首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Killer whales (Orcinus orca) are large predators that occupy the top trophic position in the world''s oceans and as such may have important roles in marine ecosystem dynamics. Although the possible top-down effects of killer whale predation on populations of their prey have received much recent attention, little is known of how the abundance of these predators may be limited by bottom-up processes. Here we show, using 25 years of demographic data from two populations of fish-eating killer whales in the northeastern Pacific Ocean, that population trends are driven largely by changes in survival, and that survival rates are strongly correlated with the availability of their principal prey species, Chinook salmon (Oncorhynchus tshawytscha). Our results suggest that, although these killer whales may consume a variety of fish species, they are highly specialized and dependent on this single salmonid species to an extent that it is a limiting factor in their population dynamics. Other ecologically specialized killer whale populations may be similarly constrained to a narrow range of prey species by culturally inherited foraging strategies, and thus are limited in their ability to adapt rapidly to changing prey availability.  相似文献   

2.
Ninoziphius platyrostris, from the late Neogene of Peru, is one of the best‐known fossil beaked whales (Odontoceti: Ziphiidae), with a holotype including the skull with ear bones, mandibles, teeth, and postcranial elements. Furthermore, based on several characters, including a complete functional upper and lower dentition, it is usually considered as one of the most archaic ziphiids. However, the poorly preserved dorsal portion of the holotype skull has led to unresolved phylogenetic relationships. With the addition of two newly prepared skulls from the same Peruvian locality we redescribed N. platyrostris. In the light of recent ziphiid discoveries, an emended diagnosis of the species is proposed here. In our cladistic analysis Ninoziphius is the most basal stem ziphiid. Newly observed or reassessed morphological traits allow functional and ecological considerations. The morphology of the oral apparatus suggests that Ninoziphius was less specialized for suction feeding than most extant ziphiids. Tooth wear in the holotype may indicate benthic feeding. Although the vertebral column of Ninoziphius corresponds to less developed locomotor abilities for deep dives, its cranial morphology does not provide definitive arguments for an echolocation system less efficient than in deep diving extant ziphiids. Finally, the phylogenetic tree produced was used to detail the evolutionary history of several major ziphiid features (dental reduction, development of mandibular tusks, and increased body size). © 2013 The Linnean Society of London  相似文献   

3.
This study investigates survival and abundance of killer whales (Orcinus orca) in Norway in 1988–2019 using capture–recapture models of photo‐identification data. We merged two datasets collected in a restricted fjord system in 1988–2008 (Period 1) with a third, collected after their preferred herring prey shifted its wintering grounds to more exposed coastal waters in 2012–2019 (Period 2), and investigated any differences between these two periods. The resulting dataset, spanning 32 years, comprised 3284 captures of 1236 whales, including 148 individuals seen in both periods. The best‐supported models of survival included the effects of sex and time period, and the presence of transients (whales seen only once). Period 2 had a much larger percentage of transients compared to Period 1 (mean = 30% vs. 5%) and the identification of two groups of whales with different residency patterns revealed heterogeneity in recapture probabilities. This caused estimates of survival rates to be biased downward (females: 0.955 ± 0.027 SE, males: 0.864 ± 0.038 SE) compared to Period 1 (females: 0.998 ± 0.002 SE, males: 0.985 ± 0.009 SE). Accounting for this heterogeneity resulted in estimates of apparent survival close to unity for regularly seen whales in Period 2. A robust design model for Period 2 further supported random temporary emigration at an estimated annual probability of 0.148 (± 0.095 SE). This same model estimated a peak in annual abundance in 2015 at 1061 individuals (95% CI 999–1127), compared to a maximum of 731 (95% CI 505–1059) previously estimated in Period 1, and dropped to 513 (95% CI 488–540) in 2018. Our results indicate variations in the proportion of killer whales present of an undefined population (or populations) in a larger geographical region. Killer whales have adjusted their distribution to shifts in key prey resources, indicating potential to adapt to rapidly changing marine ecosystems.  相似文献   

