首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of a recently identified K+ATP channel in preventing H2O2 formation was examined in isolated pea stem mitochondria. The succinate-dependent H2O2 formation was progressively inhibited, when mitochondria were resuspended in media containing increasing concentration of KCl (from 0.05 to 0.15  M ). This inhibition was linked to a partial dissipation of the transmembrane electrical potential (ΔΨ) induced by KCl. Conversely, the malate plus glutamate-dependent H2O2 formation was not influenced. The succinate-sustained H2O2 generation was also unaffected by nigericin (a H+/K+ exchanger), but completely prevented by valinomycin (a K+ ionophore). In addition, cyclosporin A (a K+ATP channel opener) inhibited this H2O2 formation, while ATP (an inhibitor of the channel opening) slightly increased it. The inhibitory effect of ATP was strongly stimulated in the presence of atractylate (an inhibitor of the adenine nucleotide translocase), thus suggesting that the receptor for ATP on the K+ channel faces the intermembrane space. Finally, the succinate-dependent H2O2 formation was partially prevented by phenylarsine oxide (a thiol oxidant).  相似文献   

2.
Passive fluxes of K+ (86Rb) into roots of sunflower ( Helianthus annuus L. cv. Uniflorus) were determined at low K+ concentration (0.1 and 1.0 mM K+) in the ambient solution. Metabolic uptake of K+ was inhibited by 10−4M 2,4-dinitrophenol (DNP). K+ (86Rb) fluxes were studied both continuously and by time differentiation of uptake. In high K+ roots passive uptake was directly proportional to the K+ concentration of the uptake solution, indicating free diffusion. This assumption was supported by the fact that passive Rb+ uptake was not affected by high K+ concentrations. In low K+ roots the passive uptake of K+ was higher than in high K+ roots. The increase was possibly due to carrier-mediated K+ transport. As K+ effluxes were quantitatively similar to influxes, it is suggested that passive K+ fluxes represent exchange diffusion without relation to net K+ transport.  相似文献   

3.
Abstract: Hypoxia (5% O2) enhanced catecholamine release in cultured rat adrenal chromaffin cells. Also, the intracellular free Ca2+ concentration ([Ca2+]i) increased within 3 min in ∼50% of the chromaffin cells under hypoxic stimulation. The increase depended on the presence of extracellular Ca2+. Nifedipine and ω-conotoxin decreased the population of the cells that showed the hypoxia-induced [Ca2+]i increase, showing that the Ca2+ influx was attributable to L- and N-type voltage-dependent Ca2+ channels. The membrane potential was depolarized during the perfusion with the hypoxic solution and returned to the basal level following the change to the normoxic solution (20% O2). Membrane resistance increased twofold under the hypoxic condition. The current-voltage relationship showed a hypoxia-induced decrease in the outward K+ current. Among the K+ channel openers tested, cromakalim and levcromakalim, both of which interact with ATP-sensitive K+ channels, inhibited the hypoxia-induced [Ca2+]i increase and catecholamine release. The inhibitory effects of cromakalim and levcromakalim were reversed by glibenclamide and tolbutamide, potent blockers of ATP-sensitive K+ channels. These results suggest that some fractions of adrenal chromaffin cells are reactive to hypoxia and that K+ channels sensitive to cromakalim and glibenclamide might have a crucial role in hypoxia-induced responses. Adrenal chromaffin cells could thus be a useful model for the study of oxygen-sensing mechanisms.  相似文献   

4.
Four-week-old sunflower plants ( Helianthus annuus L. cv. Halcón), grown in different nutrient solutions, were used to study the effects of gibberellic acid (GA3) on K+ (Rb+) uptake by roots or transport to the shoot. Gibberellic acid application to the nutrient solution did not affect the exudation process of excised roots. When GA3 was sprayed on leaves 2 to 6 days before excising the roots, the rate of exudation and the K+ flux increased. When the exudation study was done keeping the roots in a nutrient solution in which Rb+ replaced K+, the GA3 effects were evident also on Rb+ uptake and transport. In intact plants, GA3 increased the Rb+ transported to the shoot but did not affect Rb+ accumulation in the root. It is suggested that these GA3 effects can be explained if it is assumed that GA3 acts on the transport of ions to the xylem vessels.  相似文献   

