首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organisms may reduce uncertainty regarding how best to exploit their environment by collecting information about resource distribution. We develop a model to demonstrate how competition can facilitate or constrain an individual''s ability to use information when acquiring resources. As resource distribution underpins both selection on information use and the strength and nature of competition between individuals, we demonstrate interdependencies between the two that should be common in nature. Individuals in our model can search for resources either personally or by using social information. We explore selection on social information use across a comprehensive range of ecological conditions, generalizing the producer–scrounger framework to a wide diversity of taxa and resources. We show that resource ecology—defined by scarcity, depletion rate and monopolizability—determines patterns of individual differences in social information use. These differences suggest coevolutionary processes linking dominance systems and social information use, with implications for the evolutionary demography of populations.  相似文献   

2.
Humans strongly depend on individual and social learning, both of which are highly effective and accurate. I study the effects of environmental change on the evolution of the effectiveness and accuracy of individual and social learning (individual and social learning levels) and the number of pieces of information learned individually and socially (individual and social learning capacities) by analyzing a mathematical model. I show that individual learning capacity decreases and social learning capacity increases when the environment becomes more stable; both decrease when the environment becomes milder. I also show that individual learning capacity increases when individual learning level increases or social learning level decreases, while social learning capacity increases when individual or social learning level increases. The evolution of high learning levels can be triggered when the environment becomes severe, but a high social learning level can evolve only when a high individual learning level can simultaneously evolve with it.  相似文献   

3.
Social‐learner‐explorer (SE) is a learning strategy that combines accurate social learning with exploratory individual learning in that order. Arguably, it is one of the few plausible learning strategies that can support cumulative culture. We investigate numerically the factors that affect the evolution of SE in an environmentally heterogeneous two‐island model. Conditions favorable to the evolution of SE include a small exogenous cost of social learning, the occurrence of migration after social learning but before individual learning, the ability to adaptively modify the behavioral phenotype in the postmigration environment (asymmetrical individual learning), and a relatively high migration rate. The implications of our model for the evolution of SE in humans are discussed. Of particular interest is the prediction that behaviors affecting fitness would have to be socially learned in the natal environment and then subsequently modified by individual learning in the postmigration environment, suggesting a life‐cycle stage dependent reliance on the two types of learning.  相似文献   

4.
Vocal learning is relatively common in birds but less so in mammals. Sexual selection and individual or group recognition have been identified as major forces in its evolution. While important in the development of vocal displays, vocal learning also allows signal copying in social interactions. Such copying can function in addressing or labelling selected conspecifics. Most examples of addressing in non-humans come from bird song, where matching occurs in an aggressive context. However, in other animals, addressing with learned signals is very much an affiliative signal. We studied the function of vocal copying in a mammal that shows vocal learning as well as complex cognitive and social behaviour, the bottlenose dolphin (Tursiops truncatus). Copying occurred almost exclusively between close associates such as mother–calf pairs and male alliances during separation and was not followed by aggression. All copies were clearly recognizable as such because copiers consistently modified some acoustic parameters of a signal when copying it. We found no evidence for the use of copying in aggression or deception. This use of vocal copying is similar to its use in human language, where the maintenance of social bonds appears to be more important than the immediate defence of resources.  相似文献   

5.
Many animals have ornaments that mediate choice and competition in social and sexual contexts. Individuals with elaborate sexual ornaments typically have higher fitness than those with less elaborate ornaments, but less is known about whether socially selected ornaments are associated with fitness. Here, we test the relationship between fitness and facial patterns that are a socially selected signal of fighting ability in Polistes dominula wasps. We found wasps that signal higher fighting ability have larger nests, are more likely to survive harsh winters, and obtain higher dominance rank than wasps that signal lower fighting ability. In comparison, body weight was not associated with fitness. Larger wasps were dominant over smaller wasps, but showed no difference in nest size or survival. Overall, the positive relationship between wasp facial patterns and fitness indicates that receivers can obtain diverse information about a signaler's phenotypic quality by paying attention to socially selected ornaments. Therefore, there are surprisingly strong parallels between the information conveyed by socially and sexually selected signals. Similar fitness relationships in social and sexually selected signals may be one reason it can be difficult to distinguish the role of social versus sexual selection in ornament evolution.  相似文献   

6.
The age‐dependent choice between expressing individual learning (IL) or social learning (SL) affects cumulative cultural evolution. A learning schedule in which SL precedes IL is supportive of cumulative culture because the amount of nongenetically encoded adaptive information acquired by previous generations can be absorbed by an individual and augmented. Devoting time and energy to learning, however, reduces the resources available for other life‐history components. Learning schedules and life history thus coevolve. Here, we analyze a model where individuals may have up to three distinct life stages: “infants” using IL or oblique SL, “juveniles” implementing IL or horizontal SL, and adults obtaining material resources with learned information. We study the dynamic allocation of IL and SL within life stages and how this coevolves with the length of the learning stages. Although no learning may be evolutionary stable, we find conditions where cumulative cultural evolution can be selected for. In that case, the evolutionary stable learning schedule causes individuals to use oblique SL during infancy and a mixture between IL and horizontal SL when juvenile. We also find that the selected pattern of oblique SL increases the amount of information in the population, but horizontal SL does not do so.  相似文献   

