首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Replication and Control of Circular Bacterial Plasmids   总被引:26,自引:0,他引:26       下载免费PDF全文
An essential feature of bacterial plasmids is their ability to replicate as autonomous genetic elements in a controlled way within the host. Therefore, they can be used to explore the mechanisms involved in DNA replication and to analyze the different strategies that couple DNA replication to other critical events in the cell cycle. In this review, we focus on replication and its control in circular plasmids. Plasmid replication can be conveniently divided into three stages: initiation, elongation, and termination. The inability of DNA polymerases to initiate de novo replication makes necessary the independent generation of a primer. This is solved, in circular plasmids, by two main strategies: (i) opening of the strands followed by RNA priming (theta and strand displacement replication) or (ii) cleavage of one of the DNA strands to generate a 3′-OH end (rolling-circle replication). Initiation is catalyzed most frequently by one or a few plasmid-encoded initiation proteins that recognize plasmid-specific DNA sequences and determine the point from which replication starts (the origin of replication). In some cases, these proteins also participate directly in the generation of the primer. These initiators can also play the role of pilot proteins that guide the assembly of the host replisome at the plasmid origin. Elongation of plasmid replication is carried out basically by DNA polymerase III holoenzyme (and, in some cases, by DNA polymerase I at an early stage), with the participation of other host proteins that form the replisome. Termination of replication has specific requirements and implications for reinitiation, studies of which have started. The initiation stage plays an additional role: it is the stage at which mechanisms controlling replication operate. The objective of this control is to maintain a fixed concentration of plasmid molecules in a growing bacterial population (duplication of the plasmid pool paced with duplication of the bacterial population). The molecules involved directly in this control can be (i) RNA (antisense RNA), (ii) DNA sequences (iterons), or (iii) antisense RNA and proteins acting in concert. The control elements maintain an average frequency of one plasmid replication per plasmid copy per cell cycle and can “sense” and correct deviations from this average. Most of the current knowledge on plasmid replication and its control is based on the results of analyses performed with pure cultures under steady-state growth conditions. This knowledge sets important parameters needed to understand the maintenance of these genetic elements in mixed populations and under environmental conditions.  相似文献   

5.
6.
The pcnB gene product of Escherchia coli is required for copy number maintenance of plasmids related to ColE1 and also for that of the IncFII plasmid R1. Because PcnB is similar to the tRNA-binding protein tRNA nucleotidyltransferase, we have suggested that the protein would be required only for processes in which an RNA is a prominent regulatory component. This appears to be so; strains deleted for pcnB, although defective in ColE1 and R1 plasmid maintenance, maintain the iteron-regulated plasmids F and P1 normally. We also find that strains deleted for pcnB grow normally, demonstrating that PcnB has no essential cellular role under the conditions tested and suggesting that regulation by antisense RNAs similar to RNAI has no critical role in any essential host process. We confirm by immunological tests that PcnB is likely to be the commercially available enzyme poly(A) polymerase.  相似文献   

7.
Antisense RNA, transcribed intracellularly from constitutive expression cassettes, inhibits the replication of the human immunodeficiency virus type 1 (HIV-1) as demonstrated by a quantitative microinjection assay in human SW480 cells. Infectious proviral HIV-1 DNA was co-microinjected together with a fivefold molar excess of plasmids expressing antisense RNA complementary to a set of ten different HIV-1 target regions. The most inhibitory antisense RNA expression plasmids were targeted against a 1 kb region within the gag open reading frame and against a 562 base region containing the coding sequences for the regulatory viral proteins tat and rev. Experimental evidence is presented that the antisense principle is the inhibitory mechanism in this assay system.  相似文献   

8.
Translational control by antisense RNA in control of plasmid replication   总被引:3,自引:0,他引:3  
K Nordstr?m  E G Wagner  C Persson  P Blomberg  M Ohman 《Gene》1988,72(1-2):237-240
Control of replication of plasmids involves two processes: measurement of the copy number of the plasmid and adjustment of the replication frequency accordingly. For both these processes IncFII plasmids use an antisense RNA (CopA RNA) that forms a duplex with the upstream region (CopT) of the mRNA of the rate-limiting RepA protein. The kinetics of duplex formation was measured in vitro for the wild type and for a cop mutant plasmid; the mutant showed a reduction in the second-order rate constant for the formation of the RNA duplex and a similar increase in copy number. Hence, the kinetics of duplex formation and the concentration of CopA RNA determines the copy number of the plasmid.  相似文献   

9.
10.
Chromosomal mutants were isolated in Escherichia coli that altered carotenoid production from transformed carotenoid biosynthesis genes on a pACYC-derived plasmid (pPCB15). The mutations were mapped by sequencing. One group of mutations appeared to affect the cell metabolism without changing the copy number of the carotenoid synthesis plasmid. The other group of mutations either increased or decreased the copy number of the pPCB15 plasmid as determined by real-time PCR. The copy number change in most mutants was likely specific for ColE1-type plasmids for which copy number is controlled by a small antisense RNA. This collection of host strains would be useful for fine tuning expression of proteins and adjusting production of desired molecules without recloning to different vectors.  相似文献   