5.
Young sunflower plants ( Helianthus annuus L. cv. Halcón), grown in nutrient solution at two K+ levels (0.25 and 2.5 m M ) were used to study the effect of K+ content in the root on uptake and transport of K+ to the exuding stream of decapitated plants. Roots of plants grown in low K+ gave higher exudation flux, higher K+ concentration in exudate and higher K+ flux than high K+ roots. After 6 h of uptake the K+ flux in low K+ roots was about three times that in high K+ roots. When the roots were kept in a nutrient solution in which Rb+ replaced K+, low K+ roots exuded much more Rb+ than K+ after the first 2 h, whereas high K+ roots exuded about similar amounts of K+ and Rb+. In intact plants grown at three different K+ levels (0.1, 1.0 and 10.0 m M ), there was an inverse relationship between the K+ level in the nutrient solution and the Rb+ accumulated in the roots or transported to the shoot. The results suggest that the transport of ions from xylem parenchyma to stele apoplast may be controlled by ions coming down from the shoot in sieve tubes.  相似文献   

6.
The effects of copper (CuCl2) on active and passive Rb+(86Rb+) influx in roots of winter wheat grown in water culture for 1 week were studied. External copper concentrations in the range of 10–500 μ M in the uptake nutrient solution reduced active Rb+ influx by 20–70%, while passive influx was unaffected (ca 10% of the Rb+ influx in the Cu-free solution). At external Rb+ concentrations of up to 1 m M , Cu exposure (50 μ M decreased Vmax to less than half and increased Km to twice the value of the control. Short Cu exposure reduced the K+ concentration in roots of low K+ status. Pretreatment for 5 min in 50 μ M CuCl2 prior to uptake experiments reduced Rb+ influx by 26%. After 60 min pretreatment with Cu, the corresponding reduction was 63%. Cu in the cultivation solution impeded growth, especially of the roots. The Cu concentration in the roots increased linearly with external Cu concentration (0–100 μ M ) while Cu concentration in the shoots was relatively unchanged. The K+ concentration in both roots and shoots decreased significantly with increased Cu in the cultivation solutions. Possible effects of Cu on membranes and ion transport mechanisms are discussed.  相似文献   

7.
Plants of barley ( Hordeum vulgare L. cv. Salve) were grown with 6.5–35% relative increase of K+ supply per day (RKR) using a special computer-controlled culture unit. After a few days on the culture solution the plants adapted their relative growth rate (RGR) to the rate of nutrient supply. The roots of the plants remained in a low salt status irrespective of the rate of nutrient supply, whereas the concentration of K+ in shoots increased with RKR. Both Vmax and Km for K+(86Rb) influx increased with RKR. It is concluded that with a continuous and stable K+ stress, the K+ uptake system is adjusted to provide an effective K+ uptake at each given RKR. Allosteric regulation of K+ influx does not occur and efflux of K+ is very small.  相似文献   

8.
The uptake of K+ ion was studied in the roots of wheat ( Triuicum aestivum L. cv. GK Szeged) and cucumber ( Cucumis sativus L. cv. Budai csemege) seedlings grown in nutrient solution under nitrogen and sulfate stress conditions. Seedlings pretreated with 1 or 10 m M NaNO3, absorbed more K+ than those treated with 0.1 m M NaNO3. However, the posteffect of NaNO3 was considerably influenced by the Na2SO4, treatment. The results suggest that, at least partly, a feed-back regulation of K+ uptake may occur. However, due to the high Na+ contents of the roots, a Na+ effect in this process cannot be excluded. The growth and dry matter yields of the roots and shoots were strongly influenced by the SO2−/4 and NO/3 supply of the plants. Appreciable differences were experienced between wheat and cucumber seedlings. The optimum SO2−/4 concentration of the growth solution for maximal growth varied considerably between the species, and was also different for the roots and the shoots in a given species.  相似文献   

