首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Most bacterial chemoreceptors are transmembrane proteins. Although less than 10% of a transmembrane chemoreceptor is embedded in lipid, separation from the natural membrane environment by detergent solubilization eliminates most receptor activities, presumably because receptor structure is perturbed. Reincorporation into a lipid bilayer can restore these activities and thus functionally native structure. However, the extent to which specific lipid features are important for effective restoration is unknown. Thus we investigated effects of membrane lipid composition on chemoreceptor Tar from Escherichia coli using Nanodiscs, small (∼10-nm) plugs of lipid bilayer rendered water-soluble by an annulus of “membrane scaffold protein.” Disc-enclosed bilayers can be made with different lipids or lipid combinations. Nanodiscs carrying an inserted receptor dimer have high protein-to-lipid ratios approximating native membranes and in this way mimic the natural chemoreceptor environment. To identify features important for functionally native receptor structure, we made Nanodiscs using natural and synthetic lipids, assaying extents and rates of adaptational modification. The proportion of functionally native Tar was highest in bilayers closest in composition to E. coli cytoplasmic membrane. Some other lipid compositions resulted in a significant proportion of functionally native receptor, but simply surrounding the chemoreceptor transmembrane segment with a lipid bilayer was not sufficient. Membranes effective in supporting functionally native Tar contained as the majority lipid phosphatidylethanolamine or a related zwitterionic lipid plus a rather specific proportion of anionic lipids, as well as unsaturated fatty acids. Thus the chemoreceptor is strongly influenced by its lipid environment and is tuned to its natural one.  相似文献   

2.
3.
The effect of butanol challenge (0, 1.0, 1.5% [vol/vol]) and growth temperature (22, 37, 42°C) on the membrane composition and fluidity of Clostridium acetobutylicum ATCC 824 and a butanol-tolerant mutant, SA-2, was examined in chemically defined medium. Growth of strain ATCC 824 into the stationary phase coincided with a gradual increase in the percent saturated to percent unsaturated (SU) fatty acid ratio. When challenged with butanol at 22 and 37°C, ATCC 824 demonstrated an immediate (within 30 min) dose-response increase in the SU ratio. This strain showed little additional change over a 48-h fermentation. Compared with ATCC 824, growth of SA-2 into the late stationary phase at 22 or 37°C resulted in an overall greater increase in the SU ratio for both unchallenged and challenged cells. This effect was minimized when SA-2 was challenged at 42°C, probably due to the combination of the membrane fluidizing effect of butanol and the elevated temperature. Growth at 42°C resulted in an increase in longer acyl chain fatty acids at the expense of shorter acyl chains for both strains. The membrane fluidity exhibited by SA-2 remained essentially constant at various butanol challenge and temperature combinations, while that for the ATCC 824 strain increased with increasing butanol challenge. By synthesizing an increased amount of saturated fatty acids, the butanol-tolerant SA-2 strain has apparently developed a mechanism for maintaining a more stable membrane environment. Growth of the microorganism is necessary for butanol to fluidize the membrane. Incorporation of exogenous fatty acids (18:1) did not significantly improve the butanol tolerance of either strain. Since SA-2 was able to produce only trace amounts of either butanol or acetone, increased tolerance to butanol does not necessarily coincide with greater solvent yields in this strain.  相似文献   