7.
Inspired by the demonstration that tool-use variants among wild chimpanzees and orangutans qualify as traditions (or cultures), we developed a formal model to predict the incidence of these acquired specializations among wild primates and to examine the evolution of their underlying abilities. We assumed that the acquisition of the skill by an individual in a social unit is crucially controlled by three main factors, namely probability of innovation, probability of socially biased learning, and the prevailing social conditions (sociability, or number of potential experts at close proximity). The model reconfirms the restriction of customary tool use in wild primates to the most intelligent radiation, great apes; the greater incidence of tool use in more sociable populations of orangutans and chimpanzees; and tendencies toward tool manufacture among the most sociable monkeys. However, it also indicates that sociable gregariousness is far more likely to produce the maintenance of invented skills in a population than solitary life, where the mother is the only accessible expert. We therefore used the model to explore the evolution of the three key parameters. The most likely evolutionary scenario is that where complex skills contribute to fitness, sociability and/or the capacity for socially biased learning increase, whereas innovative abilities (i.e., intelligence) follow indirectly. We suggest that the evolution of high intelligence will often be a byproduct of selection on abilities for socially biased learning that are needed to acquire important skills, and hence that high intelligence should be most common in sociable rather than solitary organisms. Evidence for increased sociability during hominin evolution is consistent with this new hypothesis.  相似文献   

8.
Alan Rogers (1988) presented a game theory model of the evolution of social learning, yielding the paradoxical conclusion that social learning does not increase the fitness of a population. We expand on this model, allowing for imperfections in individual and social learning as well as incorporating a "critical social learning" strategy that tries to solve an adaptive problem first by social learning, and then by individual learning if socially acquired behavior proves unsatisfactory. This strategy always proves superior to pure social learning and typically has higher fitness than pure individual learning, providing a solution to Rogers's paradox of nonadaptive culture. Critical social learning is an evolutionarily stable strategy (ESS) unless cultural transmission is highly unfaithful, the environment is highly variable, or social learning is much more costly than individual learning. We compare the model to empirical data on social learning and on spatial variation in primate cultures and list three requirements for adaptive culture.  相似文献   

9.
Many animals are known to learn socially, i.e. they are able to acquire new behaviours by using information from other individuals. Researchers distinguish between a number of different social-learning mechanisms such as imitation and social enhancement. Social enhancement is a simple form of social learning that is among the most widespread in animals. However, unlike imitation, it is debated whether social enhancement can create cultural traditions. Based on a recent study on capuchin monkeys, we developed an agent-based model to test the hypotheses that (i) social enhancement can create and maintain stable traditions and (ii) social enhancement can create cultural conformity. Our results supported both hypotheses. A key factor that led to the creation of cultural conformity and traditions was the repeated interaction of individual reinforcement and social enhancement learning. This result emphasizes that the emergence of cultural conformity does not necessarily require cognitively complex mechanisms such as ‘copying the majority’ or group norms. In addition, we observed that social enhancement can create learning dynamics similar to a ‘copy when uncertain’ learning strategy. Results from additional analyses also point to situations that should favour the evolution of learning mechanisms more sophisticated than social enhancement.  相似文献   

10.
Why do societies collapse? We use an individual-based evolutionary model to show that, in environmental conditions dominated by low-frequency variation (“red noise”), extirpation may be an outcome of the evolution of cultural capacity. Previous analytical models predicted an equilibrium between individual learners and social learners, or a contingent strategy in which individuals learn socially or individually depending on the circumstances. However, in red noise environments, whose main signature is that variation is concentrated in relatively large, relatively rare excursions, individual learning may be selected from the population. If the social learning system comes to lack sufficient individual learning or cognitively costly adaptive biases, behavior ceases tracking environmental variation. Then, when the environment does change, fitness declines and the population may collapse or even be extirpated. The modeled scenario broadly fits some human population collapses and might also explain nonhuman extirpations. Varying model parameters showed that the fixation of social learning is less likely when individual learning is less costly, when the environment is less red or more variable, with larger population sizes, and when learning is not conformist or is from parents rather than from the general population. Once social learning is fixed, extirpation is likely except when social learning is biased towards successful models. Thus, the risk of population collapse may be reduced by promoting individual learning and innovation over cultural conformity, or by preferential selection of relatively fit individuals as models for social learning.  相似文献   

