  相似文献   

8.
Ung MU  Lu B  McCammon JA 《Biopolymers》2006,81(6):428-439
The active site of the mammalian cAMP-dependent protein kinase catalytic subunit (C-subunit) has a cluster of nonconserved acidic residues-Glu127, Glu170, Glu203, Glu230, and Asp241-that are crucial for substrate recognition and binding. Studies have shown that the Glu230 to Gln mutant (E230Q) of the enzyme has physical properties similar to the wild-type enzyme and has decreased affinity for a short peptide substrate, Kemptide. However, recent experiments intended to crystallize ternary complex of the E230Q mutant with MgATP and protein kinase inhibitor (PKI) could only obtain crystals of the apo-enzyme of E230Q mutant. To deduce the possible mechanism that prevented ternary complex formation, we used the relaxed-complex method (Lin, J.-H., et al. J Am Chem Soc 2002, 24, 5632-5633) to study PKI binding to the E230Q mutant C-subunit. In the E230Q mutant, we observed local structural changes of the peptide binding site that correlated closely to the reduced PKI affinity. The structural changes occurred in the F-to-G helix loop and appeared to hinder PKI binding. Reduced electrostatic potential repulsion among Asp241 from the helix loop section and the other acidic residues in the peptide binding site appear to be responsible for the structural change.  相似文献   

9.
Escherichia coli RNase HI has two Mn(2+)-binding sites. Site 1 is formed by Asp10, Glu48, and Asp70, and site 2 is formed by Asp10 and Asp134. Site 1 and site 2 have been proposed to be an activation site and an attenuation site, respectively. However, Glu48 and Asp134 are dispensable for Mn(2+)-dependent activity. In order to identify the Mn(2+)-binding sites of the mutant proteins at Glu48 and/or Asp134, the crystal structures of the mutant proteins E48A-RNase HI*, D134A-RNase HI*, and E48A/D134N-RNase HI* in complex with Mn(2+) were determined. In E48A-RNase HI*, Glu48 and Lys87 are replaced by Ala. In D134A-RNase HI*, Asp134 and Lys87 are replaced by Ala. In E48A/D134N-RNase HI*, Glu48 and Lys87 are replaced by Ala and Asp134 is replaced by Asn. All crystals had two or four protein molecules per asymmetric unit and at least two of which had detectable manganese ions. These structures indicated that only one manganese ion binds to the various positions around the center of the active-site pocket. These positions are different from one another, but none of them is similar to site 1. The temperature factors of these manganese ions were considerably larger than those of the surrounding residues. These results suggest that the first manganese ion required for activation of the wild-type protein fluctuates among various positions around the center of the active-site pockets. We propose that this fluctuation is responsible for efficient hydrolysis of the substrates by the protein (metal fluctuation model). The binding position of the first manganese ion is probably forced to shift to site 1 or site 2 upon binding of the second manganese ion.  相似文献   

10.
Huang YC  Colman RF 《Biochemistry》2002,41(17):5637-5643
Sequence alignment predicts that His(309) of pig heart NADP-dependent isocitrate dehydrogenase is equivalent to His(339) of the Escherichia coli enzyme, which interacts with the coenzyme in the crystal structure [Hurley et al. (1991) Biochemistry 30, 8671-8688], and porcine His(315) and His(319) are close to that site. The mutant porcine enzymes H309Q, H309F, H315Q, and H319Q were prepared by site-directed mutagenesis, expressed in E. coli, and purified. The H319Q mutant has K(m) values for NADP, isocitrate, and Mn(2+) similar to those of wild-type enzyme, and V(max) = 20.1, as compared to 37.8 micromol of NADPH min(-1) (mg of protein)(-1) for wild type. Thus, His(319) is not involved in coenzyme binding and has a minimal effect on catalysis. In contrast, H315Q exhibits a K(m) for NADP 40 times that of wild type and V(max) = 16.2 units/mg of protein, with K(m) values for isocitrate and Mn(2+) similar to those of wild type. These results implicate His(315) in the region of the NADP site. Replacement of His(309) by Q or F yields enzyme with no detectable activity. The His(309) mutants bind NADPH poorly, under conditions in which wild type and H319Q bind 1.0 mol of NADPH/mol of subunit, indicating that His(309) is important for the binding of coenzyme. The His(309) mutants bind isocitrate stoichiometrically, as do wild-type and the other mutant enzymes. However, as distinguished from the wild-type enzyme, the His(309) mutants are not oxidatively cleaved by metal isocitrate, implying that the metal ion is not bound normally. Since circular dichroism spectra are similar for wild type, H315Q, and H319Q, these amino acid substitutions do not cause major conformational changes. In contrast, replacement of His(309) results in detectable change in the enzyme's CD spectrum and therefore in its secondary structure. We propose that His(309) plays a significant role in the binding of coenzyme, contributes to the proper coordination of divalent metal ion in the presence of isocitrate, and maintains the normal conformation of the enzyme.  相似文献   

