首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of Na+-K+ pump activation on endothelium-dependent relaxation (EDR) and on intracellular Ca2+ concentration ([Ca2+]i) was examined in mouse aorta and mouse aortic endothelial cells (MAECs). The Na+-K+ pump was activated by increasing extracellular K+ concentration ([K+]o) from 6 to 12 mM. In aortic rings, the Na+ ionophore monensin evoked EDR, and this EDR was inhibited by the Na+/Ca2+ exchanger (NCX; reverse mode) inhibitor KB-R7943. Monensin-induced Na+ loading or extracellular Na+ depletion (Na+ replaced by Li+) increased [Ca2+]i in MAECs, and this increase was inhibited by KB-R7943. Na+-K+ pump activation inhibited EDR and [Ca2+]i increase (K+-induced inhibition of EDR and [Ca2+]i increase). The Na+-K+ pump inhibitor ouabain inhibited K+-induced inhibition of EDR. Monensin (>0.1 microM) and the NCX (forward and reverse mode) inhibitors 2'4'-dichlorobenzamil (>10 microM) or Ni2+ (>100 microM) inhibited K+-induced inhibition of EDR and [Ca2+]i increase. KB-R7943 did not inhibit K+-induced inhibition at up to 10 microM but did at 30 microM. In current-clamped MAECs, an increase in [K+]o from 6 to 12 mM depolarized the membrane potential, which was inhibited by ouabain, Ni2+, or KB-R7943. In aortic rings, the concentration of cGMP was significantly increased by acetylcholine and decreased on increasing [K+]o from 6 to 12 mM. This decrease in cGMP was significantly inhibited by pretreating with ouabain (100 microM), Ni2+ (300 microM), or KB-R7943 (30 microM). These results suggest that activation of the forward mode of NCX after Na+-K+ pump activation inhibits Ca2+ mobilization in endothelial cells, thereby modulating vasomotor tone.  相似文献   

2.
Binding of mitogenic lectins to T lymphocytes results in elevated cytoplasmic Ca2+ concentrations ([Ca2+]i). This change in [Ca2+]i is thought to be essential for cellular proliferation. In addition, the lectins increase the conductance to K+ through voltage-sensitive channels. Based on the inhibitory effect of K+ channel blockers on lectin-induced mitogenesis, it has been suggested that Ca2+ could enter the cells through these activated K+ channels (Chandy, K. G., De Coursey, T. E., Cahalan, M. D., McLaughlin, C., and Gupta, S. (1984) J. Exp. Med. 160, 369-385; Chandy, K. G., De Coursey, T. E., Cahalan, M. D., and Gupta, S. (1985) J. Clin. Immunol. 5, 1-5). This hypothesis was tested experimentally by measuring the effect of activation or blockade of K+ channels on [Ca2+]i using quin-2 and indo-1 and by determining the effect of K+ channel blockers on lectin-induced proliferation. We found that: depolarization of the membrane, which is expected to open the K+ channels, failed to increase [Ca2+]i, K+ channel blockers such as tetraethylammonium and 4-aminopyridine had only a marginal effect on the lectin-induced increase in [Ca2+]i, and the inhibitory effect of K+ channel blockers on proliferation was found to be nonspecific, occurring also when proliferation was triggered by phorbol esters under conditions where [Ca2+]i is not elevated. It is concluded that the lectin-induced changes in [Ca2+]i are not mediated by the opening of voltage-gated K+ channels.  相似文献   

3.
Changes in the membrane potential and the intracellular Ca2+ concentration ([Ca2+]i) caused by somatostatin (SRIF) were simultaneously measured in human GH-producing pituitary tumor cells, by means of the nystatin-perforated whole cell clamp technique and Fura-2 AM. An application of 10(-8) M SRIF hyperpolarized the membrane and arrested Ca(2+)-dependent spontaneous action potentials. [Ca2+]i concurrently decreased during membrane hyperpolarization. When the membrane potential was clamped below the threshold for voltage-gated Ca2+ channels, [Ca2+]i decreased and SRIF did not further reduce [Ca2+]i. In cells which did not show spontaneous action potentials, SRIF hyperpolarized the membrane but it affected [Ca2+]i little. From these results it was concluded that the reduction in [Ca2+]i caused by SRIF was ascribed to the decrease in Ca2+ influx through voltage-gated channels during membrane hyperpolarization. The effect of SRIF on the voltage-gated Ca2+ channel current was also examined under the perforated whole cell clamp. SRIF (10(-8) M) inhibited the Ca2+ channel current to 80.8 +/- 15.4% (n = 5) of the control. Because SRIF-induced inhibition of the voltage-gated Ca2+ channel current was not prominent, it was considered that membrane hyperpolarization is the major cause of the reduction in [Ca2+]i in human GH-producing cells.  相似文献   

