首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
M DasGupta 《Plant physiology》1994,104(3):961-969
A calcium-dependent protein serine/threonine kinase (GnCDPK) has been detected in groundnut (Arachis hypogea) seeds that specifically phosphorylates a peptide (MLCpep) representing the phosphate-accepting domain of smooth muscle myosin light chains. GnCDPK has been purified to near homogeneity from the soluble fraction of groundnut seeds by ammonium sulfate precipitation, Q Sepharose, Blue Sepharose, and Sephacryl 300 chromatography. The molecular weight of GnCDPK is estimated to be 53,000. Enzyme activity is stimulated about 100-fold in the presence of free Ca2+ (concentration required for half-maximal activation = 0.5 microM). GnCDPK is capable of binding 45Ca2+ ions directly in an electroblot, indicating it to be a calcium-binding protein. Phosphorylation of MLCpep is found to be optimal at an alkaline pH range (pH 9-10). Unlike all other calcium-dependent protein kinases reported from higher plants, GnCDPK does not accept casein or histones as substrate. Sequences related to MLCpep (> 60% homologous) that are present in myosin light chains from skeletal muscles of chicken and rabbit also fail to act as a substrate for GnCDPK. In contrast to the Ca2+/calmodulin dependence of myosin light chain kinases, GnCDPK activity is not affected by the presence of exogenous calmodulin (1-10 microM). However, enzyme activity is considerably inhibited in the presence of calmodulin antagonists like N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (concentration required for 50% inhibition [IC50] = 30 microM) and calmidazolium (IC50 = 10 microM), indicating an endogenous calmodulin structure to be present in GnCDPK. The probability of GnCDPK being a bona fide plant myosin light chain kinase is discussed.  相似文献   

3.
Myopodin is an actin bundling protein that shuttles between nucleus and cytoplasm in response to cell stress or during differentiation. Here, we show that the myopodin sequence 58KKRRRRARK66, when tagged to either enhanced green fluorescent protein (EGFP) or to enhanced cyan fluorescent protein-CapG (ECFPCapG), is able to target these proteins to the nucleolus in HeLa or HEK293T cells. By contrast, 58KKRR61-ECFP-CapG accumulates in the nucleus. Mutation of 58KKRRRRARK66 into alanine residues blocks myopodin nuclear import and promotes formation of cytoplasmic actin filaments. A second putative nuclear localization sequence, 612KTSKKKGKK620, displays much weaker activity in a heterologous context, and appears not to be functional in the full length protein. Thus myopodin nuclear translocation is dependent on a monopartite nuclear localization sequence.  相似文献   

4.
Recently, a novel type of calcium-dependent protein kinase (CDPK) that requires neither calmodulin nor phospholipids for activation, has been described in plants. We have isolated a cDNA clone for carrot CDPK by probing a library of somatic embryo cDNAs with oligonucleotides corresponding to highly conserved regions of protein kinases. The product of this gene overexpressed in Escherichia coli reacted strongly with monoclonal antibodies to soybean CDPK. The deduced amino acid sequence of carrot CDPK reveals two major functional domains. An N-terminal catalytic domain with greatest homology to calcium/calmodulin-dependent protein kinase type II from rat brain is coupled to a C-terminal calcium-binding domain resembling calmodulin. These features of the primary sequence explain how CDPK binds calcium and suggest a model for CDPK regulation based on similarities to animal calcium/calmodulin-dependent protein kinases.  相似文献   

5.
The HIV p17 or matrix (MA) protein has long been implicated in the process of nuclear import of the HIV genome and thus the ability of the virus to infect nondividing cells such as macrophages. While it has been demonstrated that MA is not absolutely required for this process, debate continues to surround the subcellular targeting properties of MA and its potential contribution to nuclear import of the HIV cDNA. Through the use of in vitro techniques we have determined that, despite the ability of MA to interact with importins, the full-length protein fails to enter the nucleus of cells. While MA does contain a region of basic amino acids within its N-terminus which can confer nuclear accumulation of a fusion protein, we show that this is due to nuclear retention mediated by DNA binding and does not represent facilitated import. Importantly, we show that the 26KK residues of MA, previously thought to be part of a nuclear localization sequence, are absolutely required for a number of MA's functions including its ability to bind DNA and RNA and its propensity to form high-order multimers/protein aggregates. The results presented here indicate that the N-terminal basic domain of MA does not appear likely to play a role in HIV cDNA nuclear import; rather this region appears to be a crucial structural and functional motif whose integrity is required for a number of other roles performed by MA during viral infection.  相似文献   

