首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 231 毫秒
1.
For individuals living in environmentally heterogeneous environments, a key component for adaptation and persistence is the extent of phenotypic differentiation in response to local environmental conditions. In order to determine the extent of environmentally induced morphological variation in a natural population distributed along environmental gradients, it is necessary to account for potential genetic differences contributing to morphological differentiation. In this study, we set out to quantify geographic morphological variation in the moon jellyfish Aurelia exposed at the extremes of a latitudinal environmental gradient in the Gulf of Mexico (GoM). We used morphological data based on 28 characters, and genetic data taken from mitochondrial cytochrome oxidase I (COI) and nuclear internal transcribed spacer 1 (ITS-1). Molecular analyses revealed the presence of two genetically distinct species of Aurelia co-occurring in the GoM: Aurelia sp. 9 and Aurelia c.f. sp. 2, named for its divergence from (for COI) and similarity to (for ITS-1) Aurelia sp. 2 (Brazil). Neither species exhibited significant population genetic structure between the Northern and the Southeastern Gulf of Mexico; however, they differed greatly in the degree of geographic morphological variation. The morphology of Aurelia sp. 9 exhibited ecophenotypic plasticity and varied significantly between locations, while morphology of Aurelia c.f. sp. 2 was geographically invariant (i.e., canalized). The plastic, generalist medusae of Aurelia sp. 9 are likely able to produce environmentally-induced, “optimal” phenotypes that confer high relative fitness in different environments. In contrast, the non-plastic generalist individuals of Aurelia c.f. sp. 2 likely produce environmentally-independent phenotypes that provide the highest fitness across environments. These findings suggest the two Aurelia lineages co-occurring in the GoM were likely exposed to different past environmental conditions (i.e., different selective pressures) and evolved different strategies to cope with environmental variation. This study highlights the importance of using genetics and morphometric data to understand jellyfish ecology, evolution and systematics.  相似文献   

2.
Hydrocarbon seepage is widespread and patchy in the Gulf of Mexico, and six species of symbiont containing bathymodiolin mussels are found on active seeps over wide and overlapping depth and geographic ranges. We use mitochondrial genes to discriminate among the previously known and a newly discovered species and to assess the connectivity among populations of the same species in the northern Gulf of Mexico (GoM). Our results generally validate the morphologically based distribution of the three previously known GoM species of Bathymodiolus, although we found that approximately 10% of the morphologically based identifications were incorrect and this resulted in some inaccuracies with respect to their previously assigned depth and geographical distribution patterns. These data allowed us to confirm that sympatry of two species of Bathymodiolus within a single patch of mussels is common. A new species of bathymodiolin, Bathymodiolus sp. nov., closely related to B. heckerae was also discovered. The two species live at the same depths but have not been found in sympatry and both have small effective population sizes. We found evidence for genetic structure within populations of the three species of Bathymodiolinae for which we had samples from multiple sites and suggest limited connectivity for populations at some sites. Despite relatively small sample sizes, genetic diversity indices suggest the largest population sizes for B. childressi and Tamu fisheri and the smallest for B. heckerae and B. sp. nov. among the GoM bathymodiolins. Moreover, we detected an excess of rare variants indicating recent demographic changes and population expansions for the four species of bathymodiolins from the Gulf of Mexico.  相似文献   

3.
Northern Gulf of Mexico (NGoM) loggerheads (Caretta caretta) make up one of the smallest subpopulations of this threatened species and have declining nest numbers. We used satellite telemetry and a switching state-space model to identify distinct foraging areas used by 59 NGoM loggerheads tagged during 2010–2013. We tagged turtles after nesting at three sites, 1 in Alabama (Gulf Shores; n = 37) and 2 in Florida (St. Joseph Peninsula; n = 20 and Eglin Air Force Base; n = 2). Peak migration time was 22 July to 9 August during which >40% of turtles were in migration mode; the mean post-nesting migration period was 23.0 d (±13.8 d SD). After displacement from nesting beaches, 44 turtles traveled to foraging sites where they remained resident throughout tracking durations. Selected foraging locations were variable distances from tagging sites, and in 5 geographic regions; no turtles selected foraging sites outside the Gulf of Mexico (GoM). Foraging sites delineated using 50% kernel density estimation were located a mean distance of 47.6 km from land and in water with mean depth of −32.5 m; other foraging sites, delineated using minimum convex polygons, were located a mean distance of 43.0 km from land and in water with a mean depth of −24.9 m. Foraging sites overlapped with known trawling activities, oil and gas extraction activities, and the footprint of surface oiling during the 2010 Deepwater Horizon oil spill (n = 10). Our results highlight the year-round use of habitats in the GoM by loggerheads that nest in the NGoM. Our findings indicate that protection of females in this subpopulation requires both international collaborations and management of threats that spatially overlap with distinct foraging habitats.  相似文献   