11.
12.
Aldose-ketose isomerization by xylose isomerase requires bivalent cations such as Mg2+, Mn2+, or Co2+. The active site of the enzyme from Actinoplanes missouriensis contains two metal ions that are involved in substrate binding and in catalyzing a hydride shift between the C1 and C2 substrate atoms. Glu 186 is a conserved residue located near the active site but not in contact with the substrate and not with a metal ligand. The E186D and E186Q mutant enzymes were prepared. Both are active, and their metal specificity is different from that of the wild type. The E186Q enzyme is most active with Mn2+ and has a drastically shifted pH optimum. The X-ray analysis of E186Q was performed in the presence of xylose and either Mn2+ or Mg2+. The Mn2+ structure is essentially identical to that of the wild type. In the presence of Mg2+, the carboxylate group of residue Asp 255, which is part of metal site 2 and a metal ligand, turns toward Gln 186 and hydrogen bonds to its side-chain amide. Mg2+ is not bound at metal site 2, explaining the low activity of the mutant with this cation. Movements of Asp 255 also occur in the wild-type enzyme. We propose that they play a role in the O1 to O2 proton relay accompanying the hydride shift.  相似文献   

13.
Lai B  Li Y  Cao A  Lai L 《Biochemistry》2003,42(3):785-791
RNase H degrades the RNA moiety in DNA:RNA hybrid in a divalent metal ion dependent manner. It is essential to understand the role of metal ion in enzymatic mechanism. One of the key points in this study is how many metal ions are involved in the enzyme catalysis. Accordingly, either one-metal binding mechanism or two-metal binding mechanism is proposed. We have studied the thermodynamic properties of four metal ions (Mg(2+), Mn(2+), Ca(2+), and Ba(2+)) binding to Methanococcus jannaschii RNase HII using isothermal titration calorimetry. All of the four metal ions were found to bind Mj RNase HII with 1:1 stoichiometry in the absence of substrate. Together with enzymatic activity assay data, we propose that only one metal ion binding to the enzyme in catalytic process. We also studied the pH dependence of metal binding and enzyme activity and found that at pH 6.5, Mg(2+) did not bind to the enzyme without the substrate but still activated the enzyme to about 2% of its maximum activity (in 10 mM Mn(2+) at pH 8). This implies that the substrate may also be incorporated in metal ion binding and help to position the metal ion. To find which acidic residues correspond to metal ion binding, we also studied the binding thermodynamics and enzymatic activity assay of four mutants: D7N, E8Q, D112N, and D149N in the presence of Mn(2+). The thermodynamic parameters are least affected for the D149N mutant, which has a very low enzymatic activity. This indicates that Asp149 is essential for the enzymatic activity. On the basis of all these observations, we suggest a metal binding model in which D7, E8, and D112 bind the metal ion and D149 activates a water molecule to attack the P-O bond in the RNA chain of the substrate.  相似文献   

