首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This case-control study was conducted to examine the association between the CYP1A1 and CYP2D6 genotypes and lung cancer risk among North Indians. The estimated relative risk for lung cancer associated with the CYP1A1 Val/Val allele was 2.68, and was four-fold when cases with small cell lung cancer (SCLC) were considered alone. With regard to the metabolism of debrisoquine, no poor metabolizers were found amongst the subjects. The odds ratio of risk with the heterozygous extensive metabolizer (HEM) genotype was 1.5. However, in the presence of at least a single copy of the variant CYP1A1 MspI allele and the CYP2D6 HEM genotype, the risk was two-fold for squamous cell carcinoma (SQCC). When the CYP1A1 Val/Val and CYP2D6 HEM genotypes were taken together, the risk for SCLC was four-fold. Stratified analysis indicated an interaction between bidi smoking and variant CYP1A1 genotypes on the risk for SQCC and SCLC. Heavy smokers (Brinkman index>400) with Val/Val genotypes were at a very high risk of developing lung cancer (odds ratio 29.30, 95% confidence interval 2.42-355, p=0.008). Heavy smokers with CYP1A1 MspI (CYP1A1*1/2A or CYP1A1*2A/*2A) genotype had a seven-fold risk for SCLC compared with non-smokers. This study is the first to be carried out on a North Indian population, and, although small, suggests that CYP1A1 and CYP2D6 polymorphisms might have a role in determining the risk for lung cancer and should be investigated further.  相似文献   

2.
CYP2A6 gene deletion reduces susceptibility to lung cancer.   总被引:6,自引:0,他引:6  
CYP2A6 is an enzyme with a high ability to activate a nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), to its potent and ultimate carcinogen. In the present study, we investigated the relationship between genetic polymorphism of CYP2A6 and lung cancer risk in a case-control study of Japanese subjects. Genotyping of the CYP2A6 gene in both healthy volunteers and lung cancer patients was conducted. The frequency with which the subjects carried homozygotes of the CYP2A6 gene deletion-type mutation (deletion), which causes lack of the enzyme activity, was lower in the lung cancer patients than in the healthy control subjects. The odds ratio (OR) of the group homozygous for the deletion was significantly lower and calculated to be 0.25 (95% CI; 0.08-0.83) when the OR for the population with homozygotes of the CYP2A6 wild-type gene was defined as 1.00. In the allelic-base analysis, there was also a significant decrease in the OR for the deletion allele. These data suggest that deficient CYP2A6 activity due to genetic polymorphism reduces lung cancer risk.  相似文献   

3.
This case–control study was conducted to examine the association between the CYP1A1 and CYP2D6 genotypes and lung cancer risk among North Indians. The estimated relative risk for lung cancer associated with the CYP1A1 Val/Val allele was 2.68, and was four-fold when cases with small cell lung cancer (SCLC) were considered alone. With regard to the metabolism of debrisoquine, no poor metabolizers were found amongst the subjects. The odds ratio of risk with the heterozygous extensive metabolizer (HEM) genotype was 1.5. However, in the presence of at least a single copy of the variant CYP1A1 MspI allele and the CYP2D6 HEM genotype, the risk was two-fold for squamous cell carcinoma (SQCC). When the CYP1A1 Val/Val and CYP2D6 HEM genotypes were taken together, the risk for SCLC was four-fold. Stratified analysis indicated an interaction between bidi smoking and variant CYP1A1 genotypes on the risk for SQCC and SCLC. Heavy smokers (Brinkman index>400) with Val/Val genotypes were at a very high risk of developing lung cancer (odds ratio 29.30, 95% confidence interval 2.42–355, p=0.008). Heavy smokers with CYP1A1 MspI (CYP1A1*1/2A or CYP1A1*2A/*2A) genotype had a seven-fold risk for SCLC compared with non-smokers. This study is the first to be carried out on a North Indian population, and, although small, suggests that CYP1A1 and CYP2D6 polymorphisms might have a role in determining the risk for lung cancer and should be investigated further.  相似文献   