4.
Recent molecular studies have shown that highly mobile species with continuous distributions can exhibit fine‐scale population structure. In this context, we assessed genetic structure within a marine species with high dispersal potential, the Atlantic spotted dolphin (Stenella frontalis). Using 19 microsatellite loci and mitochondrial control region sequences, population structure was investigated in the western North Atlantic, the Gulf of Mexico and the Azores Islands. Analyses of the microsatellite data identified four distinct genetic clusters, which were supported by the control region sequences. The highest level of divergence was seen between two clusters corresponding to previously described morphotypes that inhabit oceanic and shelf waters. The combined morphological and genetic evidence suggests these two lineages are on distinct evolutionary trajectories and could be considered distinct subspecies despite their parapatry. Further analysis of the continental shelf cluster resulted in three groups: animals inhabiting shelf waters in the western North Atlantic, the eastern Gulf of Mexico and the western Gulf of Mexico. Analyses of environmental data indicate the four genetic clusters inhabit distinct habitats in terms of depth and sea surface temperature. Contemporary dispersal rate estimates suggest all of these populations should be considered as distinct management units. Conversely, no significant genetic differentiation was observed between S. frontalis from offshore waters of the western North Atlantic and the Azores, which are separated by approximately 4500 km. Overall, the hierarchical structure observed within the Atlantic spotted dolphin shows that the biogeography of the species is complex because it is not shaped solely by geographic distance.  相似文献   

5.
Understanding the origin of biodiversity requires knowledge on the evolutionary processes that drive divergence and speciation, as well as on the processes constraining it. Intraspecific polymorphisms can provide insight into the mechanisms that generate and maintain phenotypic, behavioural and life history diversification, and can help us understand not only the processes that lead to speciation but also the processes that prevent local fixation of morphs. The ‘desert cichlid’ Herichtys minckleyi is a highly polymorphic species endemic to a biodiversity hotspot in northern Mexico, the Cuatro Ciénegas valley. This species is polymorphic in body shape and trophic apparatus, and eco‐morphotypes coexist in small spring‐fed lagoons across the valley. We investigated the genetic structure of these polymorphisms and their phylogeographic history by analysing the entire control region of the mitochondrial DNA and 10 nuclear microsatellite markers in several populations from different sites and morphs. We found two very divergent mitochondrial lineages that most likely predate the closing of the valley and are not associated with morphotypes or sites. One of these lineages is also found in the sister species Herichthys cyanoguttatus. Data from neutral microsatellite markers suggest that most lagoons or drainages constitute their own genetic cluster with sympatric eco‐morphotypes forming panmictic populations. Alternative mechanisms such as phenotypic plasticity and a few loci controlled traits provide possible explanations for the sympatric coexistence of discrete nonoverlapping eco‐morphotypes with apparent lack of barriers to gene flow within multiple lagoons and drainages.  相似文献   

6.
The vestimentiferan tubeworms Lamellibrachia luymesi and Seepiophila jonesi are found at hydrocarbon seeps in the Gulf of Mexico. Primers for polymorphic microsatellite loci were developed from genomic libraries of L. luymesi (five loci) and from S. jonesi tissue (eight loci) and were used to screen individuals collected from nine northern Gulf of Mexico hydrocarbon seep sites. Loci had from four to more than 50 alleles with high expected levels of heterozygosity. Cross‐species amplification, tested on seven vestimentiferan species including both hydrothermal vent and cold seep species, was generally strong in similar species but weak in more genetically distant species.  相似文献   