6.
The interaction of the nuclear protein import factor p97 with the nuclear localization sequence (NLS) receptor, the nuclear pore complex, and Ran/TC4 is important for coordinating the events of protein import to the nucleus. We have mapped the binding domains on p97 for the NLS receptor and the nuclear pore. The NLS receptor-binding domain of p97 maps to the C-terminal 60% of the protein between residues 356 and 876. The pore complex-binding domain of p97 maps to residues 152-352. The pore complex-binding domain overlaps the Ran-GTP- and Ran-GDP-binding domains on p97, but only Ran-GTP competes for docking in permeabilized cells. The N-ethylmaleimide sensitivity of the p97 for docking was investigated and found to be due to inhibition of p97 binding to the pore complex and to the NLS receptor. Site-directed mutagenesis of conserved cysteine residues in the pore- and receptor-binding domains identified two cysteines, C223 and C228, that were required for p97 to bind the nuclear pore. Inhibition studies on docking and accumulation of a NLS protein provided additional evidence that the domains identified biochemically are the functional domains involved in protein import. Together, these results suggest that Ran-GTP dissociates the receptor complex and prevents p97 binding to the pore by inducing a conformational change in the structure of p97 rather than simple competition for binding sites.  相似文献   

7.
Nucleomorphin is a novel nuclear calmodulin (CaM)-binding protein (CaMBP) containing an extensive DEED (glu/asp repeat) domain that regulates nuclear number. GFP-constructs of the 38 kDa NumA1 isoform localize as intranuclear patches adjacent to the inner nuclear membrane. The translocation of CaMBPs into nuclei has previously been shown by others to be mediated by both classic nuclear localization sequences (NLSs) and CaM-binding domains (CaMBDs). Here we show that NumA1 possesses a CaMBD (171EDVSRFIKGKLLQKQQKIYKDLERF195) containing both calcium-dependent-binding motifs and an IQ-like motif for calcium-independent binding. GFP-constructs containing only NumA1 residues 1-129, lacking the DEED and CaMBDs, still localized as patches at the internal periphery of nuclei thus ruling out a direct role for the CaMBD in nuclear import. These constructs contained the amino acid residues 48KKSYQDPEIIAHSRPRK64 that include both a putative bipartite and classical NLS. GFP-bipartite NLS constructs localized uniformly within nuclei but not as patches. As with previous work, removal of the DEED domain resulted in highly multinucleate cells. However as shown here, multinuclearity only occurred when the NLS was present allowing the protein to enter nuclei. Site-directed mutation analysis in which the NLS was changed to 48EF49 abolished the stability of the GFP fusion at the protein but not RNA level preventing subcellular analyses. Cells transfected with the 48EF49 construct exhibited slowed growth when compared to parental AX3 cells and other GFP-NumA1 deletion mutants. In addition to identifying an NLS that is sufficient for nuclear translocation of nucleomorphin and ruling out CaM-binding in this event, this work shows that the nuclear localization of NumA1 is crucial to its ability to regulate nuclear number in Dictyostelium.  相似文献   

