首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DEVELOPMENTAL PROFILES OF GANGLIOSIDES IN HUMAN AND RAT BRAIN   总被引:23,自引:13,他引:10  
Abstract— The developmental profiles of individual gangliosides of human brain were compared with those of rat brain. Interest was focused mainly on the pre- and early postnatal development. Human frontal lobe cortex covering the period from 10 foetal weeks to adult age and the cerebrum of rat from birth to 21 days were analysed. Lipid-NANA and lipid-P were followed; in the rat, also protein and brain weight. A limited number of samples of human cerebral white matter and cerebellar cortex were also studied. The following major results were obtained:
  • 1 The ganglioside concentration increased approximately three-fold within a short period: in rat cerebrum, from birth to the 17th day; in human cerebral cortex, from the 15th foetal week to the age of about 6 months. The largest increase in the rat brain occurred by the 11th to the 13th day; in human brain by term. The relative increase of gangliosides during this period was more rapid than that of phospholipids.
  • 2 A hitherto unknown distinct early period of ganglioside and phospholipid formation in rat occurred by the second to fourth day.
  • 3 The changes in brain ganglioside pattern, characteristic of the developmental stages of the rat, were found to be equally pronounced in the human brain.
  • 4 Regional developmental differences in the ganglioside pattern were demonstrated in human brain. A characteristic white matter pattern, rich in monosialogangliosides, had developed by the age of 1 year. The increase in ganglioside concentration and the formation of the definitive ganglioside pattern of cerebellar cortex occurred later than in cerebral cortex. This cerebellar pattern was characterized by a very large trisialoganglioside fraction.
  • 5 The two periods of rapid ganglioside metabolism in rat brain preceded the two periods of rapid protein biosynthesis.
  相似文献   

2.
The incorporation of L-[3H]leucine into the proteins of rat cerebellum and cerebrum was measured 30min after an intravenous injection of the labelled amino acid. In normal rats. both RSA and the relative RSA of the proteins of the cerebellum and the cerebrum, varied greatly from one day to another during the first ten days of postnatal life. These variations showed a maximum of both the RSA and the relative RSA of the proteins on the 7th day, and 2 minima on the 3rd and 16th day. In hypothyroid animals, both the RSA and the relative RSA of the proteins of the cerebellum and the cerebrum were generally lower than in normal animals. Both showed a maximum at 7 days and a minimum at 3 days. In hyperthyroid animals, both the RSA and the relative RSA of the proteins of the cerebellum were significantly higher than those of normal animals. Both showed 2 minima at 2 and 5 days. In the hypothyroid animals as in the normal, protein synthesis was higher in the second postnatal week than during the first. On the other hand, in the hyperthyroid animals, protein synthesis was greater during the first postnatal week than during the second. The changes in both the RSA and the relative RSA values of the proteins of the cerebellum are discussed as a function of both growth and cellular proliferation. Hyperthyroidism advances these two processes without changing the period that separates them. On the other hand, hypothyroidism changes this period and causes a change in the development of these processes.  相似文献   

3.
Taurine concentration decreases rapidly in the tissues and physiological fluids of kittens fed a diet of partially purified casein which lacks taurine. We have studied the subcellular distribution in cerebrum of taurine and [35S]taurine administered intravenously to these animals. The taurine concentration of all the fractions isolated from the cerebrum of taurine-deficient kittens was approximately sevenfold less than that observed in the fractions of cerebrum isolated from control kittens. The [35S]taurine was approximately twofold greater in all the brain fractions isolated from the taurine-deficient kittens compared with those isolated from the control kittens. The percent distributions of taurine and [35S]taurine in the fractions isolated from the cerebrum of control and deficient kittens were identical. Thus, in the face of a severe diet-induced deficiency of taurine in kitten brain, there appears to be no conservation of taurine by any particular subcellular pool of taurine. These studies provide no evidence for differences in compartmentation of taurine in cerebrum of taurine-deficient kittens compared with control kittens.  相似文献   