4.
Maximum freezing tolerance of Arabidopsis thaliana L. Heyn (Columbia) was attained after 1 week of cold acclimation at 2[deg]C. During this time, there were significant changes in both the lipid composition of the plasma membrane and the freeze-induced lesions that were associated with injury. The proportion of phospholipids increased from 46.8 to 57.1 mol% of the total lipids with little change in the proportions of the phospholipid classes. Although the proportion of di-unsaturated species of phosphatidylcholine and phosphatidylethanolamine increased, mono-unsaturated species were still the preponderant species. The proportion of cerebrosides decreased from 7.3 to 4.3 mol% with only small changes in the proportions of the various molecular species. The proportion of free sterols decreased from 37.7 to 31.2 mol%, but there were only small changes in the proportions of sterylglucosides and acylated sterylglucosides. Freezing tolerance of protoplasts isolated from either nonacclimated or cold-acclimated leaves was similar to that of leaves from which the protoplasts were isolated (-3.5[deg]C for nonacclimated leaves; -10[deg]C for cold-acclimated leaves). In protoplasts isolated from nonacclimated leaves, the incidence of expansion-induced lysis was [less than or equal to]10% at any subzero temperature. Instead, freezing injury was associated with formation of the hexagonal II phase in the plasma membrane and subtending lamellae. In protoplasts isolated from cold-acclimated leaves, neither expansion-induced lysis nor freeze-induced formation of the hexagonal II phase occurred. Instead, injury was associated with the "fracture-jump lesion," which is manifested as localized deviations of the plasma membrane fracture plane to subtending lamellae. The relationship between the freeze-induced lesions and alterations in the lipid composition of the plasma membrane during cold acclimation is discussed.  相似文献   

5.
The outer membranes and cytoplasmic membranes of the marine bacterium Pseudomonas BAL-31 were separated by washing the cells three times in 0.5 M NaCl and twice in 0.5 M sucrose. Electron microscopy during the removal of membranes revealed that the outer membranes fragmented in a regular manner to give rise to fairly uniform vesicles measuring approximately 140 nm in diameter. Isolated outer membranes had a buoyant density in sucrose of 1.230 g per cm(3), whereas the cytoplasmic membranes had a density of 1.194 g per cm(3). The removal of the outer membrane during the application of this procedure was monitored by measuring the release of 2-keto-3-deoxyoctulosonic acid and phospholipid. The cells lost 85.5% of their 2-keto-3-deoxyoctulosonic acid and 47.3% of their phospholipid during this treatment. Complete recovery of outer membrane material could be achieved. The removal of 25.5% of the 2-keto-3-deoxyoctulosonic acid and 0.9% of the phospholipid rendered the cells sensitive to lysis with Triton X-100. The phospholipid composition of the outer membrane was calculated to be 78.9% phosphatidylethanolamine and 16.1% phosphatidylglycerol. The phospholipid composition of the cytoplasmic membrane proved to be 71.5% phosphatidylethanolamine and 23.5% phosphatidylglycerol. The fatty acid composition was also found to be quantitatively heterogeneous between the two membranes.  相似文献   

6.
Kalacheva  G. S.  Zhila  N. O.  Volova  T. G.  Gladyshev  M. I. 《Microbiology》2002,71(3):286-293
The lipid composition of the green alga Botryococcus was studied at three different cultivation temperatures: suboptimal (18°C), optimal (25°C), and supraoptimal (32°C). Cultivation at the supraoptimal temperature was found to considerably inhibit the synthesis of nearly all intracellular lipids, except for triacylglycerides, and to influence their fatty acid composition. In particular, the content of trienoic fatty acids was significantly lower at the supraoptimal than at the optimal cultivation temperature. At the same time, the fatty acid composition of the extracellular lipids of the alga virtually did not depend on cultivation temperature.  相似文献   

7.
对钒酸根V(V)与红细胞膜相互作用研究表明V(V)使膜蛋白内源荧光淬灭(KD,37=2.23,KD,20=4.17)和膜巯基含量降低,但对膜脂质过氧化影响较小,提示V(V)主要与膜蛋白作用.与V(V)不同,V(V)与红细胞膜的作用虽使膜蛋白就基含量下降,但不显著,其主要作用是引起膜脂质过氧化.  相似文献   

8.
Lipid peroxide formation and plasma membrane damage in mouse liver following the administration of Salmonella endotoxin were examined. The liver lipoperoxide level was markedly elevated in animals given endotoxin compared with that in the controls, and returned to its normal range after 2 days. On the other hand, superoxide dismutase activity was decreased by 18–48 hr after endotoxin injection, thereafter tending to increase. Glutathione reductase and glutathione peroxidase activities declined in the liver 18 hr after the injection. The endotoxin resulted in much lower lipoperoxide formation in the livers of tolerant mice than in those of the poisoned mice. The lipoperoxide level in endotoxin-poisoned mice after the administration of α-tocopherol was lower than that in the controls, and α-tocopherol administration prevented completely the membrane protein damage that arose from endotoxin challenge. After glutathione administration the membranes of the poisoned mice also returned to almost the normal disk electrophoretic profile. These results suggest that lipid peroxide formation in the liver plasma membrane caused by free radicals might occur in a tissue ischemic state in endotoxicosis.  相似文献   