8.
Diacylglycerol kinases (DGKs) phosphorylate diacylglycerol produced during stimulus-induced phosphoinositide turnover and attenuate protein kinase C activation. Diacylglycerol kinase alpha is an 82-kDa DGK isoform that is activated in vitro by Ca(2+). The DGK alpha regulatory region includes tandem C1 protein kinase C homology domains and Ca(2+)-binding EF hand motifs. It also contains an N-terminal recoverin homology (RVH) domain that is related to the N termini of the recoverin family of neuronal calcium sensors. To probe the structural basis of Ca(2+) regulation, we expressed a series of DGK alpha deletions spanning its regulatory domain in COS-1 cells. Deletion of the RVH domain resulted in loss of Ca(2+)-dependent activation. Further deletion of the EF hands resulted in a constitutively active enzyme, suggesting that sequences in or near the EF hands are sufficient for autoinhibition. Binding of Ca(2+) to the EF hands protected sites within both the RVH domain and EF hands from trypsin cleavage and increased the phenyl-Sepharose binding of a recombinant DGK alpha fragment that included both the RVH domain and EF hands. These observations suggested that Ca(2+) elicits a concerted conformational change of these two domains. A cationic amphiphile, octadecyltrimethylammonium chloride, also activated DGK alpha. As with Ca(2+), this activation required the RVH domain. However, this agent did not protect the EF hands and RVH domain from trypsin cleavage. These findings indicate that the EF hands and RVH domain act as a functional unit during Ca(2+)-induced DGK alpha activation.  相似文献   

9.
10.
The Drosophila protein HP1 is a 206 amino acid heterochromatin- associated nonhistone chromosomal protein. Based on the characterization of HP1 to date, there are three properties intrinsic to HP1: nuclear localization, heterochromatin binding, and gene silencing. In this work, we have concentrated on the identification of domains responsible for the nuclear localization and heterochromatin binding properties of HP1. We have expressed a series of beta- galactosidase/HP1 fusion proteins in Drosophila embryos and polytene tissue and have used beta-galactosidase enzymatic activity to identify the subcellular localization of each fusion protein. We have identified two functional domains in HP1: a nuclear localization domain of amino acids 152-206 and a heterochromatin binding domain of amino acids 95- 206. Both of these functional domains overlap an evolutionarily conserved COOH-terminal region.  相似文献   

11.
In red blood cells, protein 4.1 (4.1R) is an 80-kDa protein that stabilizes the spectrin-actin network and anchors it to the plasma membrane. The picture is more complex in nucleated cells, in which many 4.1R isoforms, varying in size and intracellular location, have been identified. To contribute to the characterization of signals involved in differential intracellular localization of 4.1R, we have analyzed the role the exon 5-encoded sequence plays in 4.1R distribution. We show that exon 5 encodes a leucine-rich sequence that shares key features with nuclear export signals (NESs). This sequence adopts the topology employed for NESs of other proteins and conserves two hydrophobic residues that are shown to be critical for NES function. A 4.1R isoform expressing the leucine-rich sequence binds to the export receptor CRM1 in a RanGTP-dependent fashion, whereas this does not occur in a mutant whose two conserved hydrophobic residues are substituted. These two residues are also essential for 4.1R intracellular distribution, because the 4.1R protein containing the leucine-rich sequence localizes in the cytoplasm, whereas the mutant protein predominantly accumulates in the nucleus. We hypothesize that the leucine-rich sequence in 4.1R controls distribution and concomitantly function of a specific set of 4.1R isoforms.  相似文献   

12.
Lu SX  Hrabak EM 《Plant physiology》2002,128(3):1008-1021
Arabidopsis contains 34 genes that are predicted to encode calcium-dependent protein kinases (CDPKs). CDPK enzymatic activity previously has been detected in many locations in plant cells, including the cytosol, the cytoskeleton, and the membrane fraction. However, little is known about the subcellular locations of individual CDPKs or the mechanisms involved in targeting them to those locations. We investigated the subcellular location of one Arabidopsis CDPK, AtCPK2, in detail. Membrane-associated AtCPK2 did not partition with the plasma membrane in a two-phase system. Sucrose gradient fractionation of microsomes demonstrated that AtCPK2 was associated with the endoplasmic reticulum (ER). AtCPK2 does not contain transmembrane domains or known ER-targeting signals, but does have predicted amino-terminal acylation sites. AtCPK2 was myristoylated in a cell-free extract and myristoylation was prevented by converting the glycine at the proposed site of myristate attachment to alanine (G2A). In plants, the G2A mutation decreased AtCPK2 membrane association by approximately 50%. A recombinant protein, consisting of the first 10 amino acids of AtCPK2 fused to the amino-terminus of beta-glucuronidase, was also targeted to the ER, indicating that the amino terminus of AtCPK2 can specify ER localization of a soluble protein. These results indicate that AtCPK2 is localized to the ER, that myristoylation is likely to be involved in the membrane association of AtCPK2, and that the amino terminal region of AtCPK2 is sufficient for correct membrane targeting.  相似文献   

