首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Root-knot nematodes (RKN) are highly specialized, obligatory plant parasites. These animals reprogram root cells to form large, multinucleate, and metabolically active feeding cells (giant cells) that provide a continuous nutrient supply during 3–6 weeks of the nematode’s life. The establishment and maintenance of physiologically fully functional giant cells are necessary for the survival of these nematodes. As such, giant cells may be useful targets for applying strategies to reduce damage caused by these nematodes, aiming the reduction of their reproduction. We have recently reported the involvement of cell cycle inhibitors of Arabidopsis, named Kip-Related Proteins (KRPs), on nematode feeding site ontogeny. Our results have demonstrated that this family of cell cycle inhibitors can be envisaged to efficiently disrupt giant cell development, based on previous reports which showed that alterations in KRP concentration levels can induce cell cycle transitions. Herein, we demonstrated that by overexpressing KRP genes, giant cells development is severely compromised as well as nematode reproduction. Thus, control of root-knot nematodes by modulating cell cycle-directed pathways through the enhancement of KRP protein levels may serve as an attractive strategy to limit damage caused by these plant parasites.  相似文献   

3.
Cell cycle control in galls provoked by root‐knot nematodes involves the activity of inhibitor genes like the Arabidopsis ICK/KRP members. Ectopic KRP1, KRP2 and KRP4 expression resulted in decreased gall size by inhibiting mitotic activity, whereas KRP6 induces mitosis in galls. Herein, we investigate the role of KRP3, KRP5 and KRP7 during gall development and compared their role with previously studied members of this class of cell cycle inhibitors. Overexpression of KRP3 and KRP7 culminated in undersized giant cells, with KRP3OE galls presenting peculiar elongated giant cells. Nuclei in KRP3OE and KRP5OE lines presented a convoluted and apparently connected phenotype. This appearance may be associated with the punctuated protein nuclear localization driven by specific common motifs. As well, ectopic expression of KRP3OE and KRP5OE affected nematode development and offspring. Decreased mitotic activity in galls of KRP3OE and KRP7OE lines led to a reduced gall size which presented distinct shapes – from more elongated like in the KRP3OE line to small rounded like in the KRP7OE line. Results presented strongly support the idea that induced expression of cell cycle inhibitors such as KRP3 and KRP7 in galls can be envisaged as a conceivable strategy for nematode feeding site control in crop species attacked by phytopathogenic nematodes.  相似文献   

4.
5.
? Excellent visualization of nuclei was obtained here using a whole-mount procedure adapted to provide high-resolution images of large, irregularly shaped nuclei. The procedure is based on tissue clearing, and fluorescent staining of nuclear DNA with the dye propidium iodide. ? The method developed for standard confocal imaging was applied to large multicellular root swellings, named galls, induced in plant hosts by the root-knot nematode Meloidogyne incognita. ? Here, we performed a functional analysis, and examined the nuclear structure in giant feeding cells overexpressing the cell cycle inhibitor Kip-related protein 4 (KRP4). Ectopic KRP4 expression in galls led to aberrant nuclear structure, disturbing giant cell expansion and nematode reproduction. In vivo live-cell imaging of GFP-KRP4 demonstrated that this protein co-localizes to chromosomes from prophase to late anaphase during cell cycle progression. ? The data presented here suggest the involvement of KRP4 during mitotic progression in plant cells. The detailed results obtained using confocal analysis also demonstrate the potential utility of a rapid, easy-to-use clearing method for the analysis of the nuclei of certain Arabidopsis mutants and other complex plant nuclei.  相似文献   

