首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
神经元的迁移机制   总被引:3,自引:0,他引:3  
在脊椎动物的脑发育过程中,未成熟的神经元在时间和空间上的精确迁移到达最后行使功能的目的地,是中枢神经系统发育的一个重要阶段.最近的研究结果表明这一过程涉及到一系列分子事件,包括细胞表面分子的相互作用、离子通道的激活和细胞骨架的作用等.对这些事件的了解不但有助于了解神经元迁移的机制,而且对阐明由于神经元异常迁移而引起的脑紊乱失调等病理现象的机理都是必要的.  相似文献   

2.
Establishment of axon and dendrite polarity, migration to a desired location in the developing brain, and establishment of proper synaptic connections are essential processes during neuronal development. The cellular and molecular mechanisms that govern these processes are under intensive investigation. The function of the centrosome in neuronal development has been examined and discussed in few recent studies that underscore the fundamental role of the centrosome in brain development. Clusters of emerging studies have shown that centrosome positioning tightly regulates neuronal development, leading to the segregation of cell factors, directed neurite differentiation, neuronal migration, and synaptic integration. Furthermore, cilia, that arise from the axoneme, a modified centriole, are emerging as new regulatory modules in neuronal development in conjunction with the centrosome. In this review, we focus on summarizing and discussing recent studies on centrosome positioning during neuronal development and also highlight recent findings on the role of cilia in brain development. We further discuss shared molecular signaling pathways that might regulate both centrosome and cilia associated signaling in neuronal development. Furthermore, molecular determinants such as DISC1 and LKB1 have been recently demonstrated to be crucial regulators of various aspects of neuronal development. Strikingly, these determinants might exert their function, at least in part, via the regulation of centrosome and cilia associated signaling and serve as a link between these two signaling centers. We thus include an overview of these molecular determinants.  相似文献   

3.
神经细胞迁移导向的分子机制   总被引:7,自引:1,他引:7  
Rao Y  Wu Y 《生理科学进展》2000,31(3):198-204
自19世纪以来的研究表明,在胚胎发育期间和出生后,包括人在内的哺乳动物神经系统的大部分神经细胞(也许是所有神经细胞)都要经过一定距离的多运动才能抵达它们发挥功能的部位。这些细胞如何知道往哪个方向迁移呢?我们在分子水平对这个问题进行了研究。1999年发表的结果给出这样一个答案:脑内存在导向性分子,可以指导神经细胞的迁移方向,具体的发现是:一个叫Slit的分泌性蛋白南,对神经细胞有性作用,它的浓度梯度  相似文献   

4.
This review highlights the utility of comparative genetics in understanding the molecular mechanisms that underlie neuronal migration. It is apparent from studies in humans, mice, and a fungus that nuclear migration is a key component of neuronal migration and that both are dependent on a dynamic microtubule network. In vertebrates regulation of this network involves a complex pathway that is dependent on extracellular guidance cues, membrane-bound receptors, intracellular signaling molecules, proteins associated with microtubules, and the components of microtubules themselves.  相似文献   

5.
Cell adhesion molecules (CAMs) are not just an inert glue that mediates static cell-cell and cell-extracellular matrix (ECM) adhesion; instead, their adhesivity is dynamically controlled to enable a cell to migrate through complex environmental situations. Furthermore, cell migration requires distinct levels of CAM adhesivity in various subcellular regions. Recent studies on L1, a CAM in the immunoglobulin superfamily, demonstrate that cell adhesion can be spatially regulated by the polarized internalization and recycling of CAMs. This article examines the molecular mechanism of axon growth, with a particular focus on the role of L1 trafficking in the polarized adhesion and migration of neuronal growth cones.  相似文献   

