首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
环状RNA (circular RNA,circRNA)是一类闭合环状结构的RNA分子,广泛分布于各种组织中,它比线性RNA更稳定。circRNA分为外显子circRNA、外显子-内含子circRNA和内含子circRNA等3类。circRNA的主要功能为充当微RNA海绵、与RNA结合蛋白结合、翻译成蛋白质和调节转录等。近年来,大量研究表明,circRNA的异常表达在胃癌发生发展过程中起着至关重要的作用。circPTPN22、hsa_circ_0001772、circCYFIP2、hsa_circ_0017639和circPIP5K1A等的上调以及hsa_circ_002059、hsa_circ_0000190和circMTO1等的下调与胃癌的增殖和转移密切相关;而hsa_circ_0001313等影响胃癌细胞的顺铂耐药性。组织、血浆及外泌体中circPTPN22、hsa_circ_102958、hsa_circ_0141633、hsa_circ_0065149和hsa_circ_0026344等是胃癌新型诊断标志物;而hsa_circ_0005529、circ-RanGAP1、cir...  相似文献   

4.

Background

Circular RNAs (circRNAs) have recently been found to be expressed in human brain tissue, and many lines ofevidence indicate that circRNAs play regulatory roles in neurodevelopment. Proliferation and differentiation of neural stem cells (NSCs) are critical parts during development of central nervous system (CNS).To date, there have been no reports ofcircRNA expression profiles during the differentiation of mouse NSCs. We hypothesizethat circRNAs mayregulate gene expression in the proliferation anddifferentiation of NSCs.

Results

In this study, we obtained NSCs from the wild-type C57BL/6 J mouse fetal cerebral cortex. We extracted total RNA from NSCs in different differentiation stagesand then performed RNA-seq. By analyzing the RNA-Seq data, we found 37circRNAs and 4182 mRNAs differentially expressedduringthe NSC differentiation. Gene Ontology (GO) enrichment analysis of thecognate linear genes of these circRNAsrevealed that some enriched GO terms were related to neural activity. Furthermore, we performed a co-expression network analysis of these differentially expressed circRNAs and mRNAs. The result suggested a stronger GO enrichmentin neural features for both the cognate linear genes of circRNAs and differentially expressed mRNAs.

Conclusion

We performed the first circRNA investigation during the differentiation of mouse NSCs. Wefound that12 circRNAs might have regulatory roles duringthe NSC differentiation, indicating that circRNAs might be modulated during NSC differentiation.Our network analysis suggested the possible complex circRNA-mRNA mechanisms during differentiation, and future experimental workis need to validate these possible mechanisms.
  相似文献   

5.
As a novel kind of non‐coding RNA, circular RNAs (circRNAs) were involved in various biological processes. However, the role of circRNAs in the developmental process of chronic obstructive pulmonary disease (COPD) is still unclear. In the present study, by using a cell model of COPD in primary human small airway epithelial cells (HSAECs) treated with or without cigarette smoke extract (CSE), we uncovered 4,379 previously unknown circRNAs in human cells and 903 smoke‐specific circRNAs, with the help of RNA‐sequencing and bioinformatic analysis. Moreover, 3,872 up‐ and 4,425 down‐regulated mRNAs were also identified under CSE stimulation. Furthermore, a putative circRNA‐microRNA‐mRNA network was constructed for in‐depth mechanism exploration, which indicated that differentially expressed circRNAs could influence expression of some key genes that participate in response to pentose phosphate pathway, ATP‐binding cassette (ABC) transporters, glycosaminoglycan biosynthesis pathway and cancer‐related pathways. Our research indicated that cigarette smoke had an influence on the biogenesis of circRNAs and mRNAs. CircRNAs might be involved in the response to CSE in COPD through the circRNA‐mediated ceRNA networks.  相似文献   