6.
7.
The Arabidopsis genome contains seven cyclin-dependent kinase (CDK) inhibitors (ICK for inhibitor/interactor with cyclin-dependent kinase) which share a small conserved C-terminal domain responsible for the CDK-inhibition activity by these proteins. Different ICK/KRPs have been shown to have unique expression patterns within tissues, organs and during the cell cycle. Previous studies have shown that overexpressing one of the ICK/KRPs inhibits CDK activity, cell division, and profoundly affects plant growth and development. In this study, we investigated the subcellular localization of the seven Arabidopsis ICK proteins and domains responsible for this localization. Using transgenic expression in Arabidopsis plants and transient expression in tobacco leaf cells, all ICK/KRPs fused to green fluorescent protein (GFP) were localized to the nucleus, suggesting that the nucleus is the cellular compartment for the plant CDK inhibitors to function. While ICK2/KRP2, ICK4/KRP6, and ICK5/KRP7 were localized to the nucleoplasm in a homogeneous manner, ICK1/KRP1, ICK3/KRP5, ICK6/KRP3, and ICK7/KRP4 showed a punctate pattern of localization. A small motif conserved amongst the latter group of ICK/KRPs is required to confer this subcellular pattern as deletion of this motif from ICK7/KRP4 resulted in a shift from a punctate to a homogeneous pattern of localization. While a single nuclear localization signal (NLS) is responsible for the nuclear localization of ICK2/KRP2, multiple mechanisms for nuclear localization are suggested to exist for the other six ICK/KRPs since deletion mutants lacking predicted NLS motifs and the conserved C-terminal domain are still localized in the nucleus.  相似文献   

8.
Cell cycle is one of the most fundamentally conserved biological processes of plants and mammals. Casein kinase1s (CK1s) are critical for cell proliferation in mammalian cells; however, how CK1s coordinate cell division in plants remains unknown. Through genetic and biochemical studies, here we demonstrated that plant CK1, Arabidopsis (Arabidopsis thaliana) EL1-like (AELs), regulate cell cycle/division by modulating the stability and inhibitory effects of Kip-related protein6 (KRP6) through phosphorylation. Cytological analysis showed that AELs deficiency results in suppressed cell-cycle progression mainly due to the decreased DNA replication rate at S phase and increased period of G2 phase. AELs interact with and phosphorylate KRP6 at serines 75 and 109 to stimulate KRP6’s interaction with E3 ligases, thus facilitating the KRP6 degradation through the proteasome. These results demonstrate the crucial roles of CK1s/AELs in regulating cell division through modulating cell-cycle rates and elucidate how CK1s/AELs regulate cell division by destabilizing the stability of cyclin-dependent kinase inhibitor KRP6 through phosphorylation, providing insights into the plant cell-cycle regulation through CK1s-mediated posttranslational modification.

Plant casein kinases coordinate cell cycle by regulating the stability of a cyclin-dependent kinase inhibitor through promoting interaction with E3 ubiquitin ligases and proteasomal degradation by phosphorylation.  相似文献   

9.
The cell cycle plays an important role in the development and adaptation of multicellular organisms; specifically, it allows them to optimally adjust their architecture in response to environmental changes. Kip-related proteins (KRPs) are important negative regulators of cyclin-dependent kinases (CDKs), which positively control the cell cycle during plant development. The Arabidopsis genome possesses seven KRP genes with low sequence similarity and distinct expression patterns; however, why Arabidopsis needs seven KRP genes and how these genes function in cell cycle regulation are unknown. Here, we focused on the characterization of KRP3, which was found to have unique functions in the shoot apical meristem (SAM) and leaves. KRP3 protein was localized to the SAM, including the ground meristem and vascular tissues in the ground part of the SAM and cotyledons. In addition, KRP3 protein was stabilized when treated with MG132, an inhibitor of the 26S proteasome, indicating that the protein may be regulated by 26S proteasome-mediated protein degradation. KRP3-overexpressing (KRP3 OE) transgenic plants showed reduced organ size, serrated leaves, and reduced fertility. Interestingly, the KRP3 OE transgenic plants showed a significant reduction in the size of the SAM with alterations in cell arrangement. In addition, compared to the wild type, the KRP3 OE transgenic plants had a higher DNA ploidy level in the SAM and leaves. Taken together, our data suggest that KRP3 plays important regulatory roles in the cell cycle and endoreduplication in the SAM and leaves.  相似文献   

