首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recombinant protein PGEk, containing residual of the human epidermal factor (hEGF) bearing DNA binding sequence, retains ability of hEGF to bind with hEGF receptor and to induce cell proliferation was shown. On an example of PGEk complexes with telomeric mimic-oligodeoxyribonucleotide d(TTAGGG)4 and with its thio-analogue we had found such systems can be effectively and selectively internalized by hEGF receptors super expressing cells. The association of this process with a protein/oligonucleotide ratio in complexes was investigated. The intracellular localization of oligonucleotides was explored. We had shown that PGEk not only promotes intensive delivery of oligonucleotides, but also protects them from degradation by nucleases. The oligonucleotides in composition of complexes have considerably more expressed cytotoxic activity in comparison with free oligonucleotides.  相似文献   

2.
A study was made of the complexation of the protein vector PGEk, which transfers nucleic acids into the nuclei of cancer cells, with phosphodiester d(TTAGGG)4 (TMO) and phosphorothioate Sd(TTAGGG)4 (TMS) oligonucleotides, which inhibit telomerase. PGEk (64 amino-acid residues) contains a hydrophobic domain that originates from the human epidermal growth factor (hEGF) and is responsible for the receptor-mediated transfer of PGEk across the cell membrane, and the hydrophilic domain, which is a nuclear localization signal (NLS) and serves to bind DNA and deliver it to the cell nucleus. Experiments were performed in 0.01-M Na-phosphate and 0.1-M NaCl at 37°C. An analysis of the circular dichroism (CD) spectra showed that TMO forms an antiparallel G-quadruplex, while TMS occurs in the form of unfolded strands. The number of PGEk molecules adsorbed on oligonucleotides was estimated from the quenching of PGEk fluorescence and the increase in its polarization upon titration with oligonucleotides. Adsorption isotherms were plotted in Scatchard coordinates. Adsorption of the first two PGEk molecules on TMO and TMS followed a noncooperative mechanism and was characterized by high association constants: K 1(TMO) = (7 ± 1) · 107 M?1 and K 1(TMS) = (3 (± 0.5) · 107 M?1. Further adsorption, up to five or six PGEk molecules per TMO molecule, showed high cooperation and K 2(TMO) = (4.0 ± 1.5) · 106 M?1. Unlike TMO, TMS only weakly bound the third PGEk molecule: K 2(TMS) = (8 ± 2) · 105 M?1. An analysis of the CD spectra showed that PGEk partly unfolded the G-quadruplex formed by TMO and did not have an effect on the single-stranded structure of TMS. The secondary structure of DNA and the number of protein subunits were established for the biologically active complexes PGEk-TMO and PGEk-TMS, which efficiently pass across the membrane of cancer cells and inhibit their proliferation.  相似文献   

3.
The complexation of the new protein vector PGEk--a carrier of nucleic acids into proliferating cells with phosphodiester d(TTAGGG)4 (TMO) and phosphorothioate Sd(TTAGGG)4 (TMS) telomerase inhibitor oligonucleotides was studied. PGEk molecule, consisting of 64 amino acids, is comprising the sequence of the human epidermal growth factor EGFh which is hydrophobic cell targeting moiety serving for receptor-mediated endocytosis and an NLS (nuclear localization signal) which is hydrophilic serving as a DNA-binding and selective nuclear import moiety. Experiments were carried out in 0.01 M Na-phosphate buffer contained 0.1 M NaCl, pH 7.8 at 37 degrees C. CD spectral analysis revealed that TMO molecules folded back into intramolecular antiparallel G-quadruplex while TMS molecules were represented as unstructured thread. The number of adsorbed PGEk molecules were estimated using PGEk intrinsic fluorescence decrease and fluorescence polarization increase of PGEk under oligonucleotide titration. Adsorption isotherms were plotted in Scatchard coordinates. We have shown that adsorption of the first two PGEk molecules on TMO and TMS occurs noncooperatively with the high association constants K1(TMO) = (7 +/- 1) x 10(7) M(-1) and K1(TMS) = (3 +/- 0.5) x 10(7) M(-1), respectively. Further adsorption up to 5-6 PGEk molecules on TMO occurrs cooperatively with still high association constant K2(TMO) = (4.0 +/- 1.5) x 10(6) M(-1). TMS oligonucleotide binds the third PGEk molecule rather weakly, K2(TMS) = (8 +/- 2) x 10(5) M(-1). CD spectral analysis revealed that G-quadruplex structure formed by TMO have undergone a partial unfolding by binding of PGEk molecules while single-stranded structure formed by TMS was not affected by binding PGEk. Thus, the tertiary structure of DNA and the number of adsorbed PGEk molecules formed biologically active compounds PGEk: TMO and PGEk: TMS were defined, which are able to penetrate through the membrane of proliferating cells and to suppress their growth.  相似文献   