4.
The effects of extracellular K+ on endothelium-dependent relaxation (EDR) and on intracellular Ca2+ concentration ([Ca2+]i) were examined in mouse aorta, mouse aorta endothelial cells (MAEC), and human umbilical vein endothelial cells (HUVEC). In mouse aortic rings precontracted with prostaglandin F2alpha or norepinephrine, an increase in extracellular K+ concentration ([K+]o) from 6 to 12 mM inhibited EDR concentration dependently. In endothelial cells, an increase in [K+]o inhibited the agonist-induced [Ca2+]i increase concentration dependently. Similar to K+, Cs+ also inhibited EDR and the increase in [Ca2+]i concentration dependently. In current-clamped HUVEC, increasing [K+]o from 6 to 12 mM depolarized membrane potential from -32.8 +/- 2.7 to -8.6 +/- 4.9 mV (n = 8). In voltage-clamped HUVEC, depolarizing the holding potential from -50 to -25 mV decreased [Ca2+]i significantly from 0.95 +/- 0.03 to 0.88 +/- 0.03 microM (n = 11, P < 0.01) and further decreased [Ca2+]i to 0.47 +/- 0.04 microM by depolarizing the holding potential from -25 to 0 mV (n = 11, P < 0.001). Tetraethylammonium (1 mM) inhibited EDR and the ATP-induced [Ca2+]i increase in voltage-clamped MAEC. The intermediate-conductance Ca2+-activated K+ channel openers 1-ethyl-2-benzimidazolinone, chlorozoxazone, and zoxazolamine reversed the K+-induced inhibition of EDR and increase in [Ca2+]i. The K+-induced inhibition of EDR and increase in [Ca2+]i was abolished by the Na+-K+ pump inhibitor ouabain (10 microM). These results indicate that an increase of [K+]o in the physiological range (6-12 mM) inhibits [Ca2+]i increase in endothelial cells and diminishes EDR by depolarizing the membrane potential, decreasing K+ efflux, and activating the Na+-K+ pump, thereby modulating the release of endothelium-derived vasoactive factors from endothelial cells and vasomotor tone.  相似文献   

5.
We have undertaken a detailed study of the mechanisms of maintenance of intracellular Ca2+ homeostasis in human polymorphonuclear neutrophils (PMN) and its implications for phagocytosis and IgG Fc receptor (FcR) signaling. When PMN were incubated in Ca(2+)-free medium, cytoplasmic calcium concentration ([Ca2+]i) was markedly depressed and intracellular stores were depleted of calcium. [Ca2+]i in these depleted cells increased within 1 min when PMN were placed in medium containing Ca2+ and then decreased to a level close to the normal basal [Ca2+]i, replenishing the intracellular Ca2+ pools. LaCl3 prevented entry of Ca2+ into Ca(2+)-depleted PMN, but the calcium channel blockers nifedipine, diltiazem, and verapamil did not. Nifedipine and diltiazem but not verapamil inhibited the movement of Ca2+ from cytosol to intracellular stores. Nifedipine and diltiazem inhibited the normal increase in [Ca2+]i from aggregated IgG binding to FcR and also prevented formyl-methionyl-leucyl-phenyl-alanine (fMLP)-induced [Ca2+]i rise. Verapamil had no effect on either an fMLP- or IgG-mediated increase in [Ca2+]i. Consistent with this, nifedipine and diltiazem inhibited fMLP-stimulated phagocytosis (which is dependent on an increase in [Ca2+]i) when PMN had repleted intracellular stores. In contrast, LaCl3 inhibited fMLP-stimulated ingestion only in PMN which had intracellular store depleted. None of these compounds had any effect on phorbol dibutyrate-stimulated ingestion (which is independent of a [Ca2+]i rise). In summary, these data show that Ca2+ is in rapid equilibrium between intracellular and extracellular compartments in PMN. Exchange of cytoplasmic Ca2+ with the extracellular space is inhibited by LaCl3, while exchange of Ca2+ between the cytosol and intracellular stores is inhibited by the dihydropyridine nifedipine and the benzothiazepine diltiazem. These data suggest that these drugs, which are known to regulate some plasma membrane Ca2+ channels in excitable cells, can also regulate Ca2+ release from intracellular stores in PMN and that this regulation may have significant effects on PMN function.  相似文献   