10.
BACKGROUND AND AIMS: Kip-related-proteins (KRPs), negative regulators of cell division, have recently been discovered in plants but their in planta function is as yet unclear. In this study the spatial expression of all seven KRP genes in shoot apices of Arabidopsis thaliana were compared. METHODS: In situ hybridization analyses were performed on longitudinal sections of shoot apices from 2-month-old Arabidopsis plants. KEY RESULTS: The study provides evidence for different expression pattern groups. KRP1 and KRP2 expression is restricted to the endoreduplicating tissues. In contrast, KRP4 and KRP5 expression is mainly restricted to mitotically dividing cells. KRP3, KRP6 and KRP7 can be found in both mitotically dividing and endoreduplicating cells. CONCLUSION: The results suggest differential roles for the distinct KRPs. KRP1 and KRP2 might specifically be involved in the establishment of polyploidy. In contrast, KRP4 and KRP5 might be involved in regulating the progression through the mitotic cell cycle. KRP3, KRP6 and KRP7 might have a function in both types of cell cycle.  相似文献   

11.
Liu J  Zhang Y  Qin G  Tsuge T  Sakaguchi N  Luo G  Sun K  Shi D  Aki S  Zheng N  Aoyama T  Oka A  Yang W  Umeda M  Xie Q  Gu H  Qu LJ 《The Plant cell》2008,20(6):1538-1554
Following meiosis, plant gametophytes develop through two or three rounds of mitosis. Although the ontogeny of gametophyte development has been defined in Arabidopsis thaliana, the molecular mechanisms regulating mitotic cell cycle progression are not well understood. Here, we report that RING-H2 group F 1a (RHF1a) and RHF2a, two RING-finger E3 ligases, play an important role in Arabidopsis gametogenesis. The rhf1a rhf2a double mutants are defective in the formation of male and female gametophytes due to interphase arrest of the mitotic cell cycle at the microspore stage of pollen development and at female gametophyte stage 1 of embryo sac development. We demonstrate that RHF1a directly interacts with and targets a cyclin-dependent kinase inhibitor ICK4/KRP6 (for Interactors of Cdc2 Kinase 4/Kip-related protein 6) for proteasome-mediated degradation. Inactivation of the two redundant RHF genes leads to the accumulation of ICK4/KRP6, and reduction of ICK4/KRP6 expression largely rescues the gametophytic defects in rhf1a rhf2a double mutants, indicating that ICK4/KRP6 is a substrate of the RHF E3 ligases. Interestingly, in situ hybridization showed that ICK4/KRP6 was predominantly expressed in sporophytes during meiosis. Our findings indicate that RHF1a/2a-mediated degradation of the meiosis-accumulated ICK4/KRP6 is essential to ensure the progression of subsequent mitoses to form gametophytes in Arabidopsis.  相似文献   

12.
In animals, cyclin-dependent kinase inhibitors (CKIs) are important regulators of cell cycle progression. Recently, putative CKIs were also identified in plants, and in previous studies, Arabidopsis thaliana plants misexpressing CKIs were found to have reduced endoreplication levels and decreased numbers of cells consistent with a function of CKIs in blocking the G1-S cell cycle transition. Here, we demonstrate that at least one inhibitor from Arabidopsis, ICK1/KRP1, can also block entry into mitosis but allows S-phase progression causing endoreplication. Our data suggest that plant CKIs act in a concentration-dependent manner and have an important function in cell proliferation as well as in cell cycle exit and in turning from a mitotic to an endoreplicating cell cycle mode. Endoreplication is usually associated with terminal differentiation; we observed, however, that cell fate specification proceeded independently from ICK1/KRP1-induced endoreplication. Strikingly, we found that endoreplicated cells were able to reenter mitosis, emphasizing the high degree of flexibility of plant cells during development. Moreover, we show that in contrast with animal CDK inhibitors, ICK1/KRP1 can move between cells. On the one hand, this challenges plant cell cycle control with keeping CKIs locally controlled, and on the other hand this provides a possibility of linking cell cycle control in single cells with the supracellular organization of a tissue or an organ.  相似文献   