11.
Behavioural decisions in a social context commonly have frequency-dependent outcomes and so require analysis using evolutionary game theory. Learning provides a mechanism for tracking changing conditions and it has frequently been predicted to supplant fixed behaviour in shifting environments; yet few studies have examined the evolution of learning specifically in a game-theoretic context. We present a model that examines the evolution of learning in a frequency-dependent context created by a producer–scrounger game, where producers search for their own resources and scroungers usurp the discoveries of producers. We ask whether a learning mutant that can optimize its use of producer and scrounger to local conditions can invade a population of non-learning individuals that play producer and scrounger with fixed probabilities. We find that learning provides an initial advantage but never evolves to fixation. Once a stable equilibrium is attained, the population is always made up of a majority of fixed players and a minority of learning individuals. This result is robust to variation in the initial proportion of fixed individuals, the rate of within- and between-generation environmental change, and population size. Such learning polymorphisms will manifest themselves in a wide range of contexts, providing an important element leading to behavioural syndromes.  相似文献   

12.
The degree to which animals use public and private sources of information has important implications for research in both evolutionary ecology and cultural evolution. While researchers are increasingly interested in the factors that lead individuals to vary in the manner in which they use different sources of information, to date little is known about how an animal''s reproductive state might affect its reliance on social learning. Here, we provide experimental evidence that in foraging ninespine sticklebacks (Pungitius pungitius), gravid females increase their reliance on public information generated by feeding demonstrators in choosing the richer of two prey patches than non-reproductive fish, while, in contrast, reproductive males stop using public information. Subsequent experiments revealed reproductive males to be more efficient asocial foragers, less risk-averse and generally less social than both reproductive females and non-reproductives. These findings are suggestive of adaptive switches in reliance on social and asocial sources of information with reproductive condition, and we discuss the differing costs of reproduction and the proximate mechanisms that may underlie these differences in information use. Our findings have important implications for our understanding of adaptive foraging strategies in animals and for understanding the way information diffuses through populations.  相似文献   

13.
The use of social information is a prerequisite to the evolution of culture. In humans, social learning allows individuals to aggregate adaptive information and increase the complexity of technology at a level unparalleled in the animal kingdom. However, the potential to use social information is related to the availability of this type of information. Although most cultural evolution experiments assume that social learners are free to use social information, there are many examples of information withholding, particularly in ethnographic studies. In this experiment, we used a computer-based cultural game in which players were faced with a complex task and had the possibility to trade a specific part of their knowledge within their groups. The dynamics of information transmission were studied when competition was within- or exclusively between-groups. Our results show that between-group competition improved the transmission of information, increasing the amount and the quality of information. Further, informational access costs did not prevent social learners from performing better than individual learners, even when between-group competition was absent. Interestingly, between-group competition did not entirely eliminate access costs and did not improve the performance of players as compared with within-group competition. These results suggest that the field of cultural evolution would benefit from a better understanding of the factors that underlie the production and the sharing of information.  相似文献   

14.
Humans exhibit a rich and complex material culture with no equivalent in animals. Also, social learning, a crucial requirement for culture, is particularly developed in humans and provides a means to accumulate knowledge over time and to develop advanced technologies. However, the type of social learning required for the evolution of this complex material culture is still debated. Here, using a complex and opaque virtual task, the efficiency of individual learning and two types of social learning (product‐copying and process‐copying) were compared. We found that (1) individuals from process‐copying groups outperformed individuals from product‐copying groups or individual learners, whereas access to product information was not a sufficient condition for providing an advantage to social learners compared to individual learners; (2) social learning did not seem to affect the exploration of the fitness landscape; (3) social learning led to strong within‐group convergence and also to between‐group convergence, and (4) individuals used widely variable social learning strategies. The implications of these results for cumulative culture evolution are discussed.  相似文献   

15.
Cultural evolutionary models have identified a range of conditions under which social learning (copying others) is predicted to be adaptive relative to asocial learning (learning on one''s own), particularly in humans where socially learned information can accumulate over successive generations. However, cultural evolution and behavioural economics experiments have consistently shown apparently maladaptive under-utilization of social information in Western populations. Here we provide experimental evidence of cultural variation in people''s use of social learning, potentially explaining this mismatch. People in mainland China showed significantly more social learning than British people in an artefact-design task designed to assess the adaptiveness of social information use. People in Hong Kong, and Chinese immigrants in the UK, resembled British people in their social information use, suggesting a recent shift in these groups from social to asocial learning due to exposure to Western culture. Finally, Chinese mainland participants responded less than other participants to increased environmental change within the task. Our results suggest that learning strategies in humans are culturally variable and not genetically fixed, necessitating the study of the ‘social learning of social learning strategies'' whereby the dynamics of cultural evolution are responsive to social processes, such as migration, education and globalization.  相似文献   