4.
BACKGROUND: CYP1A1 is a gene involved in the high aryl hydrocarbon hydroxylase -inducible phenotype, which is a genetically-determined variation among individuals that has been associated with lung cancer risk. More specifically, CYP1A1 *2B and *4 polymorphisms have been associated with high susceptibility to lung cancer among cigarette smokers. MATERIALS AND METHODS: DNA was obtained from blood samples and we studied by PCR-RFLP the distribution of CYP1A1 *2B (n=248) and *4 (n=222) polymorphisms in healthy controls and 222 lung cancer patients from a Mexican population. RESULTS: Comparisons between groups showed an increased risk for lung cancer patients of *2B/*2B (18%; OR 7.6; 95% CI 3.0-19.2) and *4/ *4 genotypes (15%; OR 11.45; 95% CI 2.19-59.85) compared to the control group (1% for *2B/ *2B and 4.4% for *4/ *4). A significant association between lung cancer and homozygous *2B/ *2B passive smokers and *4/*4 ever (cigarettes) and passive smokers was also observed (p<0.05). Multivariate analysis revealed an increased risk for the *2B/*2B genotype (OR 6.83), as well as for *4/*4 (OR 28.8). CONCLUSION: The results of the study indicate a significant association between *2B/*2B and *4/*4 genotypes and the risk of developing lung cancer among Mexicans.  相似文献   

5.
The human cytochrome CYP2A13, which is mainly expressed in the respiratory tract, has been shown to be highly efficient in vitro in the metabolism of tobacco-smoke carcinogens and procarcinogens such as 4-methylnitroso-1-(3-pyridyl)-1-butanone (NNK). In order to investigate the extent of CYP2A13 genetic polymorphism in a French Caucasian population of 102 individuals, a screening for sequence variations in the 5'-untranslated and protein encoding regions of its gene was performed using a polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) strategy. Six polymorphisms in the coding region were identified, including two rare missense mutations (C474G or Asp158Glu, G967T or Val323Leu) and one nonsense mutation (Arg101Stop). This deleterious mutation, the most frequent (5%) in our population, presumably encodes a severely truncated protein. The influence of the nonsense mutation in lung cancer susceptibility was examined by PCR-SSCP using peripheral blood DNA from 204 cases of lung cancer and 201 controls. The CYP2A13*7 allele, which harbours the C301T mutation, was present in 2.0% of controls and 3.4% of cases. However, multivariate analysis showed an elevated risk for small cell lung cancer in subjects heterozygous for the null allele (odds ratio OR=9.9; 95% confidence interval CI=1.9-52.2). This increased risk was not linked to other histological types of lung cancer.  相似文献   

6.
Drugs and carcinogens are substrates of a group of metabolic enzymes including cytochrome p450 enzymes and gluthatione S-transferases. Many of the genes encoding these enzymes exhibit functional polymorphisms that contribute individual cancer susceptibility and drug response. Molecular studies based on these polymorphic enzymes also explain the aetiology of cancer and therapeutic management in clinics. We analysed the cytochrome p4501A1 (CYP1A1) and 2D6 (CYP2D6) variant genotype and allele frequencies by PCR-RFLP in Turkish individuals (n=140). The frequency of the CYP1A1*2A mutant allele was found to be 15.4%, and the CYP2D6*3 and *4 mutant allele (poor metabolizer) frequencies were 2.5% and 13.9%, respectively. This study presents the first results of CYP1A1 and CYP2D6 mutant allele distributions in the Turkish population and these data provide an understanding of epidemiological studies that correlate therapeutic approaches and aetiology of several types of malignancy in Turkish patients.  相似文献   

7.
Drug metabolizing enzymes participate in the neutralizing of xenobiotics and biotransformation of drugs. Human cytochrome P450, particularly CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5, play an important role in drug metabolism. The genes encoding the CYP enzymes are polymorphic, and extensive data have shown that certain alleles confer reduced enzymatic function. The goal of this study was to determine the frequencies of important allelic variants of CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5 in the Jordanian population and compare them with the frequency in other ethnic groups. Genotyping of CYP1A1(m1 and m2), CYP2C9 (*2 and *3), CYP2C19 (*2 and *3), CYP3A4*5, CYP3A5 (*3 and *6), was carried out on Jordanian subjects. Different variants allele were determined using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). CYP1A1 allele frequencies in 290 subjects were 0.764 for CYP1A1*1, 0.165 for CYP1A1*2A and 0.071 for CYP1A1*2C. CYP2C9 allele frequencies in 263 subjects were 0.797 for CYP2C9*1, 0.135 for CYP2C9*2 and 0.068 for CYP2C9*3. For CYP2C19, the frequencies of the wild type (CYP2C19*1) and the nonfunctional (*2 and *3) alleles were 0.877, 0.123 and 0, respectively. Five subjects (3.16?%) were homozygous for *2/*2. Regarding CYP3A4*1B, only 12 subjects out of 173 subjects (6.9?%) were heterozygote with none were mutant for this polymorphism. With respect to CYP3A5, 229 were analyzed, frequencies of CYP3A5*1,*3 and *6 were 0.071, 0.925 and 0.0022, respectively. Comparing our data with that obtained in several Caucasian, African-American and Asian populations, Jordanians are most similar to Caucasians with regard to allelic frequencies of the tested variants of CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5.  相似文献   