14.
Edwards SH  Thompson D  Baker SF  Wood SP  Wilton DC 《Biochemistry》2002,41(52):15468-15476
The human group IIA secreted PLA(2) is a 14 kDa calcium-dependent extracellular enzyme that has been characterized as an acute phase protein with important antimicrobial activity and has been implicated in signal transduction. The selective binding of this enzyme to the phospholipid substrate interface plays a crucial role in its physiological function. To study interfacial binding in the absence of catalysis, one strategy is to produce structurally intact but catalytically inactive mutants. The active site mutants H48Q, H48N, and H48A had been prepared for the secreted PLA(2)s from bovine pancreas and bee venom and retained minimal catalytic activity while the H48Q mutant showed the maximum structural integrity. Preparation of the mutant H48Q of the human group IIA enzyme unexpectedly produced an enzyme that retained significant (2-4%) catalytic activity that was contrary to expectations in view of the accepted catalytic mechanism. In this paper it is established that the high residual activity of the H48Q mutant is genuine, not due to contamination, and can be seen under a variety of assay conditions including assays in the presence of Co(2+) and Ni(2+) in place of Ca(2+). The crystallization of the H48Q mutant, yielding diffraction data to a resolution of 1.5 A, allowed a comparison with the corresponding recombinant wild-type enzyme (N1A) that was also crystallized. This comparison revealed that all of the important features of the catalytic machinery were in place and the two structures were virtually superimposable. In particular, the catalytic calcium ion occupied an identical position in the active site of the two proteins, and the catalytic water molecule (w6) was clearly resolved in the H48Q mutant. We propose that a variation of the calcium-coordinated oxyanion ("two water") mechanism involving hydrogen bonding rather than the anticipated full proton transfer to the histidine will best explain the ability of an active site glutamine to allow significant catalytic activity.  相似文献   

15.
Ca(2+) is an integral component of the Mn(4)O(5)Ca cluster of the oxygen-evolving complex in photosystem II (PS II). Its removal leads to the loss of the water oxidizing functionality. The S(2)' state of the Ca(2+)-depleted cluster from spinach is examined by X- and Q-band EPR and (55)Mn electron nuclear double resonance (ENDOR) spectroscopy. Spectral simulations demonstrate that upon Ca(2+) removal, its electronic structure remains essentially unaltered, i.e. that of a manganese tetramer. No redistribution of the manganese valence states and only minor perturbation of the exchange interactions between the manganese ions were found. Interestingly, the S(2)' state in spinach PS II is very similar to the native S(2) state of Thermosynechococcus elongatus in terms of spin state energies and insensitivity to methanol addition. These results assign the Ca(2+) a functional as opposed to a structural role in water splitting catalysis, such as (i) being essential for efficient proton-coupled electron transfer between Y(Z) and the manganese cluster and/or (ii) providing an initial binding site for substrate water. Additionally, a novel (55)Mn(2+) signal, detected by Q-band pulse EPR and ENDOR, was observed in Ca(2+)-depleted PS II. Mn(2+) titration, monitored by (55)Mn ENDOR, revealed a specific Mn(2+) binding site with a submicromolar K(D). Ca(2+) titration of Mn(2+)-loaded, Ca(2+)-depleted PS II demonstrated that the site is reversibly made accessible to Mn(2+) by Ca(2+) depletion and reconstitution. Mn(2+) is proposed to bind at one of the extrinsic subunits. This process is possibly relevant for the formation of the Mn(4)O(5)Ca cluster during photoassembly and/or D1 repair.  相似文献   

16.
The effect of the familial hypertrophic cardiomyopathy mutations, A13T, F18L, E22K, R58Q, and P95A, found in the regulatory light chains of human cardiac myosin has been investigated. The results demonstrate that E22K and R58Q, located in the immediate extension of the helices flanking the regulatory light chain Ca(2+) binding site, had dramatically altered Ca(2+) binding properties. The K(Ca) value for E22K was decreased by approximately 17-fold compared with the wild-type light chain, and the R58Q mutant did not bind Ca(2+). Interestingly, Ca(2+) binding to the R58Q mutant was restored upon phosphorylation, whereas the E22K mutant could not be phosphorylated. In addition, the alpha-helical content of phosphorylated R58Q greatly increased with Ca(2+) binding. The A13T mutation, located near the phosphorylation site (Ser-15) of the human cardiac regulatory light chain, had 3-fold lower K(Ca) than wild-type light chain, whereas phosphorylation of this mutant increased the Ca(2+) affinity 6-fold. Whereas phosphorylation of wild-type light chain decreased its Ca(2+) affinity, the opposite was true for A13T. The alpha-helical content of the A13T mutant returned to the level of wild-type light chain upon phosphorylation. The phosphorylation and Ca(2+) binding properties of the regulatory light chain of human cardiac myosin are important for physiological function, and alteration any of these could contribute to the development of hypertrophic cardiomyopathy.  相似文献   