4.
Size-structured predator–prey interactions can be altered by the history of exploitation, if that exploitation is itself size-selective. For example, selective harvesting of larger sized predators can release prey populations in cases where only large individuals are capable of consuming a particular prey species. In this study, we examined how the history of exploitation and recovery (inside marine reserves and due to fisheries management) of California sheephead (Semicossyphus pulcher) has affected size-structured interactions with sea urchin prey in southern California. We show that fishing changes size structure by reducing sizes and alters life histories of sheephead, while management measures that lessen or remove fishing impacts (e.g. marine reserves, effort restrictions) reverse these effects and result in increases in density, size and biomass. We show that predation on sea urchins is size-dependent, such that the diet of larger sheephead is composed of more and larger sized urchins than the diet of smaller fish. These results have implications for kelp forest resilience, because urchins can overgraze kelp in the absence of top-down control. From surveys in a network of marine reserves, we report negative relationships between the abundance of sheephead and urchins and the abundance of urchins and fleshy macroalgae (including giant kelp), indicating the potential for cascading indirect positive effects of top predators on the abundance of primary producers. Management measures such as increased minimum size limits and marine reserves may serve to restore historical trophic roles of key predators and thereby enhance the resilience of marine ecosystems.  相似文献   

5.
The iron-limited Southern Ocean plays an important role in regulating atmospheric CO2 levels. Marine mammal respiration has been proposed to decrease the efficiency of the Southern Ocean biological pump by returning photosynthetically fixed carbon to the atmosphere. Here, we show that by consuming prey at depth and defecating iron-rich liquid faeces into the photic zone, sperm whales (Physeter macrocephalus) instead stimulate new primary production and carbon export to the deep ocean. We estimate that Southern Ocean sperm whales defecate 50 tonnes of iron into the photic zone each year. Molar ratios of Cexport ∶Feadded determined during natural ocean fertilization events are used to estimate the amount of carbon exported to the deep ocean in response to the iron defecated by sperm whales. We find that Southern Ocean sperm whales stimulate the export of 4 × 105 tonnes of carbon per year to the deep ocean and respire only 2 × 105 tonnes of carbon per year. By enhancing new primary production, the populations of 12 000 sperm whales in the Southern Ocean act as a carbon sink, removing 2 × 105 tonnes more carbon from the atmosphere than they add during respiration. The ability of the Southern Ocean to act as a carbon sink may have been diminished by large-scale removal of sperm whales during industrial whaling.  相似文献   

6.
The rostrum of most ziphiids (beaked whales) displays bizarre swollen regions, accompanied with extreme hypermineralisation and an alteration of the collagenous mesh of the bone. The functional significance of this specialization remains obscure. With the voluminous and dense hemispheric excrescence protruding from the premaxillae, the recently described fossil ziphiid Globicetus hiberus is the most spectacular case. This study describes the histological structure and interprets the growth pattern of this unique feature. Histologically, the prominence in Globicetus is made up of an atypical fibro‐lamellar complex displaying an irregular laminar organization and extreme compactness (osteosclerosis). Its development is suggested to have resulted from a protraction of periosteal accretion over the premaxillae, long after the end of somatic growth. Complex shifts in the geometry of this tissue are likely to have occurred during its accretion and no indication of Haversian remodeling could be found. X‐ray diffraction and Raman spectroscopy indicate that the bone matrix in the premaxillary prominence of Globicetus closely resembles that of the rostrum of the extant beaked whale Mesoplodon densirostris: apatite crystals are of common size and strongly oriented, but the collagenous meshwork within bone matrix seems to be extremely sparse. These morphological and structural data are discussed in the light of functional interpretations proposed for the highly unusual and diverse ziphiid rostrum. J. Morphol. 277:1292–1308, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
An organism''s body size plays an important role in ecological interactions such as predator–prey relationships. As predators are typically larger than their prey, this often leads to a strong positive relationship between body size and trophic position in aquatic ecosystems. The distribution of body sizes in a community can thus be an indicator of the strengths of predator–prey interactions. The aim of this study was to gain more insight into the relationship between fish body size distribution and trophic position in a wide range of European lakes. We used quantile regression to examine the relationship between fish species'' trophic position and their log‐transformed maximum body mass for 48 fish species found in 235 European lakes. Subsequently, we examined whether the slopes of the continuous community size distributions, estimated by maximum likelihood, were predicted by trophic position, predator–prey mass ratio (PPMR), or abundance (number per unit effort) of fish communities in these lakes. We found a positive linear relationship between species'' maximum body mass and average trophic position in fishes only for the 75% quantile, contrasting our expectation that species'' trophic position systematically increases with maximum body mass for fish species in European lakes. Consequently, the size spectrum slope was not related to the average community trophic position, but there were negative effects of community PPMR and total fish abundance on the size spectrum slope. We conclude that predator–prey interactions likely do not contribute strongly to shaping community size distributions in these lakes.  相似文献   