6.
环状RNA(circular RNA,circRNA)是一类闭合环状的内源RNA分子,广泛存在于不同物种及多种人体细胞中,具有丰富性、稳定性和组织特异性等特点。人体细胞中的circRNA主要可分为外显子circRNA、环状内含子RNA和外显子-内含子circRNA等。与正常组织相比,circRNA在多种肿瘤组织中异常表达,并具有作为微小RNA(microRNA,miRNA)海绵调控miRNA、结合蛋白质、参与翻译等功能。虽然circRNA在肿瘤中异常表达的具体机制尚不明确,但其在食管鳞状细胞癌、胃癌、结直肠癌、肝细胞癌、神经胶质瘤等多种肿瘤发生、发展的分子通路中具有重要作用,并有望成为全新的肿瘤标志物和治疗靶点。circRNA领域的发展日新月异,本文根据最新研究报道,就circRNA的基本特征、异常表达机制、调控肿瘤的机制及其在多种肿瘤中发挥的作用作一综述。  相似文献   

7.
Circular RNAs (circRNAs), which are more stable than linear mRNAs and long non-coding RNAs (LncRNAs), are detected in body fluids such as plasma, serum, and exosomes. Disease-associated circRNAs have significant clinical roles due to their diagnostic and prognostic values. Brother of regulator of imprinting site (BORIS) promotes cancer progression and is specifically highly expressed in the majority of carcinoma. However, the mechanism underlying the regulation of circRNAs by the oncoprotein BORIS and their role in regulating inflammation and immunity remain to be further explored. Vaccines prepared from circRNAs extracted from cancer cells showed that circRNAs induced inflammation and prevented cancer progression. Serum from animals injected with cancer cell-derived circRNAs vigorously reacted with cells that expressed cancer-specific antigen BORIS or cancer extracted circRNAs. It has been implicated that cancer-related circRNAs could be used as antigens to activate immune responses to prevent cancers and stimulate NF-κB signaling pathway by up-regulating and inducing TLR3. In the study we also found that BORIS regulated the expression of circRNAs and interacted with RNA motifs and the CCCTC binding factor (CTCF) motif adjacent to circRNA splicing sites to enhance the formation of circRNAs. Thus, our study delineated the novel mechanism by which cancer-specific antigen BORIS regulated circRNAs and identified that circRNAs could serve as a vaccine for cancer prevention.  相似文献   

8.
9.
10.
骆甲  王型力  孙志超  吴迪  张玮  王正加 《遗传》2018,40(6):467-477
环状RNA (circRNA)是一类由mRNA前体经反向可变剪切而来的共价闭合且保守的单链转录本,通过miRNA海绵功能、干扰可变剪切、结合蛋白等方式调控源基因及线性mRNA的表达。测序结果显示,circRNA广泛存在于不同的植物体内,通过细胞类型特异性表达以及组织特异性表达参与花发育、果实成熟、逆境响应等多个生命过程,在植物发育过程中发挥着重要作用。本文综述了植物circRNA的形成机制、鉴定方法、数据库、表达模式以及潜在的生物学功能,通过与动物相关研究结果的比较,概括了植物circRNA的结构特征和调控潜能,以期为植物circRNA研究提供参考。  相似文献   

11.
12.
《Genomics》2023,115(3):110598
Muscle growth in teleosts is a complex biological process orchestrated by numerous protein-coding genes and non-coding RNAs. A few recent studies suggest that circRNAs are involved in teleost myogenesis, but the molecular networks involved remain poorly understood. In this study, an integrative omics approach was used to determine myogenic circRNAs in Nile tilapia by quantifying and comparing the expression profile of mRNAs, miRNAs, and circRNAs in fast muscle from full-sib fish with distinct growth rates. There were 1947 mRNAs, 9 miRNAs, and 4 circRNAs differentially expressed between fast- and slow-growing individuals. These miRNAs can regulate myogenic genes and have binding sites for the novel circRNA circMef2c. Our data indicate that circMef2c may interact with three miRNAs and 65 differentially expressed mRNAs to form multiple competing endogenous RNA networks that regulate growth, thus providing novel insights into the role of circRNAs in the regulation of muscle growth in teleosts.  相似文献   