6.
Calcium signaling is known to be important for regulating the guidance of migrating neurons, yet the molecular mechanisms underlying this process are not well understood. We have found that two different voltage-gated calcium channels are important for the accurate guidance of postembryonic neuronal migrations in the nematode Caenorhabditis elegans. In mutants carrying loss-of-function alleles of the calcium channel gene unc-2, the touch receptor neuron AVM and the interneuron SDQR often migrated inappropriately, leading to misplacement of their cell bodies. However, the AVM neurons in unc-2 mutant animals extended axons in a wild-type pattern, suggesting that the UNC-2 calcium channel specifically directs migration of the neuronal cell body and is not required for axonal pathfinding. In contrast, mutations in egl-19, which affect a different voltage-gated calcium channel, affected the migration of the AVM and SDQR bodies, as well as the guidance of the AVM axon. Thus, cell migration and axonal pathfinding in the AVM neurons appear to involve distinct calcium channel subtypes. Mutants defective in the unc-43/CaM kinase gene showed a defect in SDQR and AVM positioning that resembled that of unc-2 mutants; thus, CaM kinase may function as an effector of the UNC-2-mediated calcium influx in guiding cell migration.  相似文献   

7.
Group I p21-activated kinases are a family of key effectors of Rac1 and Cdc42 and they regulate many aspects of cellular function, such as cytoskeleton dynamics, cell movement and cell migration, cell proliferation and differentiation, and gene expression. The three genes PAK1/2/3 are expressed in brain and recent evidence indicates their crucial roles in neuronal cell fate, in axonal guidance and neuronal polarisation, and in neuronal migration. Moreover they are implicated in neurodegenerative diseases and play an important role in synaptic plasticity, with PAK3 being specifically involved in mental retardation. The main goal of this review is to describe the molecular mechanisms that govern the different functions of group I PAK in neuronal signalling and to discuss the specific functions of each isoform.  相似文献   

8.
Cell adhesion molecules (CAMs) are not just an inert glue that mediates static cell-cell and cell-extracellular matrix (ECM) adhesion; instead, their adhesivity is dynamically controlled to enable a cell to migrate through complex environmental situations. Furthermore, cell migration requires distinct levels of CAM adhesivity in various subcellular regions. Recent studies on L1, a CAM in the immunoglobulin superfamily, demonstrate that cell adhesion can be spatially regulated by the polarized internalization and recycling of CAMs. This article examines the molecular mechanism of axon growth, with a particular focus on the role of L1 trafficking in the polarized adhesion and migration of neuronal growth cones.  相似文献   

9.
Neurons are examples of specialized cells that evolved the extraordinary ability to transmit electrochemical information in complex networks of interconnected cells. During their development, neurons undergo precisely regulated processes that define their lineage, positioning, morphogenesis and pattern of activity. The events leading to the establishment of functional neuronal networks follow a number of key steps, including asymmetric cell division from neuronal precursors, migration, establishment of polarity, neurite outgrowth and synaptogenesis. Synapsins are a family of abundant neuronal phosphoproteins that have been extensively studied for their role in the regulation of neurotransmission in presynaptic terminals. Beside their implication in the homeostasis of adult cells, synapsins influence the development of young neurons, interacting with cytoskeletal and vesicular components and regulating their dynamics. Although the exact molecular mechanisms determining synapsin function in neuronal development are still largely unknown, in this review we summarize the most important literature on the subject, providing a conceptual framework for the progress of present and future research.  相似文献   

10.
The proper development and functioning of the vertebrate brain depends on the correct positioning of neuronal precursors which is achieved by the widespread and far-ranging migration of cells from their birthplaces. The vast majority of neuronal precursors use cellular substrates for their migration. Until very recently, it was assumed that these cellular substrates were either glial (glia-mediated or gliophilic migration) or neuronal (neuron-mediated or neurophilic migration) in nature. The widely studied examples of gliophilic and neurophilic migrations in the developing brain are displacement of neuronal precursors along the processes of radial glia in the developing cortex and migration of neurons expressing gonadotropin-releasing hormone (GnRH) along the vomeronasal axons, respectively. Recent data indicate, however, that neuronal precursors might also use blood vessels as a physical substrate for their migration. The vasculature-guided (vasophilic) migration of neuronal precursors has been observed not only under normal conditions, in the healthy brain, but also following strokes. The purpose of this review is to highlight emerging principles and delineate putative mechanisms of vasculature-guided neuronal migration under both normal and pathological conditions.  相似文献   