4.
Rett syndrome (RS) is an X-linked neurodevelopmental disorder mostly involving mutations in the gene for methyl-CpG-binding protein 2 (MECP2). Ganglioside abnormalities were previously found in cerebrum and cerebellum in RS patients. We evaluated total lipid distribution in cerebrum/brainstem, hippocampus, and cerebellum in male mice carrying either the Mecp2 tm1.1Bird knockout mutation or the Mecp2 308/y deletion mutation. The concentration of the neuronal enriched ganglioside GD1a was significantly lower in the cerebrum/brainstem of Mecp2 tm1.1Bird mice than in that of age matched controls, but was not reduced in the Mecp2 308/y mice. No other differences in brain lipid content, including myelin-enriched cerebrosides, were detected in mice with either type of Mecp2 mutation. These findings indicate that the poor motor performance previously reported in the RS mutant mice is not associated with major brain lipid abnormalities and that most previous brain lipid abnormalities observed in RS patients were not observed in the Mecp2 tm1.1Bird or the Mecp2 308/y RS mice.  相似文献   

5.
The development of therapies for Amyotrophic Lateral Sclerosis (ALS) has been hindered by the lack of biomarkers for both identifying early disease and for monitoring the effectiveness of drugs. The identification of ALS biomarkers in presymptomatic individuals might also provide clues to the earliest biochemical correlates of the disease. Previous attempts to use plasma metabolites as biomarkers have led to contradictory results, presumably because of heterogeneity in both the underlying genetics and the disease stage in the clinical population. To eliminate these two sources of heterogeneity we have characterized plasma amino acids and other metabolites in the SOD1G93A transgenic mouse model for ALS. Presymptomatic SOD1G93A mice have significant differences in concentrations of several plasma metabolites compared to wild type animals, most notably in the concentrations of aspartate, cystine/cysteine, and phosphoethanolamine, and in changes indicative of methylation defects. There are significant changes in amino acid compositions between 50 and 70 days of age in both the SOD1G93A and wild type mice, and several of the age-related and disease-related differences in metabolite concentration were also gender-specific. Many of the SOD1G93A-related differences could be altered by treatment of mice with methionine sulfoximine, which extends the lifespan of this mouse, inhibits glutamine synthetase, and modifies brain methylation reactions. These studies show that assaying plasma metabolites can effectively distinguish transgenic mice from wild type, suggesting that one or more plasma metabolites might be useful biomarkers for the disease in humans, especially if genetic and longitudinal analysis is used to reduce population heterogeneity.  相似文献   

6.
We attempted to delineate the events leading to hypomyelination in the brain of thelittle mouse, a promising murine model of isolated growth hormone deficiency. At 20 days of age, the mutant mouse brain weighed less than its normal counterpart, and this difference in brain weight persisted. Increase in CNPase activity was found to be suppressed in the cerebrum throughout the developmental stage, but not in the other parts of the brain. Differences in cerebral DNA content between thelittle and normal mice first became apparent on the 10th day of age. Thereafter, the rate of increase in thelittle brain consistently lagged behind the normal. [3H]Thymidine incorporation into the DNA fraction in vivo on the 7th day of age, when glial cell proliferation in the normal cerebrum is most active, was approximately half that of the controls in all parts of thelittle brain. These findings indicate that the hypomyelination of the mutant cerebrum might result from reduced oligodendroglial proliferation due to growth hormone deficiency.  相似文献   

7.
Chronic overexposure to cobalt (Co) may result in neurotoxic effects, but the mechanism of Co-induced neurotoxicity is not yet well established. Our study was conducted to determine whether Co is associated to the induction of central nervous system damage in pregnant rats and their progeny. Twelve pregnant female rats were randomly divided into 2 groups: group I served as controls and group II received Co (350 mg/L, orally). Treatments started from the 14th day of pregnancy until day 14 after delivery. Co concentration in plasma was higher in the treated groups than in the controls. Exposure to Co also increased the levels of MDA, PCO, H2O2, and AOPP, while Na+K+-ATPase and Mg2+-ATPase, AChE, and BuChE activities decreased in the cerebrum and cerebellum of suckling pups. A smear without ladder formation on agarose gel was also shown in the cerebrum and cerebellum, indicating random DNA degradation. A reduction in GPx, SOD, CAT, GSH, NPSH, and vitamin C values was observed. The changes were confirmed by histological results. In conclusion, these data showed that the exposure of pregnant and lactating rats to Co resulted in the development of oxidative stress and the impairment of defense systems in the cerebrum and cerebellum of their suckling pups.  相似文献   