7.
Lamellibrachia vestimentiferan tubeworms form aggregations at hydrocarbon cold seeps in the deep Gulf of Mexico (GoM), creating structures that provide living space for other fauna. In the GoM, three Lamellibrachia taxa vary in morphology and depth ranges: Lamellibrachia luymesi (300–950 m), Lamellibrachia sp. 1 (950–2,604 m), and Lamellibrachia sp. 2 (1,175–3,304 m). While Lamellibrachia sp. 2 is consistently identified as a separate species, L. luymesi and sp. 1 cannot be discriminated using barcoding markers cytochrome oxidase subunit 1 (COI) and large ribosomal subunit rDNA (16S). To determine if limited gene flow was a factor in the formation of these taxa, we employed more quickly evolving markers, including mitochondrial cytochrome B (CYTB), hemoglobin subunit B2 intron (HbB2i), and six polymorphic microsatellites; microsatellites were amplified across 45 L. luymesi and sp. 1 individuals. Additionally, we used microsatellites to ask whether populations of Lamellibrachia sp. 1 and sp. 2 show evidence of significant structure. Despite a lack of resolution seen with CYTB and HbB2i, L. luymesi and sp. 1 form genetically differentiated clusters at the cross-amplified microsatellites. Furthermore, we find no evidence for population structure for either Lamellibrachia sp. 1 or sp. 2 across the GoM.  相似文献   

8.
Research on sponge microbial assemblages has revealed different trends in the geographic variability and specificity of bacterial symbionts. Here, we combined replicated terminal-restriction fragment length polymorphism (T-RFLP) and clone library analyses of 16S rRNA gene sequences to investigate the biogeographic and host-specific structure of bacterial communities in two congeneric and sympatric sponges: Ircinia strobilina, two color morphs of Ircinia felix and ambient seawater. Samples were collected from five islands of the Bahamas separated by 80 to 400 km. T-RFLP profiles revealed significant differences in bacterial community structure among sponge hosts and ambient bacterioplankton. Pairwise statistical comparisons of clone libraries confirmed the specificity of the bacterial assemblages to each host species and differentiated symbiont communities between color morphs of I. felix. Overall, differences in bacterial communities within each host species and morph were unrelated to location. Our results show a high degree of symbiont fidelity to host sponge across a spatial scale of up to 400 km, suggesting that host-specific rather than biogeographic factors play a primary role in structuring and maintaining sponge–bacteria relationships in Ircinia species from the Bahamas.  相似文献   

9.
A multi-year unusual mortality event (UME) involving primarily common bottlenose dolphins (Tursiops truncates) was declared in the northern Gulf of Mexico (GoM) with an initial start date of February 2010 and remains ongoing as of August 2014. To examine potential changing characteristics of the UME over time, we compared the number and demographics of dolphin strandings from January 2010 through June 2013 across the entire GoM as well as against baseline (1990-2009) GoM stranding patterns. Years 2010 and 2011 had the highest annual number of stranded dolphins since Louisiana’s record began, and 2011 was one of the years with the highest strandings for both Mississippi and Alabama. Statewide, annual numbers of stranded dolphins were not elevated for GoM coasts of Florida or Texas during the UME period. Demographic, spatial, and temporal clusters identified within this UME included increased strandings in northern coastal Louisiana and Mississippi (March-May 2010); Barataria Bay, Louisiana (August 2010-December 2011); Mississippi and Alabama (2011, including a high prevalence and number of stranded perinates); and multiple GoM states during early 2013. While the causes of the GoM UME have not been determined, the location and magnitude of dolphin strandings during and the year following the 2010 Deepwater Horizon oil spill, including the Barataria Bay cluster from August 2010 to December 2011, overlap in time and space with locations that received heavy and prolonged oiling. There are, however, multiple known causes of previous GoM dolphin UMEs, including brevetoxicosis and dolphin morbillivirus. Additionally, increased dolphin strandings occurred in northern Louisiana and Mississippi before the Deepwater Horizon oil spill. Identification of spatial, temporal, and demographic clusters within the UME suggest that this mortality event may involve different contributing factors varying by location, time, and bottlenose dolphin populations that will be better discerned by incorporating diagnostic information, including histopathology.  相似文献   