13.
G protein-coupled receptor (GPCR) kinases (GRKs) specifically phosphorylate agonist-occupied GPCRs at the inner surface of the plasma membrane (PM), leading to receptor desensitization. Here we show that the C-terminal 30 amino acids of GRK6A contain multiple elements that either promote or inhibit PM localization. Disruption of palmitoylation by individual mutation of cysteine 561, 562, or 565 or treatment of cells with 2-bromopalmitate shifts GRK6A from the PM to both the cytoplasm and nucleus. Likewise, disruption of the hydrophobic nature of a predicted amphipathic helix by mutation of two leucines to alanines at positions 551 and 552 causes a loss of PM localization. Moreover, acidic amino acids in the C-terminus appear to negatively regulate PM localization; mutational replacement of several acidic residues with neutral or basic residues rescues PM localization of a palmitoylation-defective GRK6A. Last, we characterize the novel nuclear localization, showing that nuclear export of nonpalmitoylated GRK6A is sensitive to leptomycin B and that GRK6A contains a potential nuclear localization signal. Our results suggest that the C-terminus of GRK6A contains a novel electrostatic palmitoyl switch in which acidic residues weaken the membrane-binding strength of the amphipathic helix, thus allowing changes in palmitoylation to regulate PM versus cytoplasmic/nuclear localization.  相似文献   

14.
Calcium-dependent protein kinases (CDPKs), the most abundant serine/threonine kinases in plants, are found in various subcellular localizations, which suggests that this family of kinases may be involved in multiple signal transduction pathways. A complete analysis to try to understand the molecular basis of the presence of CDPKs in various localizations in the cell has not been accomplished yet. It has been suggested that myristoylation may be responsible for membrane association of CDPKs. In this study, we used a rice CDPK, OSCPK2, which has a consensus sequence for myristoylation at the N-terminus, to address this question. We expressed wild-type OSCPK2 and various mutants in different heterologous systems to investigate the factors that affect its membrane association. The results show that OSCPK2 is myristoylated and palmitoylated and targeted to the membrane fraction. Both modifications are required, myristoylation being essential for membrane localization and palmitoylation for its full association. The fact that palmitoylation is a reversible modification may provide a mechanism for regulation of the subcellular localization. OSCPK2 is the first CDPK shown to be targeted to membranes by an src homology domain 4 (SH4) located at the N-terminus of the molecule.  相似文献   

15.
Wang Y  Zhang M  Ke K  Lu YT 《Cell research》2005,15(8):604-612
By screening tobacco cDNA library with MCK1 as a probe, we isolated a cDNA clone NtCPK5 (accession number AY971376), which encodes a typical calcium-dependent protein kinase. Sequence analyses indicated that NtCPK5 is related to both CPKs and CRKs superfamilies and has all of the three conserved domains of CPKs. The biochemical activity of NtCPK5 was calcium-dependent. NtCPK5 had Vmax and Km of 526nmol/min/mg and 210μg/ml respectively with calf thymus histone (fraction Ⅲ, abbreviated to histone Ⅲs) as substrate. For substrate syntide-2, NtCPK5 showed a higher Vmax of 2008 nmol/min/mg and a lower Km of 30μM. The K0.5 of calcium activation was 0.04μM or 0.06μM for histone Ⅲs or syntide-2 respectively. The putative myristoylation and palmitoylation consensus sequence of NtCPK5 suggests that it could be a membrane-anchoring protein. Indeed, our transient expression experiments with wild type and mutant forms of NtCPK5/GFP fusion proteins showed that NtCPK5 was localized to the plasma membrane of onion epidermal cells and that the localization required the N-terminal acylation sites of NtCPK5/GFP. Taking together, our data have demonstrated the biochemical characteristics of a novel protein NtCPK5 and its subcellular localization as a membrane-anchoring protein.  相似文献   