8.
The results of previous behavioral studies utilizing chronic exposure to low amounts of inorganic lead (Pb) have suggested alterations in the function of biogenic amine neuronal systems. The following study was performed to provide evidence for the possible bases of these changes in pharmacological responsiveness in exposed animals. Dams were administered 0.2% Pb acetate in drinking water to expose their offspring to Pb via the maternal milk. Males were weaned to the same drinking solution. At 120–140 days a tracer dose of 1.0 mCil-[3H]2,6-tyrosine (3H-TYR) and 0.5 mCil-[3H(G)]tryptophan (3H-TRP) was injected through an indwelling jugular catheter, and norepinephrine (NE), dopamine (DA), 5-hydroxytryptamine (5-HT) and their respective precursors and metabolites were quantified by liquid chromatography with electrochemical detection with column eluate collected for liquid scintillation counting. At this level of exposure (blood lead (PbB) at day 90 in exposed animals=43.1±1.7 g/dl) no changes were observed in concentration Nf NE or DA mr DA metabolites in any brain region. However, DA turnover was decreased in Pb-exposed animals in nucleus accumbens and frontal cortex. No changes in 5-HT content and turnover were observed in any brain region, but 5-hydroxyindoleacetic acid (5-HIAA) levels were decreased in 6 of the 9 brain regions examined. These findings are consistent with observations of an attenuated behavioral responsiveness to d-amphetamine (AMPH) in exposed animals, and suggest that the changes in DA and 5-HT neurons noted by other workers at higher levels of exposure persist when PbBs are in the range of 40 g/dl.  相似文献   

9.
Abstract: Conventional histological examination of the pituitary does not distinguish Snell dwarf mutants (dw/dw) from their normal littermates (+/?) in the neonatal stage. However, immunohistochemical examination of pituitaries of litters born to heterozygous Snell parents revealed that in approximately 25% of the glands examined, the number of positive cells was very low in the neonatal stage. We attempted to delineate the events resulting in the poor myelination in the brain of the Snell dwarf mouse, and to devise an immunohistochemical method for identifying the mutant neonate. Differences in the brain weights of the dw/dw and +/? mice first became apparent on the 10th day of age, and from this time on no further increase in the weight of the dwarf mouse brain was recorded. Increase in CNPase activity was found to be suppressed in the cerebrum and brain stem throughout the developmental stage, but not in the other parts of the brain. The yield of isolated myelin decreased by 58% in the mutant mouse, but CNPase activity was equivalent to that of control myelin. Differences in DNA content per cerebrum from the dw/dw and +/? mice first became apparent on the 10th day of age. Henceforth, the dw/dw mice showed no further increase, although the +/? mice continued to increase. [3H]Thymidine incorporation into the DNA fraction in vivo on the 7th day of age, when glial cell proliferation in the cerebrum is most active, was suppressed to about 50% of the control level in all parts of the dwarf brain. These findings indicate that the poor myelination found in the mutant cerebrum is a hypomyelination due to reduced oligodendroglial proliferation caused by lack of circulating growth hormone.  相似文献   

10.
The brain of a human neonate is more vulnerable to hypoglycemia than that of pediatric and adult patients. Repetitive and profound hypoglycemia during the neonatal period (RPHN) causes brain damage and leads to severe neurologic sequelae. Ex vivo high-resolution 1H nuclear magnetic resonance (NMR) spectroscopy was carried out in the present study to detect metabolite alterations in newborn and adolescent rats and investigate the effects of RPHN on their occipital cortex and hippocampus. Results showed that RPHN induces significant changes in a number of cerebral metabolites, and such changes are region-specific. Among the 16 metabolites detected by ex vivo 1H NMR, RPHN significantly increased the levels of creatine, glutamate, glutamine, γ-aminobutyric acid, and aspartate, as well as other metabolites, including succine, taurine, and myo-inositol, in the occipital cortex of neonatal rats compared with the control. By contrast, changes in these neurochemicals were not significant in the hippocampus of neonatal rats. When the rats had developed into adolescence, the changes above were maintained and the levels of other metabolites, including lactate, N-acetyl aspartate, alanine, choline, glycine, acetate, and ascorbate, increased in the occipital cortex. By contrast, most of these metabolites were reduced in the hippocampus. These metabolic changes suggest that complementary mechanisms exist between these two brain areas. RPHN appears to affect occipital cortex and hippocampal activities, neurotransmitter transition, energy metabolism, and other metabolic equilibria in newborn rats; these effects are further aggravated when the newborn rats develop into adolescence. Changes in the metabolism of neurotransmitter system may be an adaptive measure of the central nervous system in response to RPHN.  相似文献   