11.
Xu FF  Gaggero C  Cohen SN 《Plasmid》2002,48(1):49-58
Replication of ColE1-type plasmids is regulated by RNAI, an antisense RNA that interacts with the replication pre-primer, RNAII. Exonucleolytic attack at the 3' end of RNAI is impeded in pcnB mutant bacteria, which lack poly(A) polymerase I-the principal RNA polyadenylase of E. coli; this leads to accumulation of an RNAI decay intermediate (RNAI(-5)) and dramatic reduction of the plasmid copy number. Here, we report that polyadenylation can also affect RNAI-mediated control of plasmid DNA replication by inhibiting interaction of RNAI(-5) with RNAII. We show that mutation of the host pcnB gene profoundly affects the plasmid copy number, even under experimental conditions that limit the effects of polyadenylation on RNAI(-5) decay. Moreover, poly(A) tails interfere with RNAI/RNAII interaction in vitro without producing any detectable alteration of RNAI secondary structure. Our results establish the existence of a previously undetected mechanism by which RNA polyadenylation can control plasmid copy number.  相似文献   

12.
13.
14.
15.
16.
The Argonaute proteins play essential roles in development and cellular metabolism in many organisms, including plants, flies, worms, and mammals. Whereas in organisms such as Caenorhabditis elegans and Arabidopsis thaliana, creation of Argonaute mutant strains allowed the study of their biological functions, in mammals the application of this approach is limited by its difficulty and in the specific case of Ago2 gene, by the lethality of such mutation. Hence, in human cells, functional studies of Ago proteins relied on phenotypic suppression using small interfering RNA (siRNA) which involves Ago proteins and the RNA interference mechanism. This bears the danger of undesired or unknown interference effects which may lead to misleading results. Thus, alternative methods acting by different regulatory mechanisms would be advantageous in order to exclude unspecific effects. The knockdown may be achieved by using specific antisense oligonucleotides (asONs) which act via an RNase H-dependent mechanism, not thought to interfere with processes in which Agos are involved. Different functional observations in the use of siRNA versus asONs indicate the relevance of this assumption. We developed asONs specific for the four human Agos (hAgos) and compared their activities with those obtained by siRNA. We confirm that hAgo2 is involved in microRNA (miRNA)- and in siRNA-mediated silencing pathways, while the other hAgos play a role only in miRNA-based gene regulation. Using combinations of asONs we found that the simultaneous down-regulation of hAgo1, hAgo2, and hAgo4 led to the strongest decrease in miRNA activity, indicating a main role of these proteins.  相似文献   

17.
Control of ColE1 plasmid replication by antisense RNA   总被引:12,自引:0,他引:12  
One of the two major classes of regulatory strategies that control plasmid copy number involves recognition via base pairing between two plasmid-encoded complementary RNAs. The detailed analysis of this control circuitry has revealed some features of regulatory mechanisms based on RNA-RNA interaction that distinguish them from those based on protein-nucleic acid interaction. These features provide a framework with which to understand other regulatory mechanisms based on RNA-RNA interaction, and will aid in the design of efficient artificial antisense RNA systems.  相似文献   

18.
The plasmids pUC18 and pUC19 are pBR322 derivatives that replicate at a copy number several fold higher than the parent during growth of Escherichia coli at 37 degrees C. We show here that the high copy number of pUC plasmids results from a single point mutation in the replication primer, RNA II, and that the phenotypic effects of this mutation can be suppressed by the Rom (RNA one modulator)/Rop protein or by lowering the growth temperature to 30 degrees C. The mutation's effects are enhanced by cell growth at 42 degrees C, at which copy number is further increased. During normal cell growth, the pUC mutation does not affect the length or function of RNA I, the antisense repressor of plasmid DNA replication, but may, as computer analysis suggests, alter the secondary structure of pUC RNA II. We suggest that the pUC mutation impedes interactions between the repressor and the primer by producing a temperature-dependent alteration of the RNA II conformation. The Rom/Rop protein may either promote normal folding of the mutated RNA II or, alternatively, may enable the interaction of sub-optimally folded RNA II with the repressor.  相似文献   

19.
Knowling S  Morris KV 《Biochimie》2011,93(11):1922-1927
Although control of cellular function has classically been considered the responsibility of proteins, research over the last decade has elucidated many roles for RNA in regulation of not only the proteins that control cellular functions but also for the cellular functions themselves. In parallel to this advancement in knowledge about the regulatory roles of RNA there has been an explosion of knowledge about the role that epigenetics plays in controlling not only long-term cellular fate but also the short-term regulatory control of genes. Of particular interest is the crossover between these two worlds, a world where RNA can act out its part and subsequently elicit chromatin modifications that alter cellular function. Two main categories of RNA are examined here, non-coding RNA and antisense RNA both of which perform vital functions in controlling numerous genes, proteins and RNA itself. As the activities of non-coding and antisense RNA in both normal and aberrant cellular function are elucidated, so does the number of possible targets for pharmacopeic intervention.  相似文献   

20.
Transcription attenuation   总被引:8,自引:0,他引:8  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号