9.
Carbon nanoparticles can penetrate the cell membrane and cause cytotoxicity. The diffusion feature and translocation free energy of fullerene through lipid membranes is well reported. However, the knowledge on self-assembly of fullerenes and resulting effects on lipid membrane is poorly addressed. In this work, the self-assembly of fullerene nanoparticles and the resulting influence on the dioleoylphosphtidylcholine (DOPC) model membrane were studied by using all-atom molecular dynamics simulations with explicit solvents. Our simulation results confirm that gathered small fullerene cluster can invade lipid membrane. Simulations show two pathways: 1) assembly process is completely finished before penetration; 2) assembly process coincides with penetration. Simulation results also demonstrate that in the membrane interior, fullerene clusters tend to stay at the position which is 1.0 nm away from the membrane center. In addition, the diverse microscopic stacking mode (i.e., equilateral triangle, tetrahedral pentahedral, trigonal bipyramid and octahedron) of these small fullerene clusters are well characterized. Thus our simulations provide a detailed high-resolution characterization of the microscopic structures of the small fullerene clusters. Further, we found the gathered small fullerene clusters have significant adverse disturbances to the local structure of the membrane, but no great influence on the global integrity of the lipid membrane, which suggests the prerequisite of high-content fullerene for cytotoxicity.  相似文献   

10.
由黄瓜类囊体及其基粒片层、间质片层、PSⅡ放氧颗粒和捕光色素蛋白复合体类脂组成的分析表明;各膜制备物均含有类囊体膜的5种类脂成分,除LHCⅡ外,其它均以MGDG含量为最高,其次是DGDG,在LHCⅡ所含类脂中,PG含量最高。SQDO除在LHCⅡ中含量稍低以外,在其它膜制备物中的含量没有明显的差异。类脂脂肪酸组成的分析可知,不同膜制备物中MGDG、DGDG和SQDG的脂肪酸组成没有明显差异,但PG的脂肪酸组成差异较明显。  相似文献   

11.
Phosphatidylserine (PS), which is normally localized in the cytoplasmic leaflet of the membrane, undergoes externalization during aging or trauma of red blood cells (RBCs). A fraction of this PS is shed into the extracellular milieu. Both PS externalization and shedding are modulated by the oxidative state of the cells. In the present study we investigated the effect of calcium (Ca) flux on oxidative stress-induced membrane distribution of PS and its shedding and on the membrane composition and functions. Normal human RBCs were treated with the oxidant t-butyl hydroperoxide, and thalassemic RBCs, which are under oxidative stress, were treated with the antioxidant vitamin C or N-acetylcystein. The intracellular Ca content was modulated by the Ca ionophore A23187 and by varying the Ca concentration in the medium. Ca flux was measured by Fluo-3, PS externalization and shedding were measured by quantitative flow cytometry and membrane composition was measured by 1H-NMR analysis of the cholesterol and phospholipids. The results indicated that increasing the inward Ca flux induced PS externalization and shedding, which in turn increased the membrane cholesterol/phospholipid ratio and thereby increased the RBC osmotic resistance. In addition, these processes modulated the susceptibility of RBCs to undergo phagocytosis by macrophages; while PS externalization increased phagocytosis, the shed PS prevented it. These results indicate that PS redistribution and shedding from RBCs, which are mediated by increased calcium, have profound effects on the membrane composition and properties and, thus, may control the fate of RBCs under physiological and pathological conditions.  相似文献   