8.
The study of animal behaviour is important for both ecology and ecotoxicology, yet research in these two fields is currently developing independently. Here, we synthesize the available knowledge on drug-induced behavioural alterations in fish, discuss potential ecological consequences and report results from an experiment in which we quantify both uptake and behavioural impact of a psychiatric drug on a predatory fish (Perca fluviatilis) and its invertebrate prey (Coenagrion hastulatum). We show that perch became more active while damselfly behaviour was unaffected, illustrating that behavioural effects of pharmaceuticals can differ between species. Furthermore, we demonstrate that prey consumption can be an important exposure route as on average 46% of the pharmaceutical in ingested prey accumulated in the predator. This suggests that investigations of exposure through bioconcentration, where trophic interactions and subsequent bioaccumulation of exposed individuals are ignored, underestimate exposure. Wildlife may therefore be exposed to higher levels of behaviourally altering pharmaceuticals than predictions based on commonly used exposure assays and pharmaceutical concentrations found in environmental monitoring programmes.  相似文献   

9.
We propose that delayed predator–prey models may provide superficially acceptable predictions for spurious reasons. Through experimentation and modelling, we offer a new approach: using a model experimental predator–prey system (the ciliates Didinium and Paramecium), we determine the influence of past-prey abundance at a fixed delay (approx. one generation) on both functional and numerical responses (i.e. the influence of present : past-prey abundance on ingestion and growth, respectively). We reveal a nonlinear influence of past-prey abundance on both responses, with the two responding differently. Including these responses in a model indicated that delay in the numerical response drives population oscillations, supporting the accepted (but untested) notion that reproduction, not feeding, is highly dependent on the past. We next indicate how delays impact short- and long-term population dynamics. Critically, we show that although superficially the standard (parsimonious) approach to modelling can reasonably fit independently obtained time-series data, it does so by relying on biologically unrealistic parameter values. By contrast, including our fully parametrized delayed density dependence provides a better fit, offering insights into underlying mechanisms. We therefore present a new approach to explore time-series data and a revised framework for further theoretical studies.  相似文献   

10.
Most marine mammal­ strandings coincident with naval sonar exercises have involved Cuvier''s beaked whales (Ziphius cavirostris). We recorded animal movement and acoustic data on two tagged Ziphius and obtained the first direct measurements of behavioural responses of this species to mid-frequency active (MFA) sonar signals. Each recording included a 30-min playback (one 1.6-s simulated MFA sonar signal repeated every 25 s); one whale was also incidentally exposed to MFA sonar from distant naval exercises. Whales responded strongly to playbacks at low received levels (RLs; 89–127 dB re 1 µPa): after ceasing normal fluking and echolocation, they swam rapidly, silently away, extending both dive duration and subsequent non-foraging interval. Distant sonar exercises (78–106 dB re 1 µPa) did not elicit such responses, suggesting that context may moderate reactions. The observed responses to playback occurred at RLs well below current regulatory thresholds; equivalent responses to operational sonars could elevate stranding risk and reduce foraging efficiency.  相似文献   