9.
Influence of soil O2 and CO2 on root respiration for Agave deserti   总被引:5,自引:0,他引:5  
Respiration measured as CO2 efflux was determined at various soil O2 and CO2 concentrations for individual, attached roots of a succulent perennial from the Sonoran Desert, Agave deserti Engelm. The respiration rate increased with increasing O2 concentration up to about 16% O2 for established roots and 5% O2 for rain roots (fine branch roots on established roots induced by wetting of the soil) and then remained fairly constant up to 21% O2. When O2 was decreased from 21 to 0%, the respiration rates were similar to those obtained with increasing O2 concentration. The CO2 concentration in the root zone, which for the shallow-rooted A. deserti in the field was about 1 000 μl l-1, did not affect root respiration at concentrations up to 2 000 μl l-1, but higher concentrations reduced it, respiration being abolished at 20 000 μl l-1 (2%) CO2 for both established and rain roots. Upon lowering CO2 to 1 000 μl l-1 after exposure to concentrations up to 10000 μl l-1 CO2, inhibition of respiration was reversible. Uptake of the vital stain neutral red by root cortical cells was reduced to zero, indicating cell death, in about 4 h at 2% CO2, substantiating the detrimental effects of high soil CO2 concentrations on roots of A. deserti . This CO2 response may explain why roots of desert succulents tend to occur in porous, well-aerated soils.  相似文献   

10.
Seedlings of spring wheat ( Triticum aestivum L. cv. Svenno) were cultivated at 20°C in continuous light or darkness with the roots in nutrient solutions for six days. The plants were starved for K+ during different periods of time to produce plants with various K+ status. In one cultivation light-grown plants were pretreated in darkness, and vice versa, before the uptake experiment. In all experiments, roots were put in a complete nutrient medium containing 2.0 m M K+ radiolabelled with 86Rb. The uptake time was varied (5, 60 or 120 min).
The K+ concentration in the roots, [K+]root, increased during the course of the uptake experiments, especially in light and at initially low [K+]root, At the same time K+ (86Rb) influx in the roots decreased. The simoidal relationship obtained between K+ (86Rb) influx and [K+]root was affected by these changes, and Hill plots gave various Hill coefficients, nH, depending on the duration of the uptake experiments. nH from three apparently straight line segments of the same plot, in different [K+]root - intervals, indicated a falling degree of interaction between the binding sites as [K+]root increased. For the dark-grown plants negative cooperativity could not be demonstrated.  相似文献   

11.
The effects of external K+, H+ and Ca2+ concentrations on the intracellular K+ concentration, [K+]i, and the K+-ATPase activity in 2-day-old mung bean roots [ Vigna mungo (L.) Hepper] were investigated. [K+]i, in mung bean roots was markedly decreased by external K+ or H+ stress and did not recover the initial value even after the stress was removed. This decrease in [K+]i, gradually disappeared with the addition of (Ca2+. Ca2+ may offset the harmful effects of ion stress. Ca2+ seems to have two effects on K+ transport; control of K+ permeability and activation of K+ uptake, although K+-ATPase activity was inhibited by Ca2+ concentrations higher than 10–4 M. We suggest that Ca2+ activates K+ uptake indirectly through the acidification of the cytoplasm.  相似文献   

12.
Two cultivars of wheat (Triticum aestivum L. cvs Kadett and WW 20299) were grown for 9 days with 20% relative increase in nutrient supply per day at pH 4.1. Aluminium at 50 μ M retarded the growth of roots more than that of shoots in both cultivars, thus decreasing the root/shoot ratio. The inhibition was largest in WW 20299. With long term Al treatment (9 days), Km for K+(86Rb) influx increased five times in both cultivars and Vmax decreased in WW 20299. Efflux of K+(86Rb) was little affected. When the roots were treated with aluminium for two days, only relative growth rate of roots was retarded, while growth of shoots was unaffected and influx of K+(86Rb) adjusted to the actual K+ demand of the plants. It is concluded that the effects of aluminium on K+ uptake in these wheat cultivars are not primary factors contributing to aluminium sensitivity. However, in soil with Al the demand for a comparatively high concentration of K+ to maintain an adequate K+ uptake rate, in combination with a slow growth rate of the roots, may secondarily lead to K+ deficiency in the plants.  相似文献   