8.
The polymorphic human cytochrome P450 2A6 (CYP2A6) metabolises a number of drugs, activates a variety of precarcinogens and constitutes the major nicotine C-oxidase. A relationship between CYP2A6 genotype and smoking habits, as well as incidence of lung cancer, has been proposed. Two defective alleles have hitherto been identified, one of which is very common in Asian populations. Among Caucasians, an additional defective and frequently distributed allele (CYP2A6*3) has been suggested to play a protective role against nicotine addiction and cigarette consumption. Here, we have re-evaluated the genotyping method used for the CYP2A6*3 allele and found that a gene conversion in the 3' flanking region of 30-40% of CYP2A6*1 alleles results in genotype misclassification. In fact, no true CYP2A6*3 alleles were found among 100 Spaniards and 96 Chinese subjects. In one Spanish poor metaboliser of the CYP2A6 probe drug coumarin, we found two novel defective alleles. One, CYP2A6*5, encoded an unstable enzyme having a G479L substitution and the other was found to carry a novel type of CYP2A6 gene deletion (CYP2A6*4D). The results imply the presence of numerous defective as well as active CYP2A6 alleles as a consequence of CYP2A6/CYP2A7 gene conversion events. We conclude that molecular epidemiological studies concerning CYP2A6 require validated genotyping methods for accurate detection of all known defective CYP2A6 alleles.  相似文献   

9.
Substrates for CYP2C9 include fluoxetine, phenytoin, warfarin, losartam and numerous nonsteroidal anti-inflammatory drugs. Polymorphisms in the coding region of the CYP2C9 gene produce variants at amino-acid residues 144 Arg/Cys and 359 Ile/Leu of the CYP2C9 protein. Individuals homozygous for Leu359 have markedly diminished metabolic capacities for most CYP2C9 substrates, the frequency of this allele is, however, rather low. Consistently with the modulation of enzyme activity by genetic and other factors, wide interindividual variability occurs in the elimination and/or dosage requirements of prototypic CYP2C9 substrates. The polymorphic enzyme CYP2C9 takes part in the metabolism of alkylating agents and polycyclic aromatic hydrocarbons like benzo(a)pyrene, a carcinogen present in tobacco smoke. Although the impact of impaired enzyme activity in metabolism of carcinogens and procarcinogens has not been fully defined, an association of CYP2C9 variant alleles to DNA adduct levels in lung tissues as well as to lung cancer risk have been reported. In this study 64 healthy subjects (44M/22F) were analysed for CYP2C9 genotype with PCR-RFLP and for serum carcinoembryonic antigen (CEA), alpha-fetoprotein (AFP), CA 19-9, CA 15-3, ferritin, IL-6, IL-8 concentrations by chemiluminescence or electrochemiluminescence methods. CYP2C9*1 was found to be the most prevalent allele and CYP2C9*1/CYP2C9*1 was the most frequent genotype represented in 64% of the population in southeastern Anatolia (Gaziantep). Although slight differences in serum tumour marker and cytokine concentrations were observed for CYP2C9 genotypes the differences were statistically insignificant (P > 0.05). This could be due to the complexity of the role of CYP2C9 in benzo(a)pyrene metabolism as well as from other contributing factors like interindividual variability of diverse enzymes participating in the same metabolic pathway, unequal expression of the variant alleles and differences in exposure to carcinogens. However, determination of CYP2C9 phenotypes in a larger group of subjects might clarify these slight differences.  相似文献   