4.
We have previously described nanocomposites containing conjugates or complexes of native oligodeoxyribonucleotides with poly-L-lysine and TiO2 nanoparticles. We have shown that these nanocomposites efficiently suppressed influenza A virus reproduction in MDCK cells. Here, we have synthesized previously undescribed nanocomposites that consist of TiO2 nanoparticles and polylysine conjugates with oligonucleotides that contain phosphoryl guanidine or phosphorothioate internucleotide groups. These nanocomposites have been shown to exhibit antiviral activity in MDCK cells infected with H5N1 influenza A virus. The nanocomposites containing phosphorothioate oligonucleotides inhibited virus replication ~130-fold. More potent inhibition, i.e., ~5000-fold or ~4600-fold, has been demonstrated by nanocomposites that contain phosphoryl guanidine or phosphodiester oligonucleotides, respectively. Free oligonucleotides have been nearly inactive. The antiviral activity of oligonucleotides of all three types, when delivered by Lipofectamine, has been significantly lower compared to the oligonucleotides delivered in the nanocomposites. In the former case, the phosphoryl guanidine oligonucleotide has appeared to be the most efficient; it has inhibited the virus replication by a factor of 400. The results make it possible to consider phosphoryl guanidine oligonucleotides, along with other oligonucleotide derivatives, as potential antiviral agents against H5N1 avian flu virus.  相似文献   

5.
Methods of noncovalent immobilization of DNA fragments on titanium dioxide nanoparticles (TiO2) were developed to design TiO2~DNA nanocomposites, which were capable of penetrating through cell membranes. TiO2 nanoparticles of different forms (amorphous, anatase, brookite) with enhanced agglomeration stability were synthesized. The particles were characterized by X-ray diffraction, small-angle X-ray scattering, infrared spectroscopy and atomic force microscopy. Three approaches to the preparation of nanocomposites are described: 1) sorption of polylysine-containing oligonucleotides onto TiO2 nanoparticles, 2) the electrostatic binding of oligonucleotides to TiO2 nanoparticles bearing immobilized polylysine, and 3) sorption of oligonucleotides on TiO2 nanoparticles in the presence of cetyltrimethylammonium bromide (cetavlon). All three methods provide an efficient and stable immobilization of DNA fragments on nanoparticles that leads to nanocomposites with a capacity of up to 40 nmol/mg for an oligonucleotide. DNA fragments in nanocomposites were shown to retain their ability to form complementary complexes. It was demonstrated by confocal laser microscopy that the proposed nanocomposites penetrated into cells without transfection agents and other methods of exposure.  相似文献   

6.
The objective of this investigation was to characterize intranuclear accumulation of oligonucleotides and their adducts with non-karyophilic compounds in cultured animal cells and thus to present a model system for nucleic acid-mediated nuclear import. In digitonin-permeabilized cells, nuclear uptake of 3′-FITC-labeled, single-stranded 25-mer oligodeoxyribonucleotides was independent of added cytosolic protein, largely energy-dependent, inhibitable by wheat germ agglutinin but not by N-ethylmaleimide, and a function of their base composition. When coupled to FITC-labeled streptavidin or streptavidin-bovine serum albumin conjugates, the oligonucleotides delivered the proteins to the nuclear interior with rates roughly proportional to their karyophilicity as free molecules. Transport activity was also demonstrated for single-stranded oligoribonucleotides. The transport was energy-dependent, inhibited by GMP-PNP and wheat germ agglutinin, but unaffected by N-ethylmaleimide. Nuclear import of oligo(dG)25/protein adducts needed 3 to 4 oligonucleotide signals per complex and the signal had to be at least 15 nucleotides long. Micro-injection experiments showed that the results obtained with digitonin-permeabilized cells are not artifacts of a quasi-intact cellular system. These data were confirmed by electron microscopy employing complexes of oligodeoxyribonucleotides with streptavidin-peroxidase-bovine serum albumin-1 nm gold. In permeabilized cells, the complexes docked to the cytoplasmic face of the nuclear pore complexes, were translocated through the central pore channel and accumulated in large quantities in the nuclear baskets before they were released into the nucleoplasm. These results demonstrate that nuclear uptake of oligonucleotides and their complexes is an active process mediated by nuclear pore complexes, which, at least regarding its cytoplasmic component, is different from the pathway requiring classical nuclear localization signals.  相似文献   