13.
14.
15.
The development process of seed in plants is a cycle of cells which occur gradually and regularly. One of the genes involved in controling this stage is the Wee1 gene. Wee1 encode protein kinase which plays an important role in phosphorylation, inactivation of cyclin-dependent kinase 1 (CDK1)-cyclin (CYC) and inhibiting cell division at mitotic phase. The Overexpression of Wee1 leads to delaying entry into mitotic phase, resulting in enlargement of cell size due to suppression of cell division. Accordingly, the cloning and overexpressing of Wee1 in rice plant is important aim of this research in achieving better quantity and quality of future rice. The main objective of this present study is to cloning and generate transgenic rice plants overexpressing of Wee1 gene. Wee1 was isolated from cDNA of indica rice (Oryza sativa), called OsWee1. The full length of OsWee1 was 1239?bp in size and successfully inserted into plant expression vector pRI101ON. Seven-day-old rice seedlings were prepared for transformation of OsWee1 gene using Agrobacterium-mediated transformation method. Four positive transgenic lines were identified through the presence of kanamycin resistance gene (nptII) using genomic PCR analysis. Southern blot analysis result provides evidence that four independent rice transformants contained one to three rearranged transgene copies. Further screening in transgenic rice generation is needed in order to obtain stable expression of OsWee1.  相似文献   

16.
《Plant science》1986,46(1):53-61
Cell cycle parameters of maize (Zea maysL cv Black Mexican Sweet) suspension cultures and root meristem cells were determined by pulse labelling with [3H]thymidine ([3H]TdR). Total cell cycle time for the suspension cultures was 27 h; 3 h in G1, 14 h in S, 6 h in G2, 2.2 h in prophase, 1 h in metaphase, 0.1 h in anaphase, and 0.7 h in telophase. Cell cycle durations in root meristem cells of Black Mexican Sweet (BMS) corn with and without B chromosomes in vivo were 20.0 h and 18.3h, respectively. Chemical and physical methods were used successfully to accumulate mitoses in the suspension cultures; compared to the untreated control, the mitotic index of the treated cultures was increased from 4 to 23% and the frequency of metaphase cells increased dramatically from 3 to 19%.  相似文献   

17.
Root-knot and cyst nematodes are biotrophic parasites that invade the root apex of host plants and migrate toward the vascular cylinder where they cause the differentiation of root cells into galls (or root-knots) containing hypertrophied multinucleated giant-feeding cells, or syncytia, respectively. The precise molecular mechanisms that drive the formation of such unique nematode feeding sites are still far-off from being completely understood. The diverse gene expression changes occurring within the host cells suggest that both types of plant-parasitic nematodes modulate a variety of plant processes. Induction and repression of genes belonging to the host cell cycle control machinery have shown to be essential to drive the formation of such specialized nematode feeding cells. We demonstrate that nematodes usurp key components regulating the endocycle in their favor. This is illustrated by the involvement of anaphase-promoting complex (APC) genes (CCS52A and CCS52B), the endocycle repressor DP-E2F-like (E2F/DEL1) gene and the ROOT HAIRLESS 1 PROTEIN (RHL1), which is part of a multiprotein complex of the toposiomerase VI, in the proper formation of nematode feeding sites. Altering the expression of these genes in Arabidopsis plants by down- or overexpressing strategies strongly influences the extent of endoreduplication in both types of nematode feeding site leading to a disturbance of the nematode’s life cycle and reproduction.  相似文献   