10.
CYP2A6 is a polymorphic enzyme, and CYP2A6 genotype has been shown to be associated with smoking habits and lung cancer. We investigated CYP2A6 polymorphism in Japanese from four different geographic areas of Japan and in the Ovambo and Turk populations. Using two polymerase chain reaction restriction fragment length polymorphisms (PCR-RFLPs), we identified the functionally important variants of CYP2A6: *1A, *1B, *1F, *1G, *4A, and *4D. In the Japanese population the highest frequencies of the CYP2A6*1A allele were observed in subjects from the Fukuoka (Kyushu Island) and Ehime (Shikoku Island) prefectures, whereas subjects in Shimane and Tottori (both located on the Japan Sea side of Honshu Island) showed the highest frequencies of the CYP2A6*1B allele. In the Tottori and Shimane groups no subject was homozygous for the CYP2A6*4A allele, a whole gene deletion type that is prevalent among Asians. In the Ovambo and Turk populations the CYP2A6*1A allele was predominant. Furthermore, two alleles undetected in the Japanese were observed in these latter two ethnic groups: CYP2A6*1G was found solely in the Ovambos, and CYP2A6*1F was found solely in the Turks. The present study is the first to show interprefecture differences in CYP2A6 polymorphism in Japanese who live in relatively close but distinct geographic areas; this is also the first study to evaluate CYP2A6 variations among these Japanese and the Ovambo and Turk populations. The distribution results of these alleles could help to define the true significance of CYP2A6 polymorphism as a genetic susceptibility marker in worldwide populations.  相似文献   

11.
The human lung cytochrome P450 2A13 (CYP2A13) activates the nicotine-derived procarcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) into DNA-altering compounds that cause lung cancer. Another cytochrome P450, CYP2A6, is also present in human lung, but at much lower levels. Although these two enzymes are 93.5% identical, CYP2A13 metabolizes NNK with much lower K(m) values than does CYP2A6. To investigate the structural differences between these two enzymes the structure of CYP2A13 was determined to 2.35A by x-ray crystallography and compared with structures of CYP2A6. As expected, the overall CYP2A13 and CYP2A6 structures are very similar with an average root mean square deviation of 0.5A for the Calpha atoms. Like CYP2A6, the CYP2A13 active site cavity is small and highly hydrophobic with a cluster of Phe residues composing the active site roof. Active site residue Asn(297) is positioned to hydrogen bond with an adventitious ligand, identified as indole. Amino acid differences between CYP2A6 and CYP2A13 at positions 117, 300, 301, and 208 relate to different orientations of the ligand plane in the two protein structures and may underlie the significant variations observed in binding and catalysis of many CYP2A ligands. In addition, docking studies suggest that residues 365 and 366 may also contribute to differences in NNK metabolism.  相似文献   

12.
Nicotine is the primary addictive agent in tobacco products and is metabolized in humans by CYP2A6. Decreased CYP2A6 activity has been associated with decreased smoking. The extrahepatic enzyme, CYP2A13 (94% identical to CYP2A6) also catalyzes the metabolism of nicotine, but is most noted for its role in the metabolic activation of the tobacco specific lung carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). In this study, the inhibition and potential inactivation of CYP2A6 and CYP2A13 by two tobacco constituents, 1-methyl-4-(3-pyridinyl) pyrrole (β-nicotyrine) and (-)-menthol were characterized and compared to the potent mechanism based inactivator of CYP2A6, menthofuran. The effect of these compounds on CYP2A6 and CYP2A13 activity was significantly different. (-)-Menthol was a more efficient inhibitor of CYP2A13 than of CYP2A6 (KI, 8.2 μM and 110 μM, respectively). β-Nicotyrine was a potent inhibitor of CYP2A13 (KI, 0.17 μM). Neither menthol nor β-nicotyrine was an inactivator of CYP2A13. Whereas, β-nicotyrine was a mechanism based inactivator of CYP2A6 (KI(inact), 106 μM, kinact was 0.61 min(-1)). Similarly, menthofuran, a potent mechanism based inactivator of CYP2A6 did not inactivate CYP2A13. Menthofuran was an inhibitor of CYPA13 (KI, 1.24 μM). The inactivation of CYP2A6 by either β-nicotyrine or menthofuran was not due to modification of the heme and was likely due to modification of the apo-protein. These studies suggest that β-nicotyrine, but not menthol may influence nicotine and NNK metabolism in smokers.  相似文献   