11.
ABSTRACT

Cellular motility is a fundamental process essential for embryonic development, wound healing, immune responses, and tissues development. Cells are mostly moving by crawling on external, or inside, substrates which can differ in their surface composition, geometry, and dimensionality. Cells can adopt different migration phenotypes, e.g., bleb-based and protrusion-based, depending on myosin contractility, surface adhesion, and cell confinement. In the few past decades, research on cell motility has focused on uncovering the major molecular players and their order of events. Despite major progresses, our ability to infer on the collective behavior from the molecular properties remains a major challenge, especially because cell migration integrates numerous chemical and mechanical processes that are coupled via feedbacks that span over large range of time and length scales. For this reason, reconstituted model systems were developed. These systems allow for full control of the molecular constituents and various system parameters, thereby providing insight into their individual roles and functions. In this review we describe the various reconstituted model systems that were developed in the past decades. Because of the multiple steps involved in cell motility and the complexity of the overall process, most of the model systems focus on very specific aspects of the individual steps of cell motility. Here we describe the main advancement in cell motility reconstitution and discuss the main challenges toward the realization of a synthetic motile cell.  相似文献   

12.
13.
Rho GTPases are small GTP binding proteins belonging to the Ras superfamily which act as molecular switches that regulate many cellular function including cell morphology, cell to cell interaction, cell migration and adhesion. In neuronal cells, Rho GTPases have been proposed to regulate neuronal development and synaptic plasticity. However, the role of Rho GTPases in neurosecretion is poorly documented. In this review, we discuss data that highlight the importance of Rho GTPases and their regulators into the control of neurotransmitter and hormone release in neurons and neuroendocrine cells, respectively.  相似文献   

14.
The formation of the cerebral cortex requires migration of billions of cells from their birth position to their final destination. A motile cell must have internal polarity in order to move in a specified direction. Locomotory polarity requires the coordinated polymerization of cytoskeletal elements such as microtubules and actin combined with regulated activities of the associated molecular motors. This review is focused on migrating neurons in the developing cerebral cortex, which need to attain internal polarity in order to reach their proper target. The position and dynamics of the centrosome plays an important function in this directed motility. We highlight recent interesting findings connecting polarity proteins with neuronal migration events regulated by the microtubule-associated molecular motor, cytoplasmic dynein.  相似文献   

15.
During the development of mammalian cortex, late neurons generated by neuronal progenitors bypass earlier-born neurons and migrate to reach upper layers of cortical plate in an inner-to-outer fashion. Filamentous-actin (F-actin) can regulate neuronal migration, whereas Coactosin-like protein 1 (Cotl1) modulates F-actin. Lys 75 and Arg 73 of Cotl1 play an important role in binding F-actin; when they are mutated to Glu, Cotl1 cannot bind F-actin, called as a non-actin-binding mutant (ABM). The Lys 131 site of Cotl1, the 5-Lipoxygenase (5LO) binding site, is spatially close to Lys 75, leading to impact the binding of Cotl1 to F-actin. When Lys 131 is mutated to Ala (K131A), Cotl1 cannot bind to 5LO. We have demonstrated that overexpression of Cotl1 inhibited neuronal migration and increased the length of neuronal leading processes. To further explore cellular and molecular mechanisms of Cotl1’s effect on neuronal migration, we constructed two mutant vectors—Cotl1-ABM and Cotl1-K131A and studied using in utero electroporation and primary neuronal culture technique. Results indicated that in the Cotl1-ABM group, the neuronal migration and length of the leading process both recovered as control neurons at the postnatal day 1 (P1), while in the Cotl1-K131A group, numerous neurons remained in deeper layers of cortical plate or intermediate zone. However, at P7, most Cotl1-K131A transfected neurons reached their destination. Moreover, we found that overexpression of Cotl1 inhibited the proliferation and mitotic activity of NPs. Therefore, These results demonstrated that Cotl1 played an important role in mouse neocortical development.  相似文献   