6.
Spatiotemporal change of the cytosolic free Ca2+ concentration ([Ca2+]i) in response to a variety of secretagogues was examined in rat pancreatoma AR-42J and AR-IP cells by microspectroflurometry and digital imaging microscopy after loading with fura-2. In the presence of external Ca2+, carbachol, CCK-OP (cholecystokinin-octapeptide), gastrin, norepinephrine or high K+ evoked a large transient increase in [Ca2+]i in AR-42J cells which declined to a sustained level before slowly declining towards the resting level. In the absence of external Ca2+, a transient increase in [Ca2+]i were evoked by all the ligands except for high K+ stimulation, which declined rapidly towards the resting level. The [Ca2+]i increase caused by carbachol and high K+ treatment was inhibited by muscarinic receptor antagonist, atropine, and by L-type Ca2+ channel blocker, nifedipine, respectively. The transient [Ca2+]i increase induced by gastrin stimulation was not blocked by Ca2+ channel blocker, lanthanum. In the AR-IP cells, which are non-differentiated pancreatoma cell line, all stimulations including high K+ treatment have failed to evoke [Ca2+]i response. These intracellular Ca2+ mobilizations in response to ligands in AR-42J cells were displayed by digital imaging microscopy. From these results we conclude that AR-42J cells has an alpha-adrenergic receptor, in addition to muscarinic acetylcholine receptor, CCK-OP receptor, gastrin receptor and voltage dependent Ca2+ channel. In marked contrast, AR-IP cells have neither any hormone receptor for the above ligands nor voltage dependent Ca2+ channel.  相似文献   

7.
The LAN-1 clone, a cell line derived from a human neuroblastoma, possesses muscarinic receptors. The stimulation of these receptors with increasing concentrations of carbachol (CCh; 1-1,000 microM) caused a dose-dependent increase of the intracellular free Ca2+ concentration ([Ca2+]i). This increase was characterized by an early peak phase (10 s) and a late plateau phase. The removal of extracellular Ca2+ reduced the magnitude of the peak phase to approximately 70% but completely abolished the plateau phase. The muscarinic-activated Ca2+ channel was gadolinium (Gd3+) blockade and nimodipine and omega-conotoxin insensitive. In addition, membrane depolarization did not cause any increase in [Ca2+]i. The CCh-induced [Ca2+]i elevation was concentration-dependently inhibited by pirenzepine and 4-diphenylacetoxy-N-methylpiperidine methiodide, two rather selective antagonists of M1 and M3 muscarinic receptor subtypes, respectively, whereas methoctramine, an M2 antagonist, was ineffective. The coupling of M1 and M3 receptor activation with [Ca2+]i elevation does not seem to be mediated by a pertussis toxin-sensitive guanine nucleotide-binding protein or by the diacylglycerol-protein kinase C system. The mobilization of [Ca2+]i elicited by M1 and M3 muscarinic receptor stimulation seems to be dependent on an inositol trisphosphate-sensitive intracellular store. In addition, ryanodine did not prevent CCh-induced [Ca2+]i mobilization, and, finally, LAN-1 cells appear to lack caffeine-sensitive Ca2+ stores, because the methylxanthine was unable to elicit intracellular Ca2+ mobilization, under basal conditions, after a subthreshold concentration of CCh (0.3 microM), or after thapsigargin.  相似文献   