12.
The comparative study of lipid composition was carried out in four species of marine algae, Ahnfeltia tobuchiensis, Laminaria japonica, Sargassum pallidum, and Ulva fenestrata, as well as a higher plant grass wrack (Zostera marina). Plants were collected in the Japan Sea in spring at 2.9 and 5.5°C and in summer at 23°C. The main lipid components of membranes were determined, and the general patterns of the ratio of phospholipids (PL), glycolipids (GL), betaine (BL), and neutral (NL) lipids were discerned. The relative content of NL in all species (except A. tobuchiensis) was higher in summer. The level of triacylglycerols was as high as 18–37%. The content of individual classes of PL and GL varied between the spring and summer samples, the relative content of PL being higher in spring. In most species, the ratio of PL to GL decreased in summer. The content of free sterols did not depend on the season. The molar ratios of phosphatidylcholine and diacylglycerol-o-(hydroxymethyl)-(N,N,N-trimethyl)homoserine to free sterols varied from 0.9 to 1.7. The seasonal changes of lipid composition were apparently related to macrophyte adaptation to water temperature and to biology of their development.  相似文献   

13.
Uemura M  Steponkus PL 《Plant physiology》1997,114(4):1493-1500
The lipid composition of the inner and outer membranes of the chloroplast envelope isolated from winter rye (Secale cereale L. cv Puma) leaves was characterized before and after cold acclimation. In nonacclimated leaves the inner membrane contained high proportions of monogalactosyldiacylglycerols (MGDG, 47.9 mol% of the total lipids) and digalactosyldiacylglycerols (DGDG, 31.1 mol%) and a low proportion of phosphatidylcholine (PC, 8.1 mol%). The outer membrane contained a similar proportion of DGDG (30.0 mol%); however, the proportion of MGDG was much lower (20.1 mol%) and the proportion of PC was much higher (31.5 mol%). After 4 weeks of cold acclimation, the proportions of these lipid classes were significantly altered in both of the inner and outer membranes. In the inner membrane the proportion of MGDG decreased (from 47.9 to 38.4 mol%) and the proportion of DGDG increased (from 31.1 to 39.3 mol%), with only a slight change in the proportion of PC (from 8.1 to 8.8 mol%). In the outer membrane MGDG decreased from 20.1 to 14.8 mol%, DGDG increased from 30.0 to 39.9 mol%, and PC decreased from 31.5 to 25.4 mol%. Thus, both before and after cold acclimation, the proportion of MGDG was much higher in the inner membrane than in the outer membrane. In contrast, the proportion of PC was higher in the outer membrane than in the inner membrane. The relationship between the lipid composition of the inner and outer membranes of the chloroplast envelope and freeze-induced membrane lesions is discussed.  相似文献   

14.
SYNOPSIS. A medium for the axenic cultivation of Entamoeba invadens has been developed. Serum, an essential constituent of conventional media, has been replaced by a mixture of albumin, unsaturated fatty acids, Tween, and cholesterol to control the lipid composition of the medium. Entamoeba invadens requires both cholesterol and unsaturated fatty acids for growth. The fatty acid composition of the phospholipids of the ameba reflects that of the medium to a great extent, especially with regard to the unsaturated fatty acids. The amount of membrane bounded cholesterol depends on the cholesterol concentration in the medium.  相似文献   

15.
16.
Plasmodesmata (PD) are nano-sized membrane-lined channels controlling intercellular communication in plants. Although progress has been made in identifying PD proteins, the role played by major membrane constituents, such as the lipids, in defining specialized membrane domains in PD remains unknown. Through a rigorous isolation of “native” PD membrane fractions and comparative mass spectrometry-based analysis, we demonstrate that lipids are laterally segregated along the plasma membrane (PM) at the PD cell-to-cell junction in Arabidopsis thaliana. Remarkably, our results show that PD membranes display enrichment in sterols and sphingolipids with very long chain saturated fatty acids when compared with the bulk of the PM. Intriguingly, this lipid profile is reminiscent of detergent-insoluble membrane microdomains, although our approach is valuably detergent-free. Modulation of the overall sterol composition of young dividing cells reversibly impaired the PD localization of the glycosylphosphatidylinositol-anchored proteins Plasmodesmata Callose Binding 1 and the β-1,3-glucanase PdBG2 and altered callose-mediated PD permeability. Altogether, this study not only provides a comprehensive analysis of the lipid constituents of PD but also identifies a role for sterols in modulating cell-to-cell connectivity, possibly by establishing and maintaining the positional specificity of callose-modifying glycosylphosphatidylinositol proteins at PD. Our work emphasizes the importance of lipids in defining PD membranes.  相似文献   