16.
The tobacco mitogen-activated protein kinase kinase kinase NPK1 localizes to the equatorial region of phragmoplasts by interacting with kinesin-like protein NACK1. This leads to activation of NPK1 kinase at late M phase, which is necessary for cell plate formation. Until now, its localization during interphase has not been reported. We investigated the subcellular localization of NPK1 in tobacco-cultured BY-2 cells at interphase using indirect immunofluorescence microscopy and fusion to green fluorescent protein (GFP). Fluorescence of anti-NPK1 antibodies and GFP-fused NPK1 were detected only in the nuclei of BY-2 cells at interphase. Examination of the amino acid sequence of NPK1 showed that at the carboxyl-terminal region in the regulatory domain, which contains the binding site of NACK1, NPK1 contained a cluster of basic amino acids that resemble a bipartite nuclear localization signal (NLS). Amino acid substitution mutations in the critical residues in putative NLS caused a marked reduction in nuclear localization of NPK1 in BY-2 cells, indicating that this sequence is functional in tobacco BY-2 cells. We also found that the 64-amino acid sequence at the carboxyl terminus that contains NLS sequence is essential for interaction with NACK1, and that mutations in the NLS sequence prevented NPK1 from interacting with NACK1. Thus, the amino acid sequence at the carboxyl-terminal region of NPK1 has dual functions for nuclear localization during interphase and binding NACK1 in M phase.  相似文献   

17.
A kinase anchoring proteins (AKAPs) assemble and compartmentalize multiprotein signaling complexes at discrete subcellular locales and thus confer specificity to transduction cascades using ubiquitous signaling enzymes, such as protein kinase A. Intrinsic targeting domains in each AKAP determine the subcellular localization of these complexes and, along with protein-protein interaction domains, form the core of AKAP function. As a foundational step toward elucidating the relationship between location and function, we have used cross-species sequence analysis and deletion mapping to facilitate the identification of the targeting determinants of AKAP12 (also known as SSeCKS or Gravin). Three charged residue-rich regions were identified that regulate two aspects of AKAP12 localization, nuclear/cytoplasmic partitioning and perinuclear/cell periphery targeting. Using deletion mapping and green fluorescent protein chimeras, we uncovered a heretofore unrecognized nuclear localization potential. Five nuclear localization signals, including a novel class of this type of signal termed X2-NLS, are found in the central region of AKAP12 and are important for nuclear targeting. However, this nuclear localization is suppressed by the negatively charged C terminus that mediates nuclear exclusion. In this condition, the distribution of AKAP12 is regulated by an N-terminal targeting domain that simultaneously directs perinuclear and peripheral AKAP12 localization. Three basic residue-rich regions in the N-terminal targeting region have similarity to the MARCKS proteins and were found to control AKAP12 localization to ganglioside-rich regions at the cell periphery. Our data suggest that AKAP12 localization is regulated by a hierarchy of targeting domains and that the localization of AKAP12-assembled signaling complexes may be dynamically regulated.  相似文献   