8.
In the neurosecretory cell line PC12 the cytosolic free Ca2+ concentration, [Ca2+]i, and membrane potential were affected by both external ATP and the nonapeptide bradykinin, BK. The latter caused a rapid and large release of Ca2+ from intracellular stores (Ca2+ redistribution) and, in the presence of external Ca2+, a long lasting, but moderate Ca2+ influx, which was insensitive to dihydropyridine blockers. On the contrary, ATP evoked a [Ca2+]i rise which rapidly inactivated. At least three different mechanisms accounted for the ATP-induced increase in [Ca2+]i: less than 20% of the total response was due to intracellular Ca2+ redistribution, consistent with a small increase in inositol 1,4,5-trisphosphate level; the rest (over 80%) was equally accounted for by ATP-activated cation channels and voltage-gated Ca2+ channels. ATP and BK (the latter after K+ channel blockade) caused plasma membrane depolarization. With both agonists the inward current was carried by both Na+ and Ca2+, although the BK-activated current appeared to be more selective for Ca2+. Channels triggered by ATP and BK differed not only in their cation selectivity, but also in modulation by both [Ca2+]i and drugs such as the phorbol ester phorbol 12-myristate 13-acetate and the new antagonist of ligand-activated Ca2+ influx, SK&F 96365.  相似文献   

9.
We used perforated patch, whole-cell current recordings and video-based fluorescence ratio imaging to monitor the relation of plasma membrane ionic conductances to intracellular free Ca2+ within individual colonic epithelial cells (HT-29). The Ca2(+)-mediated agonist, neurotensin, activated K+ and Cl- conductances that showed different sensitivities to [Ca2+]i. The Cl- conductance was sensitive to increases or decreases in [Ca2+]i around the resting value of 76 +/- 32 (mean +/- SD) nM (n = 46), whereas activation of the K+ conductance required at least a 10-fold rise in [Ca2+]i. Neurotensin increased [Ca2+]i by stimulating a transient intracellular Ca2+ release, which was followed by a sustained rise in [Ca2+]i due to Ca2+ influx from the bath. The onset of the initial [Ca2+]i transient, monitored at a measurement window over the cell interior, lagged behind the rise in Cl- current during agonist stimulation. This lag was not present when the [Ca2+]i rise was due to Ca2+ entry from the bath, induced either by the agonist or by the Ca2+ ionophore ionomycin. The temporal differences in [Ca2+]i and Cl- current during the agonist-induced [Ca2+]i transient can be explained by a localized Ca2+ release from intracellular stores in the vicinity of the plasma membrane Cl- channel. Chloride currents recover toward basal values more rapidly than [Ca2+]i after the agonist-induced [Ca2+]i transient, and, during a sustained neurotensin-induced [Ca2+]i rise, Cl- currents inactivate. These findings suggest that an inhibitory pathway limits the increase in Cl- conductance that can be evoked by agonist. Because this Cl- current inhibition is not observed during a sustained [Ca2+]i rise induced by ionomycin, the inhibitory pathway may be mediated by another agonist-induced messenger, such as diacylglycerol.  相似文献   

10.
The importance of intracellular calcium ([Ca2+]i) in the release of vasopressin (AVP) and oxytocin from the central nervous system neurohypopyhysial nerve terminals has been well-documented. To date, there is no clear understanding of Ca2+ clearance mechanisms and their interplay with transmembrane Ca2+ entry, intracellular [Ca2+]i transients, cytoplasmic Ca2+ stores and hence the release of AVP at the level of a single nerve terminal. Here, we studied the mechanism of Ca2+ clearance in freshly isolated nerve terminals of the rat neurohypophysis using Fura-2 Ca2+ imaging and measured the release of AVP by radioimmuno assay. An increase in the K+ concentration in the perfusion solution from 5 to 50 mM caused a rapid increase in [Ca2+]i and AVP release. Returning K+ concentration to 5 mM led to rapid restoration of both responses to basal level. The K+-evoked [Ca2+]i and AVP increase was concentration-dependent, reliable, and remained of constant amplitude and time course upon successive applications. Extracellular Ca2+ removal completely abolished the K+-evoked responses. The recovery phase was not affected upon replacement of NaCl with sucrose or drugs known to act on intracellular Ca2+ stores such as thapsigargin, cyclopiazonic acid, caffeine or a combination of caffeine and ryanodine did not affect either resting or K+-evoked [Ca2+]i or AVP release. By contrast, the plasma membrane Ca2+ pump inhibitor, La3+, markedly slowed down the recovery phase. The mitochondrial respiration uncoupler, carbonyl cyanide 3-chlorophenylhydrazone (CCCP), slightly but significantly increased the basal [Ca2+]i, and also slowed down the recovery phase of both [Ca2+]i and release responses. In conclusion, we show in nerve terminals that (i) Ca2+ extrusion through the Ca2+ pump in the plasma membrane plays a major role in the Ca2+ clearance mechanisms of (ii) Ca2+ uptake by mitochondria also contributes to the Ca2+ clearance and (iii) neither Na+/Ca2+ exchangers nor Ca2+ stores are involved in the Ca2+ clearance or in the maintenance of basal [Ca2+]i or release of AVP.  相似文献   