7.
TiO2-based nanocomposites were prepared to deliver oligonucleotides into cells. The nanocomposites were designed by the immobilization of polylysine-containing oligonucleotides on TiO2-nanoparticles (TiO2·PL-DNA). We showed for the first time the possibility of using the proposed nanocomposites for treatment of hypertensive disease by introducing them into hypertensive ISIAH rats developed as a model of stress-sensitive arterial hypertension. The mRNA of the gene encoding angiotensin I-converting enzyme (ACE1) involved in the synthesis of angiotensin II was chosen as a target. Administration (intraperitoneal injection and inhalation) of the nanocomposite showed a significant (by 20-30 mm Hg) decrease in systolic blood pressure when the nanocomposite contained the ACE1 gene-targeted oligonucleotide. When using the oligonucleotide with a random sequence, no effect was observed. Further development and improvement of the inhalation nanocomposite drug delivery to systemic hypertensive disease treatment promises new possibilities for clinical practice.  相似文献   

8.
Abstract

Design of chemically modified oligonucleotides for regulation of gene expression has attracted considerable attention over the past decades. One actively pursued approach involves antisense or antigene oligonucleotide constructs carrying reactive groups, many of these based on transition metal complexes. The complexes of Fe(II) and Co(II) with phthalocyanines are extremely good catalysts of oxidation of organic compounds with molecular oxygen and hydrogen peroxide. The binding of positively charged Fe(II) and Co(II) phthalocyanines with single- and double-stranded DNA was investigated. It was shown that these phthalocyanines interact with nucleic acids through an outside binding mode. The site-directed modification of single-stranded DNA by O2 and H2O2 in the presence of dimeric complexes of negatively and positively charged Fe(II) and Co(II) phthalocyanines was investigated. These complexes were formed directly on single-stranded DNA through interaction between negatively charged phthalocyanine in conjugate and positively charged phthalocyanine in solution. The resulting oppositely charged phthalocyanine complexes showed significant increase of catalytic activity compared with monomeric forms of phthalocyanines Fe(II) and Co(II). These complexes catalyzed the DNA oxidation with high efficacy and led to direct DNA strand cleavage. It was determined that oxidation of DNA by molecular oxygen catalyzed by complex of Fe(II)-phthalocyanines proceeds with higher rate than in the case of Co(II)-phthalocyanines but the latter led to a greater extent of target DNA modification.  相似文献   

9.
Abstract

We report the synthesis of oligonucleotide conjugates engineered to allow discriminative hybridization at temperatures around physiological. Two types of structural modifications were introduced: 1) internal oligomethylene and oligoethylene glycol spacers, and 2) terminal phenazinium residues. The thermal denaturation behaviour of the complexes formed by these oligonucleotide conjugates with a target sequence is compared to that of natural duplexes. We observed a lowering of the Tm of the duplexes formed by the internal modified oligonucleotides, whilst the terminal phenazinium residues enhance their stability. The effect of the spacers is modulated by their length and hydrophobic or hydrophilic nature. Alkylating substituents, which modify the target DNA strand on hybridization, were introduced on all conjugates, and the target cleavage obtained after piperidine treatment used as a further indicator of hybridization.  相似文献   

10.
A scheme of equilibrium formation of concatamers by two different oligonucleotides has been considered. It is shown that in the general case, the dependence of the concentration of oligonucleotide components on temperature cannot be found in analytical form. Therefore, it is impossible to find the thermodynamic parameters of concatamer formation (ΔH 0, ΔS 0) and melting temperatures by analyzing the profiles of thermal denaturation of oligonucleotide complexes. An algorithm for numerical solution of implicit dependences has been developed. A number of approaches are considered that simplify the analysis of heat denaturation curves for concatamer complexes. It is shown that the dependence of the efficiency of concatamerization on temperature can be described analytically when duplex fragments have close stability and there is no cooperativity at the oligonucleotide junction. In this case, the dependence of melting temperature on thermodynamic parameters and oligonucleotide concentration has the same form as in the case of the duplex structure formed by a pair of non-self-complementary oligonucleotides. The ability of various model approaches to describe the experimental curves of concatamer heat denaturation is evaluated. For concatamer structures used as signal amplifiers in DNA hybridization analysis, a function is introduced that shows the relative contribution of a concatamer of given length to the magnitude of signal amplification. The dependence of the maximum of this function on the concentration of oligonucleotides, the thermodynamic characteristics of their complexes, and temperature has been determined. It is shown by the gel retardation assay that the function of the length distribution of concatamers qualitatively correlates with the experimental dependences.  相似文献   