11.
Toothed whales and bats have independently evolved specialized ultrasonic hearing for echolocation. Recent findings have suggested that several genes including Prestin, Tmc1, Pjvk and KCNQ4 appear to have undergone molecular adaptations associated with the evolution of this ultrasonic hearing in mammals. Here we studied the hearing gene Cldn14, which encodes the claudin-14 protein and is a member of tight junction proteins that functions in the organ of Corti in the inner ear to maintain a cationic gradient between endolymph and perilymph. Particular mutations in human claudin-14 give rise to non-syndromic deafness, suggesting an essential role in hearing. Our results uncovered two bursts of positive selection, one in the ancestral branch of all toothed whales and a second in the branch leading to the delphinid, phocoenid and ziphiid whales. These two branches are the same as those previously reported to show positive selection in the Prestin gene. Furthermore, as with Prestin, the estimated hearing frequencies of whales significantly correlate with numbers of branch-wise non-synonymous substitutions in Cldn14, but not with synonymous changes. However, in contrast to Prestin, we found no evidence of positive selection in bats. Our findings from Cldn14, and comparisons with Prestin, strongly implicate multiple loci in the acquisition of echolocation in cetaceans, but also highlight possible differences in the evolutionary route to echolocation taken by whales and bats.  相似文献   

12.
The North Pacific right whale (Eubalaena japonica) was heavily exploited by both nineteenth century whaling and recent (1960s) illegal Soviet catches. Today, the species remains extremely rare especially in the eastern North Pacific. Here, we use photographic and genotype data to calculate the first mark–recapture estimates of abundance for right whales in the Bering Sea and Aleutian Islands. The estimates were very similar: photographic = 31 (95% CL 23–54), genotyping = 28 (95% CL 24–42). We also estimated the population contains eight females (95% CL 7–18) and 20 males (95% CL 17–37). Although these estimates may relate to a Bering Sea subpopulation, other data suggest that the total eastern North Pacific population is unlikely to be much larger. Its precarious status today—the world''s smallest whale population for which an abundance estimate exists—is a direct consequence of uncontrolled and illegal whaling, and highlights the past failure of international management to prevent such abuses.  相似文献   

13.
Killer whales occur in Chilean waters, but their seasonality, diets, and overall distribution are poorly known. Here, we present data on group composition, site fidelity, and prey species of individual killer whales recorded in 63 sightings between 2004 and 2012 in the Chilean Patagonian fjords. Group sizes were small (mean = 5, SD = 2.5 for calf groups; mean = 3, SD = 1.5 for non-calf groups), and occurrence was significantly lower in summer months. Photographs enabled identification of 55 individuals from natural markings, and all resembled Southern Ocean type A killer whales. The species was transient in the area; the average presence was 1.7 days with 60 % of individuals seen only once. Occupancy was 3–44 days, and low levels of site fidelity were recorded (64 % of individuals were seen in only 1 year). Group composition at short time scales (3 months) remained stable, but we detected changes at longer time scales. Prey included fish, otariids, and seabirds. Twelve individual killer whales showed a broad dietary spectrum: 3 ate otariids and fish, 2 ate birds and otariids, and 7 ate otariids, birds, and possibly fish. Further research is needed to increase basic biological knowledge of these killer whales and to determine the relationship with type A killer whales from the Southern Ocean.  相似文献   