13.
We investigated the cause and effect relationships among ethylene, polyamines, and K+ in barley ( Hordeum vulgare L. cv. Amagi) seedlings. Application of 1-aminocyclopropane-1-carboxylic acid (ACC), a precursor of ethylene, to the growth medium caused a decrease in K+ concentration in roots and an increase in shoots. Addition of ACC induced putrescine accumulation in roots, while spermidine and spermine levels remained unchanged. Exogenous supply of putrescine led to putrescine accumulation and reduced K+ concentration. Application of Co2+, an inhibitor of ethylene biosynthesis, together with ACC, inhibited putrescine accumulation with a decrease in K+ concentration in roots. ACC-treated roots showed K+ uptake capacity equivalent to that of control roots, implying that the majority of K+ is translocated to shoots. These results suggest that ethylene regulates K+ partitioning between roots and shoots through the level of accumulation of putrescine in barley seedlings.  相似文献   

14.
Kinetic studies of a microsomal (Na++ K++ Mg2+)ATPase from sugar beet roots ( Beta vulgaris L. cv. Monohill) show that sucrose influences the MgATPase in different ways depending on the presence of K+ and/or Na+ 1) In the presence of the substrate MgATP and Na+ the effect of sucrose follows simple Michaelis-Menten kinetics. 2) In the presence of substrate together with K+ or (K++ Na+), sucrose has little effect on the ATPase activity. 3) In the presence of Na+, onabain acts as an uncompetitive inhibitor with respect to MgATP. 4) In the presence of K+ or (K++ Na+), the inhibition by ouabain is somewhat depressed and shows non-linearity when 1/v is plotted versus 1/MgATP. 5) Sucrose and Na+ activate in a competitive way, so that a successive increase of the Na+ level decreases the activation by sucrose. Both Km and V-values are thereby changed. 6) The sucrose activation in the presence of Na+ is also influenced by ouabain. It is, therefore, suggested that Na+ may regulate the interference between the Na+/K+ pump and a sucrose sensitive system.  相似文献   

15.
Abstract: Rat brain microsomes were preincubated with S -adenosylmethionine (SAM), MgCl2, and CaCl2, then re-isolated, and the activity of Na+,K+-ATPase determined. SAM inhibited the Na+,K+-ATPase activity compared with microsomes subjected to similar treatment in the absence of SAM. A biphasic inhibitory effect was observed with a 50% decrease at a SAM concentration range of 0.4 μ M -3.2 μ M and a 70% reduction at a concentration range above 100 μ M . Inclusion of either S- adenosylhomocysteine or 3-deazaadenosine in the preincubations prevented the SAM inhibition of Na+,K+-ATPase activity. The inhibition by SAM appeared to be Mg2+- or Ca2+-dependent.  相似文献   

16.
The effects of abscisic acid (ABA) on growth, uptake and translocation of potassium ions, K+,Mg2+-ATPase activity and transpiration were investigated in young wheat ( Triticum aestivum L. cv. Martonvásári-8) plants grown at different K+ supplies. Long-term treatment with ABA (10 μ M ) reduced growth in high-K+ plants, but had less effect under low-K+ conditions. K+(86Rb) uptake was inhibited by about 70 and 40% in low- and high-K+ plants, respectively. The stimulation by K+ of the Mg2+-ATPase activity in the root microsomal fraction was lost with ABA treatment. It is suggested that the inhibitory effect of ABA on K+ uptake may be related to this effects on the K+,Mg2+-ATPase. Translocation of K+ to the shoot was inhibited in low-K+ plants only, and it was not affected in high-K+ plants. In parallel to this, ABA treatment reduced transpiration by about 50% in low-K+ plants, whereas a much smaller effect was seen in high-K+ plants. These observations suggest that the regulation by ABA of the stomatal movements is strongly counteracted by high-K+ status.  相似文献   

17.
The uptake of Cd2+ by excised roots of Tamarix aphylla (L.) Karst, was investigated using roots of hydroponically grown plants. The concentration isotherm of Cd2+ uptake approached saturation with a single phase hyperbola. The time course of Cd2+ absorption was generally hyperbolic, with an apparent linear section between 2 and 30 min. The temperature response varied among different temperature ranges: a Q10 of approximately 1.9 was found between 10 and 20°C, but at higher and lower temperatures Q10 values were only 1–1.3. It is concluded that Cd2+ uptake by the roots of T. aphylla at moderate temperatures is mediated by a metabolic process, combined with a passive influx component that becomes dominant at higher and lower temperatures. The distribution of the absorption sites for Cd2+ and for Fe2+ along the roots of T. aphylla was also investigated. Cadmium uptake showed no apparent pattern, whereas a distinct pattern of uptake was observed for Fe2+, with the highest rates at the root tip. Iron absorption was stimulated in the presence of nutrients, whereas that of Cd2+ was inhibited. Adsorption and absorption of Cd2+ were strongly inhibited by Ca2+ and by Mg2+, but were unaffected by Fe2+. Monovalent ions (Na+, K+, Li+) also reduced Cd2+ absorption, but to a lesser extent than Ca2+ and Mg2+. Uptake of Cd+ was reduced at lower pH of the medium. The importance of interfering cations for Cd2+ tolerance of T. aphylla is emphasized.  相似文献   