13.
Circular RNAs (circRNAs) are a class of novel, widespread, covalently closed RNAs that have played an essential role in animal gene regulation. To systematically explore circRNAs in the blood fluke Schistosoma japonicum, we performed RNA sequencing and bioinformatics analysis, and found that hundreds of circRNAs showed gender-associated expression. Among these identified circRNAs, more than 77.54% and 74.73% were putatively derived from the exon region of the genome and some circRNAs showed gender-associated expressions. The functional prediction of circRNAs (circ_003826 and circ_004690) showed potential binding sites and possibly acted as the sponge to regulate microRNAs (miRNAs) sja-miR-1, sja-miR-133 and sja-miR-3504. Altogether, these findings demonstrated that S. japonicum also contains circRNAs, which may have potential regulatory roles during schistosome development.  相似文献   

14.
15.

Background

Circular RNA (circRNA) is one type of noncoding RNA that forms a covalently closed continuous loop. Similar to long noncoding RNA (lncRNA), circRNA can act as microRNA (miRNA) ‘sponges’ to regulate gene expression, and its abnormal expression is related to diseases such as atherosclerosis, nervous system disorders and cancer. So far, there have been no systematic studies on circRNA abundance and expression profiles in human adult and fetal tissues.

Results

We explored circRNA expression profiles using RNA-seq data for six adult and fetal normal tissues (colon, heart, kidney, liver, lung, and stomach) and four gland normal tissues (adrenal gland, mammary gland, pancreas, and thyroid gland). A total of 8120, 25,933 and 14,433 circRNAs were detected by at least two supporting junction reads in adult, fetal and gland tissues, respectively. Among them, 3092, 14,241 and 6879 circRNAs were novel when compared to the published results. In each adult tissue type, we found at least 1000 circRNAs, among which 36.97–50.04% were tissue-specific. We reported 33 circRNAs that were ubiquitously expressed in all the adult tissues we examined. To further explore the potential “housekeeping” function of these circRNAs, we constructed a circRNA-miRNA-mRNA regulatory network containing 17 circRNAs, 22 miRNAs and 90 mRNAs. Furthermore, we found that both the abundance and the relative expression level of circRNAs were higher in fetal tissue than adult tissue. The number of circRNAs in gland tissues, especially in mammary gland (9665 circRNA candidates), was higher than that of other adult tissues (1160–3777).

Conclusions

We systematically investigated circRNA expression in a variety of human adult and fetal tissues. Our observation of different expression level of circRNAs in adult and fetal tissues suggested that circRNAs might play their role in a tissue-specific and development-specific fashion. Analysis of circRNA-miRNA-mRNA network provided potential targets of circRNAs. High expression level of circRNAs in mammary gland might be attributed to the rich innervation.
  相似文献   

16.
Circular RNA (circRNA) is a novel class of single-stranded RNAs with a closed loop structure. The majority of circRNAs are formed by a back-splicing process in pre-mRNA splicing. Their expression is dynamically regulated and shows spatiotemporal patterns among cell types, tissues and developmental stages. CircRNAs have important biological functions in many physiological processes, and their aberrant expression is implicated in many human diseases. Due to their high stability, circRNAs are becoming promising biomarkers in many human diseases, such as cardiovascular diseases, autoimmune diseases and human cancers. In this review, we focus on the translational potential of using human blood circRNAs as liquid biopsy biomarkers for human diseases. We highlight their abundant expression, essential biological functions and significant correlations to human diseases in various components of peripheral blood, including whole blood, blood cells and extracellular vesicles. In addition, we summarize the current knowledge of blood circRNA biomarkers for disease diagnosis or prognosis.  相似文献   