18.
N6,O2′-dibutyryl adenosine 3′,5′-cyclic-phosphate (db-cAMP) has been shown to convert Chinese hamster cells of ovarian origin (CHO-K1) from compact, randomly oriented cells growing in multilayers to elongated fibroblast-like cells which grow in monolayers. This compound also has been reported to have a variety of effects on the cell cycle. Most such studies have employed synchronized cells to determine cell cycle effects, and consequently have been limited to the short-term effects of the compound. We have looked for chronic effects on the cell cycle in cultures exposed continuously to db-cAMP from the initiation of the cultures until they had reached or approached the plateau phase. This was done by combined autoradiography and Feulgen microspectrophotometry plus measurements of the protein content of mitotic cells to detect any influence on cell size. The overall results were that continuous exposure to db-cAMP had at most only minor effects on the cell cycle and cell size when the culture medium was renewed daily. Somewhat greater effects were found on plateau-phase cells in cultures in which the medium was not renewed. In this case fewer cells appeared to remain in the cell cycle in the cultures with db-cAMP. Comparison with our earlier results with Chinese hamster V79 cells led to the conclusions that cell cycle parameters and cell size at mitosis were less altered during culture growth in CHO cells, but that CHO cells seemed to be less able to maintain cells in the cell cycle in crowded cultures.  相似文献   

19.

Background and Aims

The cell cycle is controlled by cyclin-dependent kinases (CDKs), and CDK inhibitors are major regulators of their activities. The ICK/KRP family of CDK inhibitors has been reported in several plants, with seven members in arabidopsis; however, the phylogenetic relationship among members in different species is unknown. Also, there is a need to understand how these genes and proteins are regulated. Furthermore, little information is available on the functional differences among ICK/KRP family members.

Methods

We searched publicly available databases and identified over 120 unique ICK/KRP protein sequences from more than 60 plant species. Phylogenetic analysis was performed using 101 full-length sequences from 40 species and intron–exon organization of ICK/KRP genes in model species. Conserved sequences and motifs were analysed using ICK/KRP protein sequences from arabidopsis (Arabidopsis thaliana), rice (Orysa sativa) and poplar (Populus trichocarpa). In addition, gene expression was examined using microarray data from arabidopsis, rice and poplar, and further analysed by RT-PCR for arabidopsis.

Key Results and Conclusions

Phylogenetic analysis showed that plant ICK/KRP proteins can be grouped into three major classes. Whereas the C-class contains sequences from dicotyledons, monocotyledons and gymnosperms, the A- and B-classes contain only sequences from dicotyledons or monocotyledons, respectively, suggesting that the A- and B-classes might have evolved from the C-class. This classification is also supported by exon–intron organization. Genes in the A- and B- classes have four exons, whereas genes in the C-class have only three exons. Analysis of sequences from arabidopsis, rice and poplar identified conserved sequence motifs, some of which had not been described previously, and putative functional sites. The presence of conserved motifs in different family members is consistent with the classification. In addition, gene expression analysis showed preferential expression of ICK/KRP genes in certain tissues. A model has been proposed for the evolution of this gene family in plants.  相似文献   

20.
Using synchronous populations obtained by selectively detaching mitotic cells from cultures grown in monolayer, we demonstrate here that Chinese hamster ovary (CHO) cells exhibit a differential sensitivity to mutation induction by UV as a function of position in the cell cycle. When mutation induction to 6-thioguanine (TG) resistance is monitored, several maxima and minima are displayed during cell-cycle traverse, with a major maximum occurring in early S phase. Although cells in S phase are more sensitive to UV-mediated cell lethality than those in G1 or G2/M phases, there is not a strict correlation with induced mutation frequency. Fluence-response curves obtained at several times during the cell cycle yield Dq values approximating 6 J/m2. The primary survival characteristic which varies with cell cycle position is D0, ranging from 2.5 J/m2 at 6 h after mitotic selection to 5.5 J/m2 at 11 h afterward. Based on studies with asynchronous, logarithmically growing populations, as well as those mitotically selected to be synchronous, the optimum phenotypic expression time for induced TG resistance is 7–9 days and is essentially independent of both UV fluence and position in the cell cycle. All isolated mutants have altered hypozanthine—guanine phosphoribosyl transferase (HGPRT) activity, and no difference in the residual level of activity was detected among isolated clones receiving UV radiation during G1, S, or late S/G2 phases of the cell cycle. Changes in cellular morphology during cell-cycle traverse do not contribute to the differential susceptibility to UV-induced mutagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号