10.
The mechanisms underlying polyandry and female mate choice in certain taxonomic groups remain widely debated. In elasmobranchs, several species have shown varying rates of polyandry based on genetic studies of multiple paternity (MP). We investigated MP in the finetooth shark, Carcharhinus isodon, in order to directly test the encounter rate hypothesis (ERH), which predicts that MP is a result of the frequency of encounters between mature conspecifics during the breeding season, and should therefore increase when more time is available for copulation and sperm storage. Female finetooth sharks in the northern Gulf of Mexico (GoM) have been found to reproduce with both annual periodicity and biennial periodicity, while finetooth sharks from the northwestern Atlantic Ocean have only been found to reproduce biennially, allowing us to compare mating opportunity to frequency of MP. Our results show high rates of MP with no significant difference in frequency between females in the GoM (83.0%) and Atlantic (88.2%, p = .8718) and varying but nonsignificant rates of MP between females in the GoM reproducing annually (93.0%) and biennially (76.6%, p = .2760). While the ERH is not supported by this study, it remains possible that reproductive periodicity and other physiological factors play a role in determining rates of MP in elasmobranchs, with potential benefits to individuals and populations.  相似文献   

11.
Invasive species can have complex invasion histories, harbor cryptic levels of diversity, and pose taxonomic problems for pest management authorities. Roof rats, Rattus rattus sensu lato, are common invasive pests of the San Francisco Bay Area in California, USA. They are a significant health risk and pest management efforts impose a large financial investment from public institutions and private individuals. Recent molecular genetic and taxonomic studies of black rats in their native range in Asia have shown that the species is a complex of two karyotypic forms and four mitochondrial genetic lineages that may represent four distinct species. We used mtDNA sequences and nuclear microsatellite variation to identify which mitochondrial lineages of the R. rattus group are present in the San Francisco Bay Area and to test for gene flow among them. We recovered specimens with mtDNA sequences representing two of the major mtDNA lineages of the R. rattus group. Microsatellite variation, however, was not structured in concordance with mtDNA lineages, suggesting a more complex history involving hybridization and introgression between these lineages. Although Aplin et al. (2011) and Lack et al. (2012) reported R. rattus Lineage II in North America, this is the first detailed examination of possible gene flow amongst lineages in this region.  相似文献   

12.
13.
Mathews LM 《Molecular ecology》2006,15(13):4049-4063
Recent investigations suggest that marine biodiversity may be much higher than earlier estimates, and an important hidden source of diversity in marine systems is the phenomenon of cryptic species complexes. Such complexes are informative models for research into the evolutionary processes that govern species compositions of marine fauna. The snapping shrimp genera Alpheus and Synalpheus are known to harbour large numbers of cryptic species; here, I characterize the genetic structure of the Alpheus armillatus species complex in the northern Caribbean, west Atlantic, and Gulf of Mexico using mitochondrial and nuclear sequence data. Over this geographical region, the complex harbours at least three lineages that are probable reproductively isolated species; all major lineages diverged subsequent to the close of the Isthmus of Panama. Only one lineage was present in the Gulf of Mexico, whereas outside the Gulf of Mexico there was no clear tendency for lineage dominance by geographical region, as most sites were populated by shrimp from at least two lineages. However, within each lineage, there was strong evidence of population genetic differentiation between geographical regions. All lineages showed strong signals of demographic expansion, and one lineage showed sharply reduced genetic diversity, suggestive of past population bottlenecks or recently founded populations with low gene flow from other sites. These results show that evolutionary processes leading to divergence and speciation have been common and recent in the snapping shrimp, and suggest that connectivity among shrimp populations may be limited.  相似文献   