14.
As compared to other odontocetes (toothed whales), the rostrum of beaked whales (family Ziphiidae) often displays extensive changes in the shape, thickness, and density of its constituent bones. Previous morphological observations suggested that these modifications appeared in parallel in different ziphiid lineages. However, very few data were available on the compactness and histology of these rostral bones, which precluded the study of the processes at work for the development of such structures, as well as the interpretation of their functional implications. In this work we review the bibliographic data on the anatomy of the ziphiid rostrum and we add new observations on adults of several extinct and extant taxa. These observations are based on CT scans and transverse histological sections. Our results confirm that different bones (vomer, mesethmoid, premaxilla, maxilla) are involved in the various morphologies displayed by ziphiid rostra. Strong density contrasts are detected between bones and/or inside the bones themselves; for example, parts of the rostrum reach densities in the range of Neoceti ear bones, which are among the densest bones known hitherto. Furthermore, the histology of the pachyostotic and osteosclerotic bones proves to change from one taxon to the other; the degree of Haversian remodeling varies strongly between species: it can be absent (e.g. Aporotus recurvirostris), partial (e.g. aff. Ziphirostrum), or complete (e.g., Mesoplodon densirostris). The atypical secondary osteons known to be responsible for bone hypermineralization in the rostrum of M. densirostris occurred also in Choneziphius sp. Confronted with a phylogenetic framework, these anatomical and histological observations indicate that the acquisition of compact (osteosclerotic) and/or swollen (pachyostotic) bone is the result of a broad convergence between taxa, in response to common selective pressures. The functional dimension of this question is discussed with respect to what is known about extant ziphiid ecology.  相似文献   

15.
Prey bacteria shape the community structure of their predators   总被引:1,自引:0,他引:1  
Although predator–prey interactions among higher organisms have been studied extensively, only few examples are known for microbes other than protists and viruses. Among the bacteria, the most studied obligate predators are the Bdellovibrio and like organisms (BALOs) that prey on many other bacteria. In the macroscopical world, both predator and prey influence the population size of the other''s community, and may have a role in selection. However, selective pressures among prey and predatory bacteria have been rarely investigated. In this study, Bacteriovorax, a predator within the group of BALOs, in environmental waters were fed two prey bacteria, Vibrio vulnificus and Vibrio parahaemolyticus. The two prey species yielded distinct Bacteriovorax populations, evidence that selective pressures shaped the predator community and diversity. The results of laboratory experiments confirmed the differential predation of Bacteriovorax phylotypes on the two bacteria species. Not only did Bacteriovorax Cluster IX exhibit the versatility to be the exclusive efficient predator on Vibrio vulnificus, thereby, behaving as a specialist, but was also able to prey with similar efficiency on Vibrio parahaemolyticus, indicative of a generalist. Therefore, we proposed a designation of versatilist for this predator. This initiative should provide a basis for further efforts to characterize the predatory patterns of bacterial predators. The results of this study have revealed impacts of the prey on Bacteriovorax predation and in structuring the predator community, and advanced understanding of predation behavior in the microbial world.  相似文献   

16.
17.
Contest decisions are influenced by the outcomes of recent fights (winner–loser effects). Steroid hormones and serotonin are closely associated with aggression and therefore probably also play important roles in mediating winner–loser effects. In mangrove rivulus fish, Kryptolebias marmoratus, individuals with higher testosterone (T), 11-ketotestosterone and cortisol levels are more capable of winning, but titres of these hormones do not directly mediate winner–loser effects. In this study, we investigated the effects of winning/losing experiences on brain expression levels of the receptor genes for androgen (AR), oestrogen α/β (ERα/β), glucocorticoid (GR) and serotonin (5-HT1AR). The effect of contest experience on AR gene expression depended on T levels: repeated losses decreased, whereas repeated wins increased AR gene expression in individuals with low T but not in individuals with medium or high T levels. These results lend strong support for AR being involved in mediating winner–loser effects, which, in previous studies, were more detectable in individuals with lower T. Furthermore, the expression levels of ERα/β, 5-HT1AR and GR genes were higher in individuals that initiated contests against larger opponents than in those that did not. Overall, contest experience, underlying endocrine state and hormone and serotonin receptor expression patterns interacted to modulate contest decisions jointly.  相似文献   

18.

Background

Killer whales (Orcinus orca) are the most widely distributed cetacean, occurring in all oceans worldwide, and within ocean regions different ecotypes are defined based on prey preferences. Prey items are largely unknown in the eastern Canadian Arctic and therefore we conducted a survey of Inuit Traditional Ecological Knowledge (TEK) to provide information on the feeding ecology of killer whales. We compiled Inuit observations on killer whales and their prey items via 105 semi-directed interviews conducted in 11 eastern Nunavut communities (Kivalliq and Qikiqtaaluk regions) from 2007-2010.