11.
Lin SS  Hung CF  Ho CC  Liu YH  Ho HC  Chung JG 《Neurochemical research》2000,25(11):1503-1508
Numerous studies have demonstrated that the Acetyl Coenzyme A-dependent arylamine NAT enzyme exist in many tissues of experimental animals including humans, and that NAT has been shown to be exist in mouse brain tissue. Increased NAT activity levels are associated with increased sensitivity to the mutagenic effects of arylamine carcinogens. Attenuation of liver NAT activity is related to breast and bladder cancer processes. Therefore, the effects of ellagic acid (EA) on the in vitro and in vivo N-acetylation of 2-aminofluorene (AF) were investigated in cerebrum, cerebellum and pineal gland tissues from male Sprague-Dawley rats. For in vitro examination, cytosols with or without EA (0.5–500 M) co-treatment decreased 7–72%, 15–63% and 10–78% of AF acetylation for cerebrum, cerebellum and pineal gland tissues, respectively. For in vivo examination, EA and AF at the same time treated groups with all 3 examined tissues did show significant differences (the changes of total amounts of AF and AF metabolites based on the Anova analysis) when compared to the ones without EA cotreatment rats. The pretreatment of male rats with EA (10 mg/kg) 24 hr prior to the administration of AF (50 mg/kg) (one day of EA administration suffice to induce large changes in phase II enzyme activity) resulted in a 76% decrease in total AF and metabolites in pineal gland but did not show significant differences in cerebrum and cerebellum tissues. This is the first demonstration to show that EA decreases the N-acetylation of carcinogens in rat brain tissues.  相似文献   

12.
It is well-known that insect eggs can contain very high concentrations of ecdysteroids, which undergo drastic changes during embryogenesis. We found that this is equally valid for juvenile hormones. Three juvenile hormone-immunoreactive compounds were observed in developing Bombyx mori eggs. They were assumed to be juvenile hormones 1, 2 and 3 according to their retention time in HPLC. These hormones underwent drastic and sudden changes. In the space of one day their concentration was seen to rise rapidly from an undetectable level up to as high as 4 × 10?6 micromoles per mg of eggs. Their presence was detected as early as the first day of embryonic development, as well as during the blastokinesis period (day 5 to day 9) and in late embryos (day 12 to day 14). Their relative concentrations varied greatly. On two occasions, day 1 and day 8, all three hormones were simultaneously present. Moreover, juvenile hormone 3 was present during the blastokinesis period, either alone or in combination with hormone 2. The latter was the only hormone present in late embryos, before hatching. Thus, with regard to both ecdysteroids (ecdysone and 20-hydroxyecdysone) and juvenile hormones, each day of embryonic development displayed a different hormonal pattern. These patterns undoubtedly constitute a “hormonal code” of embryogenesis control. While 20-hydroxyecdysone can be assumed to trigger cuticulogenesis in embryos as it does in larvae, the effects of the other hormones as well as their possible interactions are questionable.  相似文献   

13.
Age-related differences in the multichemical proton magnetic resonance spectroscopy (1H-MRS) profile of the human brain have been reported for several age groups, and most consistently for ages from neonates to 16-year-olds. Our recent 1H-MRS study demonstrated a significant age-related increase of total chemical concentration (relative to creatine) in the prefrontal and sensorimotor cortices within young adulthood (19-31-year-olds). In the present study we test the hypothesis that the level of brain chemicals in the same cortices, which show increased chemical levels during normal development, are reduced with normal aging after young adulthood. The multichemical 1H-MRS profile of the brain was compared between 19 young and 16 middle-aged normal subjects across multiple brain regions for all chemicals of 1H-MRS spectra. Chemical concentrations were measured relative to creatine. Over all age groups the total relative chemical concentration was highest in the prefrontal cortex. Middle-aged subjects demonstrated a significant decrease of total relative chemical concentration in the dorsolateral prefrontal (F = 54.8, p < 10(-7), ANOVA), orbital frontal (F = 3.7, p < 0.05) and sensorimotor (F = 15.1, p < 0.0001) cortices, as compared with younger age. Other brain regions showed no age-dependent differences. The results indicate that normal aging alters multichemical 1H-MRS profile of the human brain and that these changes are region-specific, with the largest changes occuring in the dorsolateral prefrontal cortex. These findings provide evidence that the processes of neuronal maturation of the human brain, and neurotransmitters and other chemical changes as the marker of these neuronal changes are almost finished by young adulthood and then reduced during normal aging toward middle age period of life. The present data also support the notion of heterochronic regressive changes of the aging human brain, where the multichemical brain regional profile seems to inversely recapitulate cortical chemical maturation within normal development.  相似文献   