13.
Polymorphisms in the selected genes controlling carcinogen metabolism (CYP1A1, CYP2D6, CYP2E1, NAT2, GSTM1, GSTT1) considered separately or in different combinations, were investigated for an association with tobacco smoke-associated squamous cell carcinoma (SCC) of the larynx. The case-control study was performed in 289 patients with laryngeal SCC and in 316 cancer-free controls; all were Caucasian males from the same region of Poland and current tobacco smokers. The DNA samples were genotyped using PCR-RFLP and multiplex PCR. The variants' frequencies in both groups were compared; odds ratios and their 95% confidence intervals were calculated by logistic regression analyses. The CYP1A1*1/*4, CYP2D6*4/*4, NAT2*4/*6A genotypes, as well as the CYP1A1*4, CYP2D6*4 and NAT2*4 alleles, were found at significantly higher frequencies in cases than in controls indicating their role as "risk-elevating" factors in laryngeal SCC. Combined genotypes, characterized by the presence of the "risk-elevating" variants at more than one locus, often occurred together with the null variant of the GSTM1 gene and homozygous XPD A/A (Lys751Gln, A35931C) genotype. Furthermore, we identified some "protective" variants, found more frequently in controls than in cases, i.e. the NAT2*6A/*6A and NAT2*5B/*6A genotypes. A distribution of "risk" or "protection" genotypes/alleles seems to be connected with age as an occurrence or risk genes was more frequent in the group of "young" cases (< or = 49 years). Accumulation of certain alleles or genotypes of the CYP1A1, NAT2, GSTM1 and XPD seems to be associated with either increased or decreased risk to develop laryngeal SCC. Therefore, polymorphisms in these genes may play a role in the laryngeal cancer etiology.  相似文献   

14.
Cytochrome P450 (CYP) superfamily members CYP2C8 and CYP2C9 are polymorphically expressed enzymes that are involved in the metabolic inactivation of several drugs, including, among others, antiepileptics, NSAIDs, oral hypoglycemics, and anticoagulants. Many of these drugs have a narrow therapeutic index, and growing evidence indicates a prominent role of CYP2C8 and CYP2C9 polymorphisms in the therapeutic efficacy and in the development of adverse effects among patients treated with drugs that are CYP2C8 or CYP2C9 substrates. In this review, we summarize present knowledge on human variability in the frequency of variant CYP2C8 and CYP2C9 alleles. Besides an expected interethnic variability in allele frequencies, a large intraethnic variability exists. Among Asian subjects, for example, statistically significant differences (p < 0.0001) in CYP2C9*3 allele frequencies between Chinese and Japanese individuals have been reported. In addition, individuals from East Asia present different allele frequencies for CYP2C9*2 and CYP2C9*3 compared with South Asian subjects (p < 0.0001). Among Caucasian Europeans, statistically significant differences for the frequency of CYP2C8*3, CYP2C9*2, and CYP2C9*3 exist (p < 0.0001). This indicates that Asian individuals or Caucasian European individuals cannot be considered as homogeneous groups regarding CYP2C8 or CYP2C9 allele frequencies. Caucasian American subjects also show a large variability in allele frequencies, which is likely to be related to ethnic ancestry. A higher frequency of variant CYP2C8 and CYP2C9 alleles is expected among Caucasian Americans with South European ancestry than in individuals with North European ancestry. The findings summarized in this review suggest that among individuals with Asian or European ancestry, intraethnic differences in the risk of developing adverse effects with drugs that are CYP2C8 or CYP2C9 substrates are to be expected. In addition, the observed intraethnic variability reinforces the need for proper selection of control subjects and points against the use of surrogate control groups for studies involving association of CYP2C8 or CYP2C9 alleles with adverse drug reactions or spontaneous diseases.  相似文献   

15.
Polymorphisms in genes coding for enzymes that activate tobacco lung carcinogens may generate inter-individual differences in lung cancer risk. Previous studies had limited sample sizes, poor exposure characterization, and a few single nucleotide polymorphisms (SNPs) tested in candidate genes. We analyzed 25 SNPs (some previously untested) in 2101 primary lung cancer cases and 2120 population controls from the Environment And Genetics in Lung cancer Etiology (EAGLE) study from six phase I metabolic genes, including cytochrome P450s, microsomal epoxide hydrolase, and myeloperoxidase. We evaluated the main genotype effects and genotype-smoking interactions in lung cancer risk overall and in the major histology subtypes. We tested the combined effect of multiple SNPs on lung cancer risk and on gene expression. Findings were prioritized based on significance thresholds and consistency across different analyses, and accounted for multiple testing and prior knowledge. Two haplotypes in EPHX1 were significantly associated with lung cancer risk in the overall population. In addition, CYP1B1 and CYP2A6 polymorphisms were inversely associated with adenocarcinoma and squamous cell carcinoma risk, respectively. Moreover, the association between CYP1A1 rs2606345 genotype and lung cancer was significantly modified by intensity of cigarette smoking, suggesting an underling dose-response mechanism. Finally, increasing number of variants at CYP1A1/A2 genes revealed significant protection in never smokers and risk in ever smokers. Results were supported by differential gene expression in non-tumor lung tissue samples with down-regulation of CYP1A1 in never smokers and up-regulation in smokers from CYP1A1/A2 SNPs. The significant haplotype associations emphasize that the effect of multiple SNPs may be important despite null single SNP-associations, and warrants consideration in genome-wide association studies (GWAS). Our findings emphasize the necessity of post-GWAS fine mapping and SNP functional assessment to further elucidate cancer risk associations.  相似文献   