11.
The potency and specificity of locked nucleic acid (LNA) antisense oligonucleotides was investigated as a function of length and affinity. The oligonucleotides were designed to target apolipoprotein B (apoB) and were investigated both in vitro and in vivo. The high affinity of LNA enabled the design of short antisense oligonucleotides (12- to 13-mers) that possessed high affinity and increased potency both in vitro and in vivo compared to longer oligonucleotides. The short LNA oligonucleotides were more target specific, and they exhibited the same biodistribution and tissue half-life as longer oligonucleotides. Pharmacology studies in both mice and non-human primates were conducted with a 13-mer LNA oligonucleotide against apoB, and the data showed that repeated dosing of the 13-mer at 1–2 mg/kg/week was sufficient to provide a significant and long lasting lowering of non-high-density lipoprotein (non-HDL) cholesterol without increasing serum liver toxicity markers. The data presented here show that oligonucleotide length as a parameter needs to be considered in the design of antisense oligonucleotide and that potent short oligonucleotides with sufficient target affinity can be generated using the LNA chemistry. Conclusively, we present a 13-mer LNA oligonucleotide with therapeutic potential that produce beneficial cholesterol lowering effect in non-human primates.  相似文献   

12.
(CA/TG)n repeats belong to microsatellite DNA. They are the most abundant among the other dinucleotide repeats in mammals, constituting approximately 0.25% of the entire genome. These repeats are recombination hot spots; however, the corresponding mechanisms are yet vague. We postulated that one of the reasons underlying an increase in the recombination frequency in the repetitive region could be the con-formational characteristics of duplex resulting from a specific geometry of base-stacking contacts, providing for initiation of a single-stranded DNA invasion in th e duplex homologous regions. This work for the first time demonstrates a DNA-DNA interaction of the d(CA)10 and d(TG)10 oligonucleotides with linear and circular duplexes containing (CA/TG)31 repeats during their coincubation in a protein-free water solution at 37°C. Using radioactively labeled oligonucleotides, we demonstrated that the duplex—oligonucleotide interaction intensity depended on the molar ratio of duplex-to-oligonucleotide at a duplex concentration of 30 nM. A decrease in this concentration to 3 nM had no effect on the intensity of oligonucleotide invasion. It was demonstrated that over 1% of the duplexes yet much less than 10% were involved in the interaction with oligonucleotides assuming that one oligonucleotide molecule interacted with one molecule of the duplex. Analysis of the kinetics showed that d(CA)10 invasion commenced from the first minute of incubation with duplexes, while d(TG)10 interacted with the duplex even at a higher rate. The role of conformational plasticity of CA/TG repeats in the discovered interaction is discussed as well as its biological significance, in particular, the role of CA microsatellites in the initiation of homologous recombination.  相似文献   

13.
We have used molecular mechanics to study the insertion of the DNA intercalating agent 9-aminoellipticine (9AE) into single and double stranded abasic oligonucleotides containing abasic sites in the aldose or furanose conformations. 9AE-abasic oligonucleotide complexes have been considered with 9AE bound at abasic sites as a covalent complex, a reversible complex or a Schiff base. Results are in good agreement with experimental data available on abasic oligonucleotides (melting temperature measurement, NMR results) and allow an analysis of different possible structures for 9AE-abasic oligonucleotide complexes. Hypotheses concerning the role of 9AE-abasic site complexes in enzymatic inhibition are formulated from these data.  相似文献   

14.
15.
The properties of new chimeric oligodeoxynucleotides made of short sequences (tetramers, pentamers, octamers, and decamers) bridged by hexamethylenediol and hexaethylene glycol linkers have been investigated. These chimeric oligonucleotides showed an improved resistance toward snake venom 3'-phosphodiesterase, with an increased stability when a terminal 3'-3'-internucleotide phosphodiester bond is present. It also has been demonstrated that the hybrid complexes formed by bridged oligonucleotides and a complementary 20-mer RNA are able to elicit the activity of ribonuclease H (RNase H) from Escherichia coli. The substrate properties of chimeric oligonucleotides depend on the length of the oligonucleotide fragments bridged by linkers. Introduction of a nonnucleotide spacer into the native oligonucleotide only slightly hampers the extent of the RNA hydrolysis in the hybrid complexes, whereas a modification of the site of reaction is observed as a possible consequence of the steric disturbance due to the aliphatic linkers. Hence, these new chimeric oligonucleotides, namely, short oligonucleotide fragments bridged by nonnucleotide linkers, demonstrate a favorable combination of exonuclease resistance and high substrate activity toward RNase H. As a consequence, these chimeric oligonucleotides could be proposed as new, promising analogs to be used in the antisense strategy.  相似文献   