Results

Results detail local knowledge of killer whale prey items, hunting behaviour, prey responses, distribution of predation events, and prey capture techniques. Inuit TEK and published literature agree that killer whales at times eat only certain parts of prey, particularly of large whales, that attacks on large whales entail relatively small groups of killer whales, and that they hunt cooperatively. Inuit observations suggest that there is little prey specialization beyond marine mammals and there are no definitive observations of fish in the diet. Inuit hunters and elders also documented the use of sea ice and shallow water as prey refugia.

Conclusions

By combining TEK and scientific approaches we provide a more holistic view of killer whale predation in the eastern Canadian Arctic relevant to management and policy. Continuing the long-term relationship between scientists and hunters will provide for successful knowledge integration and has resulted in considerable improvement in understanding of killer whale ecology relevant to management of prey species. Combining scientists and Inuit knowledge will assist in northerners adapting to the restructuring of the Arctic marine ecosystem associated with warming and loss of sea ice.  相似文献   

19.
In a portion of the coastal waters of northeastern Florida, North Atlantic right whales (Eubalaena glacialis) occur close to shore from December through March. These waters are included within the designated critical habitat for right whales. Data on swim speed, behavior, and direction of movement – with photo-identification of individual whales – were gathered by a volunteer sighting network working alongside experienced scientists and supplemented by aerial observations. In seven years (2001–2007), 109 tracking periods or “follows” were conducted on right whales during 600 hours of observation from shore-based observers. The whales were categorized as mother-calf pairs, singles and non-mother-calf pairs, and groups of 3 or more individuals. Sample size and amount of information obtained was largest for mother-calf pairs. Swim speeds varied within and across observation periods, individuals, and categories. One category, singles and non mother-calf pairs, was significantly different from the other two – and had the largest variability and the fastest swim speeds. Median swim speed for all categories was 1.3 km/h (0.7 kn), with examples that suggest swim speeds differ between within-habitat movement and migration-mode travel. Within-habitat right whales often travel back-and-forth in a north-south, along-coast, direction, which may cause an individual to pass by a given point on several occasions, potentially increasing anthropogenic risk exposure (e.g., vessel collision, fishing gear entanglement, harassment). At times, mothers and calves engaged in lengthy stationary periods (up to 7.5 h) that included rest, nursing, and play. These mother-calf interactions have implications for communication, learning, and survival. Overall, these behaviors are relevant to population status, distribution, calving success, correlation to environmental parameters, survey efficacy, and human-impacts mitigation. These observations contribute important parameters to conservation biology, predictive modeling, and management. However, while we often search for predictions, patterns, and means, the message here is also about variability and the behavioral characteristics of individual whales.  相似文献   

20.
Seamounts may influence the distribution of marine mammals through a combination of increased ocean mixing, enhanced local productivity and greater prey availability. To study the effects of seamounts on the presence and acoustic behaviour of cetaceans, we deployed a high-frequency acoustic recording package on the summit of Cross Seamount during April through October 2005. The most frequently detected cetacean vocalizations were echolocation sounds similar to those produced by ziphiid and mesoplodont beaked whales together with buzz-type signals consistent with prey-capture attempts. Beaked whale signals occurred almost entirely at night throughout the six-month deployment. Measurements of prey presence with a Simrad EK-60 fisheries acoustics echo sounder indicate that Cross Seamount may enhance local productivity in near-surface waters. Concentrations of micronekton were aggregated over the seamount in near-surface waters at night, and dense concentrations of nekton were detected across the surface of the summit. Our results suggest that seamounts may provide enhanced foraging opportunities for beaked whales during the night through a combination of increased productivity, vertical migrations by micronekton and local retention of prey. Furthermore, the summit of the seamount may act as a barrier against which whales concentrate prey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号