17.
Elucidating molecular mechanisms by which lipids regulate protein function within biological membranes is critical for understanding the many cellular processes. Recently, we have found that dimeric αβ-tubulin, a subunit of microtubules, regulates mitochondrial respiration by blocking the voltage-dependent anion channel (VDAC) of mitochondrial outer membrane. Here, we show that the mechanism of VDAC blockage by tubulin involves tubulin interaction with the membrane as a critical step. The on-rate of the blockage varies up to 100-fold depending on the particular lipid composition used for bilayer formation in reconstitution experiments and increases with the increasing content of dioleoylphosphatidylethanolamine (DOPE) in dioleoylphosphatidylcholine (DOPC) bilayers. At physiologically low salt concentrations, the on-rate is decreased by the charged lipid. The off-rate of VDAC blockage by tubulin does not depend on the lipid composition. Using confocal fluorescence microscopy, we compared tubulin binding to the membranes of giant unilamellar vesicles (GUVs) made from DOPC and DOPC/DOPE mixtures. We found that detectable binding of the fluorescently labeled dimeric tubulin to GUV membranes requires the presence of DOPE. We propose that prior to the characteristic blockage of VDAC, tubulin first binds to the membrane in a lipid-dependent manner. We thus reveal a new potent regulatory role of the mitochondrial lipids in control of the mitochondrial outer membrane permeability and hence mitochondrial respiration through tuning VDAC sensitivity to blockage by tubulin. More generally, our findings give an example of the lipid-controlled protein-protein interaction where the choice of lipid species is able to change the equilibrium binding constant by orders of magnitude.  相似文献   

18.
Lipid rafts and ceramide (Cer)-platforms are membrane domains that play an important role in several biological processes. Cer-platforms are commonly formed in the plasma membrane by the action of sphingomyelinase (SMase) upon hydrolysis of sphingomyelin (SM) within lipid rafts. The interplay among SMase activity, initial membrane properties (i.e., phase behavior and lipid lateral organization) and lipid composition, and the amount of product (Cer) generated, and how it modulates membrane properties were studied using fluorescence methodologies in model membranes. The activity of SMase was evaluated by following the hydrolysis of radioactive SM. It was observed that 1), the enzyme activity and extent of hydrolysis are strongly dependent on membrane physical properties but not on substrate content, and are higher in raft-like mixtures, i.e., mixtures with liquid-disordered/liquid-ordered phase separation; and 2), Cer-induced alterations are also dependent on membrane composition, specifically the cholesterol (Chol) content. In the lowest-Chol range, Cer segregates together with SM into small (∼8.5 nm) Cer/SM-gel domains. With increasing Chol, the ability of Cer to recruit SM and form gel domains strongly decreases. In the high-Chol range, a Chol-enriched/SM-depleted liquid-ordered phase predominates. Together, these data suggest that in biological membranes, Chol in particular and raft domains in general play an important role in modulating SMase activity and regulating membrane physical properties by restraining Cer-induced alterations.  相似文献   

19.
The allosteric inhibition by sodium of the (Ca(2+))-adenosine triphosphatase (EC 3.6.1.3) from Escherichia coli was found to be dependent on the lipid composition of the cell membrane.  相似文献   

20.
类囊体膜主要由膜脂、膜蛋白及一些光合色素等成分组成,它是植物进行光合作用的场所。低温能通过影响类囊体膜的结构而影响植物的光合作用。简述了类囊体膜的组成和功能,以及低温胁迫下类囊体膜脂及其脂肪酸组成的变化。简要介绍了膜脂与光抑制的关系,以及利用分子生物学手段研究三烯脂肪酸与植物抗冷性关系的相关进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号