11.
Oxygen-free radicals are thought to be a major cause of beta-cell dysfunction in diabetic animals induced by alloxan or streptozotocin. We evaluated the effect of H2O2 on cytosolic Ca2+ concentration ([Ca2+]i) and the activity of ATP-sensitive potassium (K+ATP) channels in isolated rat pancreatic beta-cells using microfluorometry and patch clamp techniques. Exposure to 0.1 mM H2O2 in the presence of 2.8 mM glucose increased [Ca2+]i from 114.3+/-15.4 nM to 531.1+/-71.9 nM (n=6) and also increased frequency of K+ATP channel openings. The intensity of NAD(P)H autofluorescence was conversely reduced, suggesting that H2O2 inhibited the cellular metabolism. These three types of cellular parameters were reversed to the control level on washout of H2O2, followed by a transient increase in [Ca2+]i, the transient inhibition of K+ATP channels associated with action currents and increase of the NAD(P)H intensity with an overshoot. In the absence of external Ca2+, 0.1 mM H2O2 increased [Ca2+]i from 88.8+/-7.2 nM to 134.6+/-8.3 nM. Magnitude of [Ca2+]i increase induced by 0.1 mM H2O2 was decreased after treatment of cells with 0.5 mM thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ pump (45.8+/-4.9 nM vs 15.0+/-4.8 nM). Small increase in [Ca2+]i in response to an increase of external Ca2+ from zero to 2 mM was further facilitated by 0.1 mM H2O2 (330.5+/-122.7 nM). We concluded that H2O2 not only activates K+ATP channels in association with metabolic inhibition, but also increases partly the Ca2+ permeability of the thapsigargin-sensitive intracellular stores and of the plasma membrane in pancreatic beta-cells.  相似文献   

12.
Con A刺激致T淋巴细胞胞浆游离Ca~(2+)浓度升高   总被引:1,自引:0,他引:1  
本文分别应用荧光Ca~(2+)指示剂Quin2和Indo-1研究了Con A刺激的T淋巴细胞[Ca~(2+)]i升高过程及其发生机制.结果表明Con A与T淋巴细胞作用可导致细胞[Ca~(2+)]i的迅速升高.这种增加的胞内游离Ca~(2+)不仅来自胞外Ca~(2+)的内流,也来源于胞内钙库的释放.其中Ca~(2+)内流与T细胞钙通道的开放有关.可被钙通道抑制剂戊脉胺抑制,细胞的去极化及钾通道阻断剂四乙胺均不能阻断Ca~(2+)的内流,提示Ca~(2+)内流不是通过电位操纵的钙通道实现的,也与拥通道的开闭无关.Ca~(2+)内流可能是通过Con A受体活化的受体操纵的钙通道而实现的.  相似文献   

13.
Effects of the alpha 2-adrenergic agonist clonidine on insulin release, membrane potential, and cytoplasmic free Ca2+ concentration ([Ca2+]i) were investigated using pancreatic beta-cells isolated from obese hyperglycemic mice. Addition of 2 microM clonidine promptly inhibited glucose-stimulated insulin release, an effect accompanied by a lowering in both membrane potential and [Ca2+]i. Within minutes, the effect on Ca2+ was partly reversed, [Ca2+]i attaining a new level, although still significantly lower than in the absence of agonist. This late increase in [Ca2+]i was inhibited by 50 microM D-600, a blocker of voltage-activated Ca2+ channels. The inhibitory effects of clonidine on membrane potential, [Ca2+]i, and insulin release were abolished by 5 microM of the alpha 2-adrenergic antagonist yohimbine. Depolarization with high K+ increased [Ca2+]i also in the presence of clonidine, conditions accompanied by only a minute release of insulin. Secretion was, however, partly restored by subsequent addition of 20 mM glucose. Addition of 5 mM Ca2+ transiently reversed the effects of clonidine on both membrane potential and [Ca2+]i. Although the clonidine-induced repolarization should be enough for closing the voltage-activated Ca2+ channels with a resulting decrease in [Ca2+]i, a direct interaction of the agonist with these channels cannot be excluded. The fact that it was possible to increase [Ca2+]i with only a minor effect on insulin release suggests that the inhibitory effect of clonidine not only is due to a reduction in [Ca2+]i, but also involves interference with some more distal step in the insulin secretory machinery.  相似文献   