16.
Neurogenesis is the process in which neurons are generated from neural stem/progenitor cells (NSCs/NPCs). It involves the proliferation and neuronal fate specification/differentiation of NSCs, as well as migration, maturation and functional integration of the neuronal progeny into neuronal network. NSCs exhibit the two essential properties of stem cells: self-renewal and multipotency. Contrary to previous dogma that neurogenesis happens only during development, it is generally accepted now that neurogenesis can take place throughout life in mammalian brains. This raises a new therapeutic potential of applying stem cell therapy for stroke, neurodegenerative diseases and other diseases. However, the maintenance and differentiation of NSCs/NPCs are tightly controlled by the extremely intricate molecular networks. Uncovering the underlying mechanisms that drive the differentiation, migration and maturation of specific neuronal lineages for use in regenerative medicine is, therefore, crucial for the application of stem cell for clinical therapy as well as for providing insight into the mechanisms of human neurogenesis. Here, we focus on the role of bone morphogenetic protein (BMP) signaling in NSCs during mammalian brain development.  相似文献   

17.
Repairing brain after stroke: a review on post-ischemic neurogenesis   总被引:8,自引:0,他引:8  
Stroke is devastating as currently no therapies are available that can prevent stroke-induced neurological dysfunction in humans. With the recent observations that acute insults to adult brain stimulate new neuronal formation in various species of animals, optimism is building for a possible regeneration of stroke-damaged brain. This article reviewed the advances in the understanding of the molecular mechanisms of the various steps of neurogenesis with an emphasis on the endogenous mediators and exogenous promoters of neural progenitor proliferation, migration and survival in the post-ischemic adult brain.  相似文献   

18.
Neuronal migration is a fundamental component of brain development whose failure is associated with various neurological and psychiatric disorders. Reelin is essential for the stereotypical inside-out sequential lamination of the neocortex, but the molecular mechanisms of its action still remain unclear. Here we show that regulation of Notch activity plays an important part in Reelin-signal-dependent neuronal migration. We found that Reelin-deficient mice have reduced levels of the cleaved form of Notch intracellular domain (Notch ICD) and that loss of Notch signaling in migrating neurons results in migration and morphology defects. Further, overexpression of Notch ICD mitigates the laminar and morphological abnormalities of migrating neurons in Reeler. Finally, our in vitro biochemical studies show that Reelin signaling inhibits Notch ICD degradation via Dab1. Together, our results indicate that neuronal migration in the developing cerebral cortex requires a Reelin-Notch interaction.  相似文献   

19.
The migration of cerebellar rhombic lip derivatives   总被引:4,自引:0,他引:4  
We have used cell labelling, co-culture and time-lapse confocal microscopy to investigate tangential neuronal migration from the rhombic lip. Cerebellar rhombic lip derivatives demonstrate a temporal organisation with respect to their morphology and response to migration cues. Early born cells, which migrate into ventral rhombomere 1, have a single long leading process that turns at the midline and becomes an axon. Later born granule cell precursors also migrate ventrally but halt at the lateral edge of the cerebellum, correlating with a loss of sensitivity to netrin 1 and expression of Robo2. The rhombic lip and ventral midline express Slit2 and both early and late migrants are repelled by sources of Slit2 in co-culture. These studies reveal an intimate relationship between birthdate, response to migration cues and neuronal fate in an identified population of migratory cells. The use of axons in navigating cell movement suggests that tangential migration is an elaboration of the normal process of axon extension.  相似文献   

20.
DCX, a new mediator of the JNK pathway   总被引:13,自引:0,他引:13       下载免费PDF全文
Mutations in the X-linked gene DCX result in lissencephaly in males, and abnormal neuronal positioning in females, suggesting a role for this gene product during neuronal migration. In spite of several known protein interactions, the involvement of DCX in a signaling pathway is still elusive. Here we demonstrate that DCX is a substrate of JNK and interacts with both c-Jun N-terminal kinase (JNK) and JNK interacting protein (JIP). The localization of this signaling module in the developing brain suggests its functionality in migrating neurons. The localization of DCX at neurite tips is determined by its interaction with JIP and by the interaction of the latter with kinesin. DCX is phosphorylated by JNK in growth cones. DCX mutated in sites phosphorylated by JNK affected neurite outgrowth, and the velocity and relative pause time of migrating neurons. We hypothesize that during neuronal migration, there is a need to regulate molecular motors that are working in the cell in opposite directions: kinesin (a plus-end directed molecular motor) versus dynein (a minus-end directed molecular motor).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号