16.
Although natural selection should have favoured individuals capable of adjusting the weight they give to personal and social information according to circumstances, individuals generally differ consistently in their individual weighting of both types of information. Such individual differences are correlated with personality traits, suggesting that personality could directly affect individuals' ability to collect personal or social information. Alternatively, the link between personality and information use could simply emerge as a by-product of the sequential decision-making process in a frequency-dependent context. Indeed, when the gains associated with behavioural options depend on the choices of others, an individual's sequence of arrival could constrain its choice of options leading to the emergence of correlated behaviours. Any factor such as personality that affects decision order could thus be correlated with information use. To test this new explanation, we developed an individual-based model that simulates a group of animals engaged in a game of sequential frequency-dependent decision: a producer-scrounger game. Our results confirm that the sequence of decision, in this case enforced by the order in which animals enter a foraging area, consistently influences their mean tactic use and their individual plasticity, an outcome reminiscent of the correlation reported between personality and social information use.  相似文献   

17.
It is now widely appreciated that competition between kin inhibits the evolution of altruism. In standard population genetics models, it is difficult for indiscriminate altruism towards social partners to be favoured at all. The reason is that while limited dispersal increases the kinship of social partners it also intensifies local competition. One solution that has received very little attention is if individuals disperse as groups (budding dispersal), as this relaxes local competition without reducing kinship. Budding behaviour is widespread through all levels of biological organization, from early protocellular life to cooperatively breeding vertebrates. We model the effects of individual dispersal, budding dispersal, soft selection and hard selection to examine the conditions under which altruism is favoured. More generally, we examine how these various demographic details feed into relatedness and scale of competition parameters that can be included into Hamilton's rule.  相似文献   

18.
Culture is widely thought to be beneficial when social learning is less costly than individual learning and thus may explain the enormous ecological success of humans. Rogers (1988. Does biology constrain culture. Am. Anthropol.  90 : 819–831) contradicted this common view by showing that the evolution of social learning does not necessarily increase the net benefits of learned behaviours in a variable environment. Using simulation experiments, we re‐analysed extensions of Rogers’ model after relaxing the assumption that genetic evolution is much slower than cultural evolution. Our results show that this assumption is crucial for Rogers’ finding. For many parameter settings, genetic and cultural evolution occur on the same time scale, and feedback effects between genetic and cultural dynamics increase the net benefits. Thus, by avoiding the costs of individual learning, social learning can increase ecological success. Furthermore, we found that rapid evolution can limit the evolution of complex social learning strategies, which have been proposed to be widespread in animals.  相似文献   

19.
Humans and other animals do not use social learning indiscriminately, rather, natural selection has favoured the evolution of social learning rules that make selective use of social learning to acquire relevant information in a changing environment. We present a gene-culture coevolutionary analysis of a small selection of such rules (unbiased social learning, payoff-biased social learning and frequency-dependent biased social learning, including conformism and anti-conformism) in a population of asocial learners where the environment is subject to a constant probability of change to a novel state. We define conditions under which each rule evolves to a genetically polymorphic equilibrium. We find that payoff-biased social learning may evolve under high levels of environmental variation if the fitness benefit associated with the acquired behaviour is either high or low but not of intermediate value. In contrast, both conformist and anti-conformist biases can become fixed when environment variation is low, whereupon the mean fitness in the population is higher than for a population of asocial learners. Our examination of the population dynamics reveals stable limit cycles under conformist and anti-conformist biases and some highly complex dynamics including chaos. Anti-conformists can out-compete conformists when conditions favour a low equilibrium frequency of the learned behaviour. We conclude that evolution, punctuated by the repeated successful invasion of different social learning rules, should continuously favour a reduction in the equilibrium frequency of asocial learning, and propose that, among competing social learning rules, the dominant rule will be the one that can persist with the lowest frequency of asocial learning.  相似文献   

20.
Potential disadvantages of using socially acquired information   总被引:15,自引:0,他引:15  
The acquisition and use of socially acquired information is commonly assumed to be profitable. We challenge this assumption by exploring hypothetical scenarios where the use of such information either provides no benefit or can actually be costly. First, we show that the level of incompatibility between the acquisition of personal and socially acquired information will directly affect the extent to which the use of socially acquired information can be profitable. When these two sources of information cannot be acquired simultaneously, there may be no benefit to socially acquired information. Second, we assume that a solitary individual's behavioural decisions will be based on cues revealed by its own interactions with the environment. However, in many cases, for social animals the only socially acquired information available to individuals is the behavioural actions of others that expose their decisions, rather than the cues on which these decisions were based. We argue that in such a situation the use of socially acquired information can lead to informational cascades that sometimes result in sub-optimal behaviour. From this theory of informational cascades, we predict that when erroneous cascades are costly, individuals should pay attention only to socially generated cues and not behavioural decisions. We suggest three scenarios that might be examples of informational cascades in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号