14.
A primary determinant of vascular smooth muscle (VSM) tone and contractility is the resting membrane potential, which, in turn, is influenced heavily by K+ channel activity. Previous studies from our laboratory and others have demonstrated differences in the contractility of cerebral arteries from near-term fetal and adult animals. To test the hypothesis that these contractility differences result from maturational changes in voltage-gated K+ channel function, we compared this function in VSM myocytes from adult and fetal sheep cerebral arteries. The primary current-carrying, voltage-gated K+ channels in VSM myocytes are the large conductance Ca2+-activated K+ channels (BKCa) and voltage-activated K+ (KV) channels. We observed that at voltage-clamped membrane potentials of +60 mV in perforated whole cell studies, the normalized outward current densities in fetal myocytes were >30% higher than in those of the adult (P < 0.05) and that these were predominantly due to iberiotoxin-sensitive currents from BKCa channels. Excised, insideout membrane patches revealed nearly identical unitary conductances and Hill coefficients for BKCa channels. The plot of log intracellular [Ca2+] ([Ca2+]i) versus voltage for half-maximal activation (V(1/2)) yielded linear and parallel relationships, and the change in V(1/2) for a 10-fold change in [Ca2+] was also similar. Channel activity increased e-fold for a 19 +/- 2-mV depolarization for adult myocytes and for an 18 +/- 1-mV depolarization for fetal myocytes (P > 0.05). However, the relationship between BKCa open probability and membrane potential had a relative leftward shift for the fetal compared with adult myocytes at different [Ca2+]i. The [Ca2+] for half-maximal activation (i.e., the calcium set points) at 0 mV were 8.8 and 4.7 microM for adult and fetal myocytes, respectively. Thus the increased BKCa current density in fetal myocytes appears to result from a lower calcium set point.  相似文献   

15.
P B Carroll  M X Li  E Rojas  I Atwater 《FEBS letters》1988,234(1):208-212
The effects of bicarbonate buffer (HCO3-/CO2) on the activity of the two K+ channels proposed by some to control the pancreatic B-cell membrane response to glucose were studied. Single K+-channel records from membrane patches of cultured B-cells dissociated from adult rat islets exposed to a glucose- and bicarbonate-free medium (Na-Hepes in place of bicarbonate) exhibit the activity of both the ATP-sensitive as well as the [Ca2+]i-activated K+ channels. However, in the presence of bicarbonate-buffered Krebs solution, the activity of the ATP-sensitive K+ channel is inhibited leaving the activity of the K+ channel activated by intracellular [Ca2+]i unaffected. In the absence of bicarbonate (Hepes/NaOH in place of bicarbonate), lowering the external pH from 7.4 to 7.0 also has differential effects on the two K+ channels. While the K+ channel sensitive to ATP is inhibited, the K+ channel activated by a rise in [Ca2+]i is not affected. To determine whether the response of the B-cell in culture to bicarbonate is also present when the B-cell is functioning within the islet syncytium, the effects of bicarbonate removal on membrane potential of B-cells from intact mouse islets were compared. These studies showed that glucose-evoked electrical activity is also blocked in bicarbonate-free Krebs solution. Furthermore, in the absence of bicarbonate and presence of glucose (11 mM), electrical activity was recovered by lowering the pHo from 7.4 to 7.0. The ATP-sensitive K+-channel activity is greatly reduced by physiologically buffered solutions in pancreatic B-cells in culture. The most likely explanation for the bicarbonate effects is that they are mediated by cytosolic pH changes. Removal of bicarbonate (keeping the external pH at 7.4 with Hepes/NaOH as buffer) would increase the pHi. Since the activity of the [Ca2+]i-dependent K+ channels is not affected by the removal of the bicarbonate buffer, our patch-clamp data in cultured B-cells indicate an involvement of [Ca2+]i-activated K+ channels in the control of the membrane potential. For the B-cell in the islet, we propose that the burst pattern of electrical activity (Ca2+ entry) is controlled, at least in part, by the [Ca2+]i-activated K+ channel.  相似文献   