16.
ObjectivesTo assess the association between the variant of Cytochrome P450 2A6 whole gene deletion (CYP2A6*4) polymorphism and risk of lung cancer.MethodsTwo investigators independently searched the PubMed, Elsevier, EMBASE, Web of Science, Wiley Online Library and Chinese National Knowledge Infrastructure (CNKI). Pooled odds ratios (ORs) and 95% confidence intervals (95% CIs) for CYP2A6*4 and lung cancer were calculated in a fixed-effects model (the Mantel-Haenszel method) and a random-effects model (the DerSimonian and Laird method) when appropriate.ResultsThis meta-analysis included seven eligible studies, which included 2524 lung cancer cases and 2258 controls (cancer–free). Overall, CYP2A6*4 was associated with the risk of lung cancer (allele*4 vs. allele non-*4, pooled OR  = 0.826, 95% CI  = 0.725−0.941, P-value  = 0.004). When stratifying for population, significant association was observed in Asian (additive model, pooled OR  = 0.794, 95% CI  = 0.694−0.909, P-value  = 0.001; dominant model, pooled OR  = 0.827, 95% CI  = 0.709−0.965, P-value  = 0.016; recessive model (pooled OR  = 0.444, 95% CI  = 0.293−0.675, P-value <0.0001). In the overall analysis, a comparably significant decrease in the frequency of *4/*4 genotype was detected between cases and controls in Asian while no *4/*4 genotype was detected in Caucasian in collected data.ConclusionThis meta-analysis suggests that the CYP2A6*4 polymorphism is associated with susceptibility of lung cancer in Asian. The whole gene deletion of CYP2A6 may decrease the risk of lung cancer in Asian samples.  相似文献   

17.
Human CYP3A enzymes play a pivotal role in the metabolism of many drugs, and the variability of their expression among individuals may have a strong impact on the efficacy of drug treatment. However, the individual contributions of the four CYP3A genes to total CYP3A activity remain unclear. To elucidate the role of CYP3A7, we have studied its expression in human liver and intestine. In both organs, expression of CYP3A7 mRNA was polymorphic. The recently identified CYP3A7*1C allele was a consistent marker of increased CYP3A7 expression both in liver and intestine, whereas the CYP3A7*1B allele was associated with increased CYP3A7 expression only in liver. Because of the replacement of part of the CYP3A7 promoter by the corresponding region of CYP3A4, the CYP3A7*1C allele contains the proximal ER6 motif of CYP3A4. The pregnane X and constitutively activated receptors were shown to bind with higher affinity to CYP3A4-ER6 than to CYP3A7-ER6 motifs and transactivated only promoter constructs containing CYP3A4-ER6. Furthermore, we identified mutations in CYP3A7*1C in addition to the ER6 motif that were necessary only for activation by the constitutively activated receptor. We conclude that the presence of the ER6 motif of CYP3A4 mediates the high expression of CYP3A7 in subjects carrying CYP3A7*1C.  相似文献   