14.
The interactions of toxic metals with essential metals may result in disturbances in the homeostasis of essential elements. However, there are few reports about toxic effect of arsenic (As) on the levels of essential trace elements in the central nervous system. To investigate whether subchronic exposure to As disturbs levels of main essential trace elements in the brain of mice and whether the gender difference in the response to As are altered, the concentrations of As, Iron (Fe), copper (Cu), selenium (Se), zinc (Zn) and Chromium (Cr) in the cerebrum and cerebellum of mice exposed to As subchronically were examined by inductively coupled plasma-mass spectrometry (ICP-MS). The gender difference in the changed levels of these essential trace elements was also statistically analyzed. The concentration of As was significantly higher in the cerebrum or cerebellum of mice exposed to As than that in control group (P < 0.05). It indicates that As can accumulate in brain of mice after subchronic exposure. The concentrations of Fe, Se and Cr in the cerebrum or cerebellum were significantly lower in mice exposed to As than those in control group (P < 0.05). On the contrary, the concentration of Cu in the cerebrum or cerebellum was significantly higher in mice exposed to As (P < 0.05). Our results indicate that subchronic exposure to As may decrease the levels of Fe, Se and Cr or increase the level of Cu in the brain of mice. Moreover, the significant gender difference was found relative to the effect of As on concentration of Se in cerebrum and concentrations of Cu and Se in cerebellum of mice. Therefore, more experiments are required to further understand mechanisms whereby As interacts with essential elements in brain and induces the gender difference.  相似文献   

15.
Injection of pregnant rats with cytosine arabinoside (ara-C) (280 mg/kg) on day 15 of gestation caused a significant rise (about two times the control value) in monoamine concentrations (norepinephrine, dopamine, and serotonin) accompanied by a decrease (about 60% of the control) in the brain weight and DNA content in the cerebrum of the offspring at 60 days of age. When neonatal rats were injected with ara-C (30 mg/kg/day) for four consecutive days from the fourth to seventh days after birth, a decrease of DNA content per cerebellum and an elevation of monoamine concentrations in the cerebellum were found. However, the total content of each monoamine per cerebrum or cerebellum showed no difference from the control. These results suggest that monoaminergic neurons may remain intact, with normal monoaminergic synapses compressed into a small brain volume. The neonatal administration of ara-C caused an elevation of 2, 3-cyclic nucleotide 3-phosphodiesterase (CNPase) (EC 3.1.4.37) activity and myelin protein content in the cerebellum, suggesting a relative increase in myelin concentration as a result of hypoplasia of granule cells.  相似文献   

16.
—(1) The activity of the Na-K ATPase in the particulate fraction of the chick embryo brain has been assayed at different stages of development with the objective of finding whether or not changes in the activity of this enzyme bear any relation to the maturation of spontaneous and evoked electrical activity of the growing chick brain. (2) The specific activity of the enzyme is low on day 6 and it rises rapidly between days 10 and 12, at which time it attains a plateau and remains essentially unchanged from day 12 until day 20. Experimental evidence rules out the possible presence of an inhibitor of the enzyme in 8-day-old brain homogenates, suggesting that these developmental changes in the activity of the enzyme may represent new synthesis of enzyme rather than its activation. The period between days 10 and 12 does not represent a unique stage of general protein synthesis. (3) The chick brain particulate enzyme has an optimum activity at pH 7·4 and at 37°. It is optimally activated by a Na+ concentration of 100mm and K+ concentration of 20 mm . The enzyme is inhibited by ouabain and Ca2+. (4) The results have been discussed.  相似文献   