16.
The effects of caffeine on cytoplasmic [Ca2+] ([Ca2+]i) and plasma membrane currents were studied in single gastric smooth muscle cells dissociated from the toad, Bufo marinus. Experiments were carried out using Fura-2 for measuring [Ca2+]i and tight-seal voltage-clamp techniques for recording membrane currents. When the membrane potential was held at -80 mV, in 15% of the cells studied caffeine increased [Ca2+]i without having any effect on membrane currents. In these cells ryanodine completely abolished any caffeine induced increase in [Ca2+]i. In the other cells caffeine caused both an increase in [Ca2+]i and activation of an 80-pS nonselective cation channel. In this group of cells ryanodine only partially blocked the increase in [Ca2+]i induced by caffeine; moreover, the change in [Ca2+]i that did occur was tightly coupled to the time course and magnitude of the cation current through these channels. In the presence of ryanodine, blockade of the 80-pS channel by GdCl3 or decreasing the driving force for Ca2+ influx through the plasma membrane by holding the membrane potential at +60 mV almost completely blocked the increase in [Ca2+]i induced by caffeine. Thus, the channel activated by caffeine appears to be permeable to Ca2+. Caffeine activated the cation channel even when [Ca2+]i was clamped to below 10 nM when the patch pipette contained 10 mM BAPTA suggesting that caffeine directly activates the channel and that it is not being activated by the increase in Ca2+ that occurs when caffeine is applied to the cell. Corroborating this suggestion were additional results showing that when the membrane was depolarized to activate voltage-gated Ca2+ channels or when Ca2+ was released from carbachol- sensitive internal Ca2+ stores, the 80-pS channel was not activated. Moreover, caffeine was able to activate the channel in the presence of ryanodine at both positive and negative potentials, both conditions preventing release of Ca2+ from stores and the former preventing its influx. In summary, in gastric smooth muscle cells caffeine transiently releases Ca2+ from a ryanodine-sensitive internal store and also increases Ca2+ influx through the plasma membrane by activating an 80- pS cation channel by a mechanism which does not seem to involve an elevation of [Ca2+]i.  相似文献   

17.
The effect of nordihydroguaiaretic acid (NDGA), a compound commonly used as a lipoxygenases inhibitor, on intracellular free Ca2+ levels ([Ca2+]i) in PC3 human prostate cancer cells was investigated. [Ca2+]i was measured by using the Ca2+ -sensitive dye fura-2. NDGA increased [Ca2+]i in a concentration-dependent manner with an EC50 of 30 microM. The Ca2+ signal comprised a gradual and sustained increase. Removal of extracellular Ca2+ partly decreased the NDGA-induced [Ca2+]i increase, suggesting that the Ca2+ signal was due to both extracellular Ca2+ influx and intracellular Ca2+ release. NDGA-induced Ca2+ influx was independently confirmed by measuring NDGA-induced Mn2+ -coupled quench of fura-2 fluorescence. The NDGA-induced Ca2+ influx was not affected by L-type Ca2+ channel blockers. In Ca2+ -free medium, the NDGA-induced [Ca2+]i increase was abolished by pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), and conversely, pretreatment with NDGA abolished thapsigargin-induced [Ca2+]i increase. NDGA-induced intracellular Ca2+ release was not altered by inhibition of phospholipase C. Overnight treatment with 20-50 microM NDGA inhibited cell proliferation rate in a concentration-dependent manner. Several other lipoxygenases inhibitors did not alter [Ca2+]i. Collectively, this study shows that in prostate cells, NDGA induced a [Ca2+]i increase via releasing stored Ca2+ from the endoplasmic reticulum in a manner independent of phospholipase C activity, and by causing Ca2+ influx. NDGA also caused cytotoxicity at higher concentrations.  相似文献   

