首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
To determine the role of intramitochondrial protein synthesis (PS) and degradation (PD) in contractile activity-induced mitochondrial biogenesis, we evaluated rates of [(35)S]methionine incorporation into protein in isolated rat muscle subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria. Rates of PS ranged from 47 to 125% greater (P < 0.05) in IMF compared with SS mitochondria. Intense, acute in situ contractile activity (10 Hz, 5 min) of fast-twitch gastrocnemius muscle resulted in a 50% decrease in PS (P < 0.05) in SS but not IMF mitochondria. Recovery, or continued contractile activity (55 min), reestablished PS in SS mitochondria. In contrast, PS was not affected in either SS or IMF mitochondria after prolonged (60-min) contractile activity in the presence or absence of a recovery period. PD was not influenced by 5 min of contractile activity in the presence or absence of recovery but was reduced after 60 min of contractions followed by recovery. Chronic stimulation (10 Hz, 3 h/day, 14 days) increased muscle cytochrome-c oxidase activity by 2.2-fold but reduced PS in IMF mitochondria by 29% (P < 0.05; n = 4). PS in SS mitochondria and PD in both subfractions were not changed by chronic stimulation. Thus acute contractile activity exerts differential effects on protein turnover in IMF and SS mitochondria, and it appears that intramitochondrial PS does not limit the extent of chronic contractile activity-induced mitochondrial biogenesis.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
Serum response factor micromanaging cardiogenesis   总被引:3,自引:0,他引:3  
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号