18.
Calcium-dependent protein kinases (CDPKs) are structurally unique Ser/Thr kinases found in plants and certain protozoa. They are distinguished by a calmodulin-like regulatory apparatus (calmodulin-like domain (CaM-LD)) that is joined via a junction (J) region to the C-terminal end of the kinase catalytic domain. Like CaM, the CaM-LD is composed of two globular EF structural domains (N-lobe, C-lobe), each containing a pair of Ca(2+) binding sites. Spectroscopic analysis shows that the CaM-LD is comprised of helical elements, but the isolated CaM-LD does not form a conformationally homogeneous tertiary structure in the absence of Ca(2+). The addition of substoichiometric amounts of Ca(2+) is sufficient to stabilize the C-terminal lobe in a construct containing J and CaM-LD (JC) but not in the CaM-LD alone. Moreover, as J is titrated into Ca(2+)-saturated CaM-LD, interactions are stronger with the C-lobe than the N-lobe of the CaM-LD. Measurements of Ca(2+) affinity for JC reveal two cooperatively interacting high affinity binding sites (K(d)(,mean) = 5.6 nm at 20 mm KCl) in the C-lobe and two weaker sites in the N-lobe (K(d,mean) = 110 nm at 20 mm KCl). The corresponding Ca(2+) binding constants in the isolated CaM-LD are lower by more than 2 orders of magnitude, which indicates that the J region has an essential role in stabilizing the structure of the CDPK regulatory apparatus. The large differential affinity between the two domains together with previous studies on a plasmodium CDPK (Zhao, Y., Pokutta, S., Maurer, P., Lindt, M., Franklin, R. M., and Kappes, B. (1994) Biochemistry 33, 3714-3721) suggests a model whereby even at normally low cytosolic levels of Ca(2+), the C-lobe interacts with the junction, but the kinase remains in an autoinhibited state. Activation then occurs when Ca(2+) levels rise to fill the two weaker affinity binding sites in the N-lobe, thereby triggering a conformational change that leads to release of the autoinhibitory region.  相似文献   

19.
Weljie AM  Gagné SM  Vogel HJ 《Biochemistry》2004,43(48):15131-15140
Ca(2+)-dependent protein kinases (CDPKs) are vital Ca(2+)-signaling proteins in plants and protists which have both a kinase domain and a self-contained calcium regulatory calmodulin-like domain (CLD). Despite being very similar to CaM (>40% identity) and sharing the same fold, recent biochemical and structural evidence suggests that the behavior of CLD is distinct from its namesake, calmodulin. In this study, NMR spectroscopy is employed to examine the structure and backbone dynamics of a 168 amino acid Ca(2+)-saturated construct of the CLD (NtH-CLD) in which almost the entire C-terminal domain is exchange broadened and not visible in the NMR spectra. Structural characterization of the N-terminal domain indicates that the first Ca(2+)-binding loop is significantly more open than in a recently reported structure of the CLD complexed with a putative intramolecular binding region (JD) in the CDPK. Backbone dynamics suggest that parts of the third helix exhibit unusually high mobility, and significant exchange, consistent with previous findings that this helix interacts with the C-terminal domain. Dynamics data also show that the "tether" region, consisting of the first 11 amino acids of CLD, is highly mobile and these residues exhibit distinctive beta-type secondary structure, which may help to position the JD and CLD. Finally, the unusual global dynamic behavior of the protein is rationalized on the basis of possible interdomain rearrangements and the highly variable environments of the C- and N-terminal domains.  相似文献   

20.
A nuclear localization signal binding protein in the nucleolus   总被引:9,自引:11,他引:9       下载免费PDF全文
《The Journal of cell biology》1990,111(6):2235-2245
We used functional wild-type and mutant synthetic nuclear localization signal peptides of SV-40 T antigen cross-linked to human serum albumin (peptide conjugates) to assay their binding to proteins of rat liver nuclei on Western blots. Proteins of 140 and 55 kD (p140 and p55) were exclusively recognized by wild-type peptide conjugates. Free wild-type peptides competed for the wild-type peptide conjugate binding to p140 and p55 whereas free mutant peptides, which differed by a single amino acid from the wild type, competed less efficiently. The two proteins were extractable from nuclei by either low or high ionic strength buffers. We purified p140 and raised polyclonal antibodies in chicken against the protein excised from polyacrylamide gels. The anti-p140 antibodies were monospecific as judged by their reactivity with a single nuclear protein band of 140 kD on Western blots of subcellular fractions of whole cells. Indirect immunofluorescence microscopy on fixed and permeabilized Buffalo rat liver (BRL) cells with anti-p140 antibodies exhibited a distinct punctate nucleolar staining. Rhodamine- labeled wild-type peptide conjugates also bound to nucleoli in a similar pattern on fixed and permeabilized BRL cells. Based on biochemical characterization, p140 is a novel nucleolar protein. It is possible that p140 shuttles between the nucleolus and the cytoplasm and functions as a nuclear import carrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号