18.
Elevation in cytoplasmic free Ca2+ concentration ([Ca2+]i) is a common mechanism in signaling events. An increased [Ca2+]i induced by GH, has been observed in relation to different cellular events. Little is known about the mechanism underlying the GH effect on Ca2+ handling. We have studied the molecular mechanisms underlying GH-induced rise in [Ca2+]i in BRIN-BD11 insulin-secreting cells. GH (500 ng/ml, 22 nm) induced a sustained increase in [Ca2+]i. The effect of GH on [Ca2+]i was prevented in the absence of extracellular Ca2+ and was inhibited by the ATP-sensitive K(+)-channel opener diazoxide and the voltage-dependent Ca(2+)-channel inhibitor nifedipine. However, GH failed to induce any changes in Ca2+ current and membrane potential, evaluated by patch-clamp recordings and by using voltage-sensitive dyes. When the intracellular Ca2+ pools had been depleted using the Ca(2+)-ATPase inhibitor thapsigargin, the effect of GH was inhibited. In addition, GH-stimulated rise in [Ca2+]i was completely abolished by ruthenium red, an inhibitor of mitochondrial Ca2+ transport, and caffeine. GH induced tyrosine phosphorylation of ryanodine receptors. The effect of GH on [Ca2+]i was completely blocked by the tyrosine kinase inhibitors genistein and lavendustin A. Interestingly, treatment of the cells with GH significantly enhanced K(+)-induced rise in [Ca2+]i. Hence, GH-stimulated rise in [Ca2+]i is dependent on extracellular Ca2+ and is mediated by Ca(2+)-induced Ca2+ release. This process is mediated by tyrosine phosphorylation of ryanodine receptors and may play a crucial role in physiological Ca2+ handling in insulin-secreting cells.  相似文献   

19.
To test the hypothesis that chronic intrauterine pulmonary hypertension (PHTN) compromises pulmonary artery (PA) smooth muscle cell (SMC) O2 sensing, fluorescence microscopy was used to study the effect of an acute increase in Po2 on the cytosolic Ca2+ concentration ([Ca2+]i) of chronically hypoxic subconfluent monolayers of PA SMC in primary culture. PA SMCs were derived from fetal lambs with PHTN due to intrauterine ligation of the ductus arteriosus. Acute normoxia decreased [Ca2+]i in control but not PHTN PA SMC. In control PA SMC, [Ca2+]i increased after Ca2+-sensitive (KCa) and voltage-sensitive (Kv) K+ channel blockade and decreased after diltiazem treatment. In PHTN PA SMC, KCa blockade had no effect, whereas Kv blockade and diltiazem increased [Ca2+]i. Inhibition of sarcoplasmic reticulum Ca2+ ATPase activity caused a greater increase in [Ca2+]i in controls compared with PHTN PA SMC. Conversely, ryanodine caused a greater increase of [Ca2+]i in PHTN compared with control PA SMC. KCa channel mRNA is decreased and Kv channel mRNA is unchanged in PHTN PA SMC compared with controls. We conclude that PHTN compromises PA SMC O2 sensing, alters intracellular Ca2+ homeostasis, and changes the predominant ion channel that determines basal [Ca2+]i from KCa to Kv.  相似文献   

20.
Glucose depolarizes the pancreatic beta-cell and induces membrane potential oscillations, but the nature of the underlying oscillatory conductance remains unknown. We have now investigated the effects of the Ca2+ ionophore ionomycin and high external Ca2+ concentration ([Ca2+]o) on glucose-induced electrical activity and whole islet intracellular free Ca2+ concentration ([Ca2+]i), under conditions where the K(ATP) channel was blocked (100 microM tolbutamide or 4 microM glibenclamide). Raising [Ca2+]o to 10.2 or 12.8 mM, but not to 5.1 or 7.7 mM, turned continuous electrical activity into bursting activity. High [Ca2+]o (12.8 mM) regenerated a pattern of fast [Ca2+]i oscillations overshooting the levels recorded in tolbutamide. Ionomycin (10 microM) raised the [Ca2+]i and synergized with 5.1 mM Ca2+ to hyperpolarize the beta-cell membrane. The data indicate that a [Ca2+]i-sensitive and sulphonylurea-insensitive oscillatory conductance underlies the beta-cell bursting activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号