17.
The present work describes the results of a study aimed at identifying candidate cation binding sites on the extracellular region of bacteriorhodopsin, including a site near the retinal pocket. The approach used is a combined effort involving computational chemistry methods (computation of cation affinity maps and molecular dynamics) together with the Extended X-Ray Absorption Fine Structure (EXAFS) technique to obtain relevant information about the local structure of the protein in the neighborhood of Mn(2+) ions in different affinity binding sites. The results permit the identification of a high-affinity binding site where the ion is coordinated simultaneously to Asp212(-) and Asp85(-). Comparison of EXAFS data of the wild type protein with the quadruple mutant E9Q/E74Q/E194Q/E204Q at pH 7.0 and 10.0 demonstrate that extracellular glutamic acid residues are involved in cation binding.  相似文献   

18.
19.
White DJ  Reiter NJ  Sikkink RA  Yu L  Rusnak F 《Biochemistry》2001,40(30):8918-8929
Bacteriophage lambda phosphoprotein phosphatase (lambdaPP) has structural similarity to the mammalian Ser/Thr phosphoprotein phosphatases (PPPs) including the immunosuppressant drug target calcineurin. PPPs possess a conserved active site containing a dinuclear metal cluster, with metal ligands provided by a phosphoesterase motif plus two additional histidine residues at the C-terminus. Multiple sequence alignment of lambdaPP with 28 eubacterial and archeal phosphoesterases identified active site residues from the phosphoesterase motif and in many cases 2 additional C-terminal His metal ligands. Most highly similar to lambdaPP are E. coli PrpA and PrpB. Using the crystal structure of lambdaPP [Voegtli, W. C., et al. (2000) Biochemistry 39, 15365-15374] as a structural and active site model for PPPs and related bacterial phosphoesterases, we have studied mutant forms of lambdaPP reconstituted with Mn(2+) by electron paramagnetic resonance (EPR) spectroscopy, Mn(2+) binding analysis, and phosphatase kinetics. Analysis of Mn(2+)-bound active site mutant lambdaPP proteins shows that H22N, N75H, and H186N mutations decrease phosphatase activity but still allow mononuclear Mn(2+) and [(Mn(2+))(2)] binding. The high affinity Mn(2+) binding site is shown to consist of M2 site ligands H186 and Asn75, but not H22 from the M1 site which is ascribed as the lower affinity site.  相似文献   

20.
Properties of mutationally altered RNA polymerases II of Drosophila   总被引:9,自引:0,他引:9  
We tested and compared several in vitro properties of wild type and mutant RNA polymerases II from Drosophila melanogaster, using several different mutants of a single X-linked genetic locus, RpIIC4 (Greenleaf, A. L., Weeks, J. R., Voelker, R. A., Ohnishi, S., and Dickson, B. (1980) Cell 21, 785-792); the mutants tested included the original amanitin-resistant mutant, C4, which is nonconditional, plus the temperature-sensitive mutants A9, C20, E28, and 1Fb40. Using a tritium-labeled amanitin derivative, we demonstrated that C4 polymerase has a reduced binding affinity for amanitin. The C4 polymerase was as stable to thermal denaturation as the wild type enzyme, and the two enzymes had similar specific activities, ionic strength and Mn2+ requirements, and apparent Km values for UTP and GTP when assayed in the presence of Mn2+. However, with Mg2+ as the divalent cation, C4 polymerase was less active than wild type and had 2-fold higher apparent Km values for UTP and GTP. Three of the temperature-sensitive mutants, A9, C20, and E28, were derived from the amanitin-resistant mutant C4; the polymerase II activities from these mutants displayed resistance to alpha-amanitin in vitro identical with that of the C4 enzyme. C20, E28, and 1Fb40 polymerases were markedly less stable to thermal denaturation in vitro than wild type polymerase. The results presented indicate that the mutations at the RNA polymerase locus (RpIIC4-) directly alter the structure of the enzyme, providing conclusive evidence that the locus is a structural gene for a polymerase II subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号