17.
Increasing evidences suggest that circular RNAs (circRNAs) exert crucial functions in regulating gene expression. In this study, we perform RNA‐seq and identify 6,154 distinct circRNAs from human bladder cancer and normal bladder tissues. We find that hundreds of circRNAs are significantly dysregulated in human bladder cancer tissues. We further show that circHIPK3, also named bladder cancer‐related circular RNA‐2 (BCRC‐2), is significantly down‐regulated in bladder cancer tissues and cell lines, and negatively correlates with bladder cancer grade, invasion as well as lymph node metastasis, respectively. Over‐expression of circHIPK3 effectively inhibits migration, invasion, and angiogenesis of bladder cancer cells in vitro and suppresses bladder cancer growth and metastasis in vivo. Mechanistic studies reveal that circHIPK3 contains two critical binding sites for the microRNA miR‐558 and can abundantly sponge miR‐558 to suppress the expression of heparanase (HPSE). Taken together, our findings provide evidence that circRNAs act as “microRNA sponges”, and suggest a new therapeutic target for the treatment of bladder cancer.  相似文献   

18.
《Genomics》2022,114(1):351-360
Circular RNA (circRNA) is a non-coding RNA molecule that lacks polyadenylated tails and is highly stable, abundant, and conserved in human cells. CircRNAs can serve as a competing endogenous RNA (ceRNA) to sponge microRNAs (miRNA) and block their effects on target mRNA expression. CircRNAs also have possible relevance to cancer and therefore may be considered as ideal biomarkers for monitoring cancer progression. Of the about 300,000 predicted human circRNAs, only a few have validated biological functions related to cancer. To better understand the ceRNA role of circRNAs in colorectal cancer (CRC), we performed genome-wide circRNA-based RNA-sequencing (RNA-Seq) on nine CRC tumor samples and their paired histologically normal adjacent tissue samples. By profiling the mRNA expression in the same patients, we further explored the expression correlation between circRNAs and mRNAs generated from the same parental gene. Focusing on the concordant differential expression between circRNAs and mRNAs, we substantially reduced the regulatory noise. In total, we identified 694 circRNA-mRNA pairs that were consistently up or downregulated between tumor and normal tissues. These 694 circRNA-mRNA pairs are from 182 protein-coding genes associated with hormone responses and chemotaxis. Of these 182 genes, 43 are downstream targets of three highly conserved miRNAs (miR-410-3p, miR-135a, and miR-30a). Interestingly, these 43 genes are highly mutated in another cohort from eight independent CRC studies, which have significant effects on patient survival time. Focusing on miR-410-3p and its target oncogene MET, we experimentally validated the ceRNA regulatory motif of circMET. Notably, circMET is substantially upregulated in CRC cell lines and could promote cell proliferation and growth. By confirming the regulatory relationship between miR-410-3p and circMET, we propose a new mechanism for the observed sustained activation of MET in CRC. In conclusion, our work identifies a novel regulatory role of circMET and provides a potential diagnostic biomarker for CRC.  相似文献   

19.
20.
Most circular RNAs (circRNAs) belong to a novel class of noncoding RNAs that are produced by back-splicing reactions, and they regulate physiological and pathophysiological processes in human disease. Although circRNA expression has been shown to be altered in the ischemic cerebral tissue in animal studies, the expression profile of circRNA in the patients with acute ischemic stroke (AIS) has not been investigated to date. In this investigation, high-throughput sequencing was carried out to compare the circRNA expression of peripheral blood mononuclear cells (PBMCs) from five patients with AIS and five healthy subjects. A total of 521 circRNAs were expressed differentially between the patients with AIS and healthy controls (p < .05, fold difference ≥2) including 373 upregulated circRNAs and 148 downregulated circRNAs in patients with AIS compared to controls. Thirteen candidate circRNAs were verified by quantitative real-time polymerase chain reaction (qRT-PCR). Bioinformatics analyses showed that these differentially expressed circRNAs were highly conserved, as well as eight circRNAs that were confirmed by qRT-PCR containing binding sites to multiple microRNAs. Kyoto Encyclopedia of Genes and Genomes pathway enrichment and gene ontology analyses indicated that the aberrantly expressed circRNAs participated in many pathophysiological processes of AIS, especially regarding inflammation and immunity. In conclusion, patients with AIS differentially express certain circRNAs in PBMCs, which may be diagnostic biomarkers or potential therapeutic targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号