14.
The adaptive radiation of the seven‐spined gobies (Gobiidae: Gobiosomatini) represents a classic example of how ecological specialization and larval retention can drive speciation through local adaptation. However, geographically widespread and phenotypically uniform species also do occur within Gobiosomatini. This lack of phenotypic variation across large geographic areas could be due to recent colonization, widespread gene flow, or stabilizing selection acting across environmental gradients. We use a phylogeographic approach to test these alternative hypotheses in the naked goby Gobiosoma bosc, a widespread and phenotypically invariable intertidal fish found along the Atlantic Coast of North America. Using DNA sequence from 218 individuals sampled at 15 localities, we document marked intraspecific genetic structure in mitochondrial and nuclear genes at three main geographic scales: (i) between Gulf of Mexico and Atlantic Coast, (ii) between the west coast of the Florida peninsula and adjacent Gulf of Mexico across the Apalachicola Bay, and (iii) at local scales of a few hundred kilometers. Clades on either side of Florida diverged about 8 million years ago, whereas some populations along the East Cost show divergent phylogroups that have differentiated within the last 200,000 years. The absence of noticeable phenotypic or ecological differentiation among lineages suggests the role of stabilizing selection on ancestral phenotypes, together with isolation in allopatry due to reduced dispersal and restricted gene flow, as the most likely explanation for their divergence. Haplotype phylogenies and spatial patterns of genetic diversity reveal frequent population bottlenecks followed by rapid population growth, particularly along the Gulf of Mexico. The magnitude of the genetic divergence among intraspecific lineages suggests the existence of cryptic species within Gobiosoma and indicates that modes of speciation can vary among lineages within Gobiidae.  相似文献   

15.
The Gulf of California endemic reef fish, Acanthemblemaria crockeri (Blennioidei, Chaenopsidae), reportedly has two colour morphs, one with melanic lateral spots ('Gulf' morph) and one with orange spots ('Cape' morph). In this study, we recorded colour morph in both males and females and collected mitochondrial DNA sequence data for cytochrome c oxidase I (COI) and tRNA-Pro/D-loop of specimens from throughout the Gulf to explore the genetic basis of the colour morphs. Two highly divergent (HKY + I distance = 11.9% for COI), reciprocally monophyletic lineages were identified, consistent with the presence of two parapatric species. A 30-km gap between the distributions of mitochondrial lineages roughly corresponds to a hypothesized former seaway across the Baja California peninsula north of La Paz, although the estimated divergence time (1.84 million years ago) is more recent than the hypothetical seaway (3–4 million years ago). Surprisingly, the distribution of mitochondrial species is not congruent with the distribution of either male or female colour morphs. Our analysis also revealed significant population differentiation within both species and no shared haplotypes among populations. The northern Gulf species includes four populations (NB, CB, NM and CM) corresponding to northern and central Baja and northern and central mainland sites, while the Cape species includes two populations (SB and SM) corresponding to the Baja and mainland sides of the southern Gulf. The NB/CB division corresponds to a hypothesized Plio–Pleistocene mid-peninsular seaway. The level of genetic divergence documented in this lineage is extraordinary for a marine fish with a pelagic larval stage within a semi-enclosed basin.  相似文献   

16.
Environmental variables that are correlated with depth have been suggested to be among the major forces underlying speciation in the deep sea. This study incorporated phylogenetics and ecological niche models (ENM) to examine whether congeneric species of Callogorgia (Octocorallia: Primnoidae) occupy different ecological niches across the continental slope of the Gulf of Mexico (GoM) and whether this niche divergence could be important in the evolution of these closely related species. Callogorgia americana americana, Callogorgia americana delta and Callogorgia gracilis were documented at 13 sites in the GoM (250–1000 m) from specimen collections and extensive video observations. On a first order, these species were separated by depth, with C. gracilis occurring at the shallowest sites, C. a. americana at mid‐depths and C. a. delta at the deepest sites. Callogorgia a. delta was associated with areas of increased seep activity, whereas C. gracilis and C. a. americana were associated with narrow, yet warmer, temperature ranges and did not occur near cold seeps. ENM background and identity tests revealed little to no overlap in ecological niches between species. Temporal calibration of the phylogeny revealed the formation of the Isthmus of Panama was a vicariance event that may explain some of the patterns of speciation within this genus. These results elucidate the potential mechanisms for speciation in the deep sea, emphasizing both bathymetric speciation and vicariance events in the evolution of a genus across multiple regions.  相似文献   