17.
Hyperprolinemia type II (HPII) is an autosomal recessive disorder caused by the severe deficiency of enzyme 1-pyrroline-5-carboxylic acid dehydrogenase leading to tissue accumulation of proline. Chronic administration of Pro led to significant reduction of cytosolic ALT activity of olfactory lobes (50.57%), cerebrum (40%) and medulla oblongata (13.71%) only. Whereas mitochondrial ALT activity was reduced significantly in, all brain regions such as olfactory lobes (73.23%), cerebrum (70.26%), cerebellum (65.39%) and medulla oblongata (65.18%). The effect of chronic Pro administration on cytosolic AST activity was also determined. The cytosolic AST activity from olfactory lobes, cerebrum and medulla oblongata reduced by 75.71, 67.53 and 76.13%, respectively while cytosolic AST activity from cerebellum increased by 28.05%. The mitochondrial AST activity lowered in olfactory lobes (by 72.45%), cerebrum (by 78%), cerebellum (by 49.56%) and medulla oblongata (by 69.30%). In vitro studies also showed increase in brain tissue proline and decrease in glutamate levels. In vitro studies indicated that proline has direct inhibitory effect on these enzymes and glutamate levels in brain tissue showed positive correlation with AST and ALT activities. Acid phosphatase (ACP) activity reduced significantly in olfactory lobes (40.33%) and cerebrum (20.82%) whereas it elevated in cerebellum (97.32%) and medulla oblongata (76.33%). The histological studies showed degenerative changes in brain. Following proline treatment, the animals became sluggish and showed low responses to tail pricks and lifting by tails and showed impaired balancing. These observations indicate influence of proline on AST, ALT and ACP activities of different brain regions leading to lesser synthesis of glutamate thereby causing neurological dysfunctions.  相似文献   

18.
Abstract— The activities of adenyl cyclase and phosphodiesterase were determined in homogenates of cerebrum, cerebellum and brain stem of rats of 1 day to 9 weeks of postnatal age. The activity of cerebral and brain stem adenyl cyclase measured either in the absence or presence of sodium fluoride increased rapidly for 2 weeks, reached at 20 days a maximum about three times (brain stem) or six times (cerebrum) that seen on day 1 and then declined slightly during the next several weeks. In contrast, activity of cerebrellar adenyl cyclase increased more slowly and reached a maximum at about 32 days. Activity of phosphodiesterase in cerebrum and brain stem increased several-fold during brain maturation; however, enzymic activity in the cerebellum decreased during the entire 9 week period.
In the pineal gland, adenyl cyclase activity measured in the absence of norepinephrine or sodium fluoride did not change significantly with age. However, enzymic activity measured in the presence of these agents increased with the age of the rat. Bilateral removal of the superior cervical ganglia at 1 day of age is known to arrest the sympathetic innervation of the pineal gland but did not prevent the development of this adenyl cyclase system activated by catecholamines or fluoride.  相似文献   

19.
Microbial transformation of ferulic acid to acetovanillone was studied using growing cells of Rhizopus oryzae. Ferulic acid was added to the growing medium (0.5 g L?1) and incubated for 12 days. The progress of formation of metabolites was monitored by GC and GC-MS after extraction with ethyl acetate. The major metabolite was acetovanillone with minor metabolites formed, such as dihydroferulic acid, coniferyl alcohol and dihydroconiferyl alcohol. Traces of metabolites (≤1–3%), such as vanillin, vanillyl alcohol, vanillic acid and phenyl ethyl alcohol, were also produced. Formation of 4-vinyl guaiacol increased from day 1 (12.4%), reaching a maximum on day 4 (31.7%), and reducing to a minimum on day 12 (3.1%). The formation of acetovanillone increased only from day 2 onward, and reached a maximum (49.2%) on day 12. The optimum concentration of ferulic acid to be added into the medium was found to be only 0.5 g L?1, as any increase in concentration (0.75 and 1.0 g L?1) precipitated the precursor, resulting in no further degradation.  相似文献   

20.
The concentration of gangliosides in the Snell dwarf mouse cerebrum was monitored from postnatal day 5 to day 40. In the dwarf cerebrum, the concentration of total gangliosides increased up to postnatal day 20 and then stopped, whereas in the control cerebrum, it continued to increase up to postnatal day 40. At postnatal day 40, the ganglioside level in the dwarf cerebrum was 70% of that in the control cerebrum. Among the ganglioside species, the concentrations of GM4, GM2, GM1, GD1a, GD3, GD1b, GT1b, and GQ1b were significantly lower in the dwarf cerebrum than in the controls at postnatal day 40. The reduced concentrations of ganglioside species GM2, GD1a, GD3, GD1b, and GQ1b were completely restored by administration of bovine growth hormone (GH) during the first 20 days of postnatal life. The reduced concentration of the GM1 and GM4 species were most efficiently restored by administration of bovine GH plus thyroxine (T4) during the second 20 days of postnatal life. These results indicate that the lower ganglioside concentrations in the dwarf cerebrum can be elevated by hormone therapy and that there exist distinct GH and T4 actions on the enzymes participating in ganglioside metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号