16.
Artificial thymidine monomers possessing amide or N-methylamide bridges were designed, synthesized, and introduced into oligonucleotides. UV-melting experiments showed that these oligonucleotides preferred single-stranded RNA (ssRNA) to single-stranded DNA (ssDNA) in duplex formation. Both amide- and N-methylamide-modified oligonucleotides led to a significant increase in the binding affinity to ssRNA by up to +4.7 and +3.7 °C of the Tm value per modification, respectively, compared with natural oligonucleotide. In addition, their oligonucleotides showed high stability against 3′-exonuclease.  相似文献   

17.
Antisense oligonucleotide conjugates, bearing constructs with two imidazole residues, were synthesized using a precursor-based technique employing post-synthetic histamine functionalization of oligonucleotides bearing methoxyoxalamido precursors at the 5′-termini. The conjugates were assessed in terms of their cleavage activities using both biochemical assays and conformational analysis by molecular modelling. The oligonucleotide part of the conjugates was complementary to the T-arm of yeast tRNAPhe (44–60 nt) and was expected to deliver imidazole groups near the fragile sequence C61-ACA-G65 of the tRNA. The conjugates showed ribonuclease activity at neutral pH and physiological temperature resulting in complete cleavage of the target RNA, mainly at the C63–A64 phosphodiester bond. For some constructs, cleavage was completed within 1–2 h under optimal conditions. Molecular modelling was used to determine the preferred orientation(s) of the cleaving group(s) in the complexes of the conjugates with RNA target. Cleaving constructs bearing two imidazole residues were found to be conformationally highly flexible, adopting no preferred specific conformation. No interactions other than complementary base pairing between the conjugates and the target were found to be the factors stabilizing the ‘active’ cleaving conformation(s).  相似文献   

18.
The aim of the present study was to test the biocompatibility and functionality of orthopaedic bone implants with immobilized oligonucleotides serving as anchor stands for rhBMP-2 and rhVEGF-A conjugated with complementary oligonucleotides in an osteoporotic rat model. Al2O3-blasted acid etched Ti6Al4V implants, carrying oligonucleotide anchor strands and hybridized with rhBMP-2 or rhVEGF-A through complementary 31-mer oligonucleotide stands were inserted into the proximal tibia of ovariectomized rats. At the time of surgery (15 weeks after ovariectomy) microCT analysis showed significantly lower bone mineral density compared to non-ovariectomized animals. Bone-implant contact (BIC) and pullout-force were not negatively affected by non-hybridized anchor strands. Twelve weeks after surgery, a significantly higher pullout force was found for BMP-2 hybridized to the anchor strands compared to non-hybridized anchor strands or native samples, and on histomorphometric analysis BIC was highest in the BMP group. Thus, we could show the biocompatibility and in vivo functionality of this modular, self-organizing system for immobilization and subsequent release of BMP-2 in vivo.  相似文献   

19.
20.
Design of antisense oligonucleotides stabilized by locked nucleic acids   总被引:24,自引:14,他引:10  
The design of antisense oligonucleotides containing locked nucleic acids (LNA) was optimized and compared to intensively studied DNA oligonucleotides, phosphorothioates and 2′-O-methyl gapmers. In contradiction to the literature, a stretch of seven or eight DNA monomers in the center of a chimeric DNA/LNA oligonucleotide is necessary for full activation of RNase H to cleave the target RNA. For 2′-O-methyl gapmers a stretch of six DNA monomers is sufficient to recruit RNase H. Compared to the 18mer DNA the oligonucleotides containing LNA have an increased melting temperature of 1.5–4°C per LNA depending on the positions of the modified residues. 2′-O-methyl nucleotides increase the Tm by only <1°C per modification and the Tm of the phosphorothioate is reduced. The efficiency of an oligonucleotide in supporting RNase H cleavage correlates with its affinity for the target RNA, i.e. LNA > 2′-O-methyl > DNA > phosphorothioate. Three LNAs at each end of the oligonucleotide are sufficient to stabilize the oligonucleotide in human serum 10-fold compared to an unmodified oligodeoxynucleotide (from t1/2 = ~1.5 h to t1/2 = ~15 h). These chimeric LNA/DNA oligonucleotides are more stable than isosequential phosphorothioates and 2′-O-methyl gapmers, which have half-lives of 10 and 12 h, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号