17.
The history of colonization and dispersal in fauna distributed among deep‐sea chemosynthetic ecosystems remains enigmatic and poorly understood because of an inability to mark and track individuals. A combination of molecular, morphological and environmental data improves understanding of spatial and temporal scales at which panmixia, disruption of gene flow or even speciation may occur. Vestimentiferan tubeworms of the genus Escarpia are important components of deep ‐sea cold seep ecosystems, as they provide long‐term habitat for many other taxa. Three species of Escarpia, Escarpia spicata [Gulf of California (GoC)], Escarpia laminata [Gulf of Mexico (GoM)] and Escarpia southwardae (West African Cold Seeps), have been described based on morphology, but are not discriminated through the use of mitochondrial markers (cytochrome oxidase subunit 1; large ribosomal subunit rDNA, 16S; cytochrome b). Here, we also sequenced the exon‐primed intron‐crossing Haemoglobin subunit B2 intron and genotyped 28 microsatellites to (i) determine the level of genetic differentiation, if any, among the three geographically separated entities and (ii) identify possible population structure at the regional scale within the GoM and West Africa. Results at the global scale support the occurrence of three genetically distinct groups. At the regional scale among eight sampling sites of E. laminata (n = 129) and among three sampling sites of E. southwardae (n = 80), no population structure was detected. These findings suggest that despite the patchiness and isolation of seep habitats, connectivity is high on regional scales.  相似文献   

18.
Karenia brevis is the major harmful bloom-forming dinoflagellate in the Gulf of Mexico yet little is known about the intraspecific genetic diversity of this species. Here we describe nine new microsatellite markers and, combined with nine previously described microsatellites, use them to genotype 40 cultured isolates of K. brevis. Genetic diversity identified from cultured isolates was compared with the genetic diversity identified from two field samples to assess how well the current cultures represent the field population. Thirty-nine unique haplotypes were identified from 40 cultured isolates of K. brevis using 18 microsatellite markers. Genetic diversity was similar between cultured isolates and the two field samples. The success of 18 microsatellite markers to distinguish individual isolates supports the use of microsatellites as a genetic tool for diagnostic identification of cultured isolates of K. brevis.  相似文献   

19.
The hermaphroditic terrestrial snail Rumina decollata has a mixed breeding system with a high prevalence of self-fertilization. In the Montpellier area (France), the species is represented by a dark and a light color morph. Based on allozyme data, both morphs have been reported as single, homozygous multilocus genotypes (MLG), differing at 13 out of 26 loci, but still showing occasional hybridization. Recent DNA sequence data suggest that each morph is a different phylogenetic species. In order to further evaluate this new taxonomic interpretation, the present contribution explores to what extent populations or color morphs indeed consist of single or few MLG. As such it is shown that both morphs are not single, homozygous MLG, but instead reveal a considerable amount of allelic variation and substantial numbers of heterozygous microsatellite genotypes. This suggests that outcrossing may be more prevalent than previously reported. Nevertheless, both morphs maintain a diagnostic multimarker differentiation in the presence of outcrossing in sympatric conditions, implying that they may be interpreted as species under the biological species concept. Finally, our data challenge the idea that simultaneous hermaphrodites should be either strict selfers or strict outcrossers.  相似文献   

20.
Whether hybridization can be a mechanism that drives phenotypic diversity is a widely debated topic in evolutionary biology. In poison frogs (Dendrobatidae), assortative mating has been invoked to explain how new color morphs persist despite the expected homogenizing effects of natural selection. Here, we tested the complementary hypothesis that new morphs arise through hybridization between different color morphs. Specifically, we (1) reconstructed the phylogenetic relationships among the studied populations of a dart‐poison frog to provide an evolutionary framework, (2) tested whether microsatellite allele frequencies of one putative hybrid population of the polymorphic frog O. histrionica are intermediate between O. histrionica and O. lehmanni, and (3) conducted mate‐choice experiments to test whether putatively intermediate females prefer homotypic males over males from the other two populations. Our findings are compatible with a hybrid origin for the new morph and emphasize the possibility of hybridization as a mechanism generating variation in polymorphic species. Moreover, because coloration in poison frogs is aposematic and should be heavily constrained, our findings suggest that hybridization can produce phenotypic novelty even in systems where phenotypes are subject to strong stabilizing selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号