18.
The K+ (86Rb+) uptake and the growth of intact wheat seedlings ( Triticum aestivum L. cv. GK Szeged) grown in 0.5 m M CaCl2 solution and of seedlings grown on wet filter paper in Petri dishes were compared under different experimental conditions. Aeroponic (AP) and hydroponic (HP) conditions brought about striking differences in the growth of the roots, whereas the shoot growth was not influenced. The dry weight of the roots was higher for the AP plants than for the HP plants. The AP grown seedlings exhibit a low rate of K+ uptake, which seems to be a passive process. The effect of 2, 4–dinitrophenol (2, 4–DNP) clearly shows the absence of an active component of the K+ uptake in roots grown in air with a high relative humidity. In plants grown under AP conditions the effect of Ca2+ on the K+ uptake is unfavourable, i.e. there is an inhibition (negative Viets effect). Results relating to the effect of 2,4–DNP suggest that the "negative Viets effect" is a feature of the passive K+ uptake. The data suggest that the AP growth conditions play a very important role in the induction and/or development of the ion transport system(s), which becomes impaired under the AP conditions.  相似文献   

19.
To clarify the reaction mechanism of a (Na++ K++ Mg2+)ATPase activity in sugar beet roots ( Beta vulgaris L. cv. Monohill) phloridzin, oligomycin (inhibitors of animal ATPases) and metavanadate (NH4VO3) have been used. Kinetic studies showed that: 1) Phloridzin inhibition is uncompetitive with respect to MgATP and not influenced by Na+ or K+. 2) This inhibition is only found in preparations made in the absence of sucrose. 3) Oligomycin and vanadate inhibit the ATPase in different ways. Omission of sucrose from the preparation medium favours vanadate inhibition but suppresses oligomycin inhibition. 4) The kinetic pattern of the Na+ activation of the ATPase differs in preparations made in the absence and presence of sucrose, but that of K+ activation is the same. – These results indicate that inclusion as against omission of sucrose from the preparation medium causes a conformational change of the membrane fragments/vesicles, which then expose different surfaces to the surrounding medium.  相似文献   

20.
Purified, right side-out plasmalemma vesicles were isolated from 7-day-old roots of dark-grown wheat ( Triticum aestivum L. cv. Drabant) by aqueous polymer two-phase partitioning. The oxygen consumption by these vesicles at pH 6.5 in the presence of 1 m M NADH [12–29 nmol (mg protein)−1min−1] was 66% inhibited by 1 m M KCN and ca 40% by 1 m M EDTA. It was unaffected by rotenone, antimycin A, carbonyl cyanide trifluoromethoxyphenylhydrazone (FCCP), mersalyl, chlorotetracycline + Ca2+, and EGTA. Salicylhydroxamic acid (SHAM) and its analogue, m -chlorobenzhydroxamic acid, stimulated the rate of oxygen consumption 10–20 fold in the presence of 1 m M NAD(P)H with an apparent Km (SHAM) of ca 40 μ M (with NADH). The dependence of O2 consumption on NADH concentration in the presence of SHAM (2 m M ) was sigmoidal, possibly due to endogenous catalase activity, and half-maximal rate was obtained at 1.5 m M . In the absence of SHAM the rate increased with increasing acidity and no pH optimum was detectable between pH 4.5 and 8.5. In the presence of SHAM an optimum was observed at pH 6.5 and 0.8 mol of H2O2 was produced for every 1 mol O2 consumed. Endogenous catalase converted this H2O2 to O2 and after complete conversion the stoichiometry was 2 mol NADH consumed for every mol O3. SHAM was not consumed in the reaction. The possible involvement of a cytochrome P-450/420 system is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号