18.
Y Gao  Q Zhang 《Mutation research》1999,444(2):441-449
The case-control study was conducted to examine the association between GSTM1 null and CYP2D6Ch (T(188)/T) genotypes and lung cancer risk among Chinese of Han nationality living in Guangdong. All 191 subjects were investigated with unitary questionnaire and their DNAs were isolated from peripheral lymphocytes by standard procedures with proteinase K digestion and phenol/chloroform extraction. GSTM1(-) was detected with polymerase chain reaction (PCR) in all 191 subjects, involving 59 lung cancer cases, 59 hospital controls and 73 healthy controls. The frequencies of GSTM1(-) were not significantly different between the cases and the two controls overall. However, among adenocarcinoma of lung, the frequency of GSTM1(-) (76.9%) appeared to be higher than that in controls (49.2%), and the odd radios were 3.42-3.45. The results suggested an elevated risk for adenocarcinoma of lung would be shown by GSTM1(-). Using polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP) to detect CYP2D6 T(188)/T genotype in 59 lung cancer patients and 59 hospital controls, it showed no significant difference between the two groups. However, non-smokers with non-T(188)/T (C(188)/C or C(188)/T) genotype showed 3.78-folds increased risk of lung cancer compared with those with T(188)/T genotype (P=0.036). The data did not suggest a substantial interaction effect between GSTM1 and CYP2D6 polymorphisms and the risk of lung cancer. Additionally, among Chinese (Han) of Guangdong, the frequency of CYP2D6 T(188) allele appeared to be 57.2%, and GSTM1(-) to be 51.8%.  相似文献   

19.
The functional significance of genetic polymorphisms on tobacco smoke-induced CYP1A2 activity was examined. The influence of three polymorphisms of the cytochrome P450 1A2 gene (CYP1A2) (-3860 G-->A (allele *1C), -2467 T-->delT (allele *1D), -163C-->A (allele *1F)), located in the 5'-noncoding promoter region of the gene, on CYP1A2 activity (measured as caffeine metabolic ratio, CMR), was studied in Caucasian current smokers (n=95). Tobacco smoke intake was calculated from the number of cigarettes/day. Also, studied was the influence of these CYP1A2 genotypes on smoking-associated urinary mutagenicity, detected in Salmonella typhimurium strain YG1024 with S9 mix, considering the urinary excretion of nicotine plus its metabolites as an internal indicator of tobacco smoke exposure. Smokers with at least one of the variant alleles CYP1A2 -3860A and -2467 delT showed a significantly increased CYP1A2 CMR (-3860 G/A versus G/G, p<0.05; -2467 delT/delT versus T/delT and T/T, p<0.01). Multiple regression analysis showed that the increase in CYP1A2 CMR (ln values) was again significantly related to the presence of CYP1A2 variants -2467delT and also to variant -163A (p<0.05), but moderately to -3860A (p=0.084). No influence of the number of cigarettes smoked per day by each subject was found. Heavy smokers (n=48, with urinary nicotine plus its metabolites>or=0.69 mg/mmol creatinine) with variant allele -2467delT or -163A had significantly increased urinary mutagenicity (p<0.01 and <0.05). CYP1A2 genetic polymorphisms are shown to influence the CYP1A2 phenotype in smokers, -2467 T-->delT having the main effect. This information is of interest for future studies assessing the possible role of tobacco smoke-inducible CYP1A2 genotypes as individual susceptibility factors in exposure to carcinogens.  相似文献   

20.
Comparing bufuralol 1'-hydroxylase activity among liver microsomes prepared from individuals whose CYP2D6 genotypes had been determined, we found that the activity tended to decrease depending on the number of the CYP2D6*10 allele. Pre-incubation of liver microsomes from individuals homozygous for the CYP2D6*10 allele resulted in a decrease in the enzyme activity more rapidly than those from individuals homozygous for the CYP2D6*1, suggesting that not only the catalytic activity but also the thermal stability of the enzyme appeared to be affected by the genetic polymorphism. To confirm this hypothesis, the kinetic parameters of CYP2D6.1 and CYP2D6.10 were compared for bufuralol 1'-hydroxylation and dextromethorphan O-demethylation using microsomes prepared from yeast transformed with plasmids carrying CYP2D6 cDNAs (*1A and *10B). Kinetic studies of these CYP2D6 forms indicated clear differences in the metabolic activities between the wild (CYP2D6.1) and the mutant enzymes (CYP2D6.10). Bufuralol 1(')-hydroxylase activity in microsomes of yeast expressing CYP2D6.10 was rapidly decreased by heat treatment, supporting the idea that the thermal stability of the enzyme was reduced by amino acid replacement from Pro (CYP2D6.1) to Ser (CYP2D6.10). These data strongly suggest that the thermal instability together with the reduced intrinsic clearance of CYP2D6.10 is one of the causes responsible for the known fact that Orientals show lower metabolic activities than Caucasians for drugs metabolized mainly by CYP2D6, because of a high frequency of CYP2D6*10 in Orientals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号