首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane deformation during endocytosis in yeast is driven by local, templated assembly of a sequence of proteins including polymerized actin and curvature-generating coat proteins such as clathrin. Actin polymerization is required for successful endocytosis, but it is not known by what mechanisms actin polymerization generates the required pulling forces. To address this issue, we develop a simulation method in which the actin network at the protein patch is modeled as an active gel. The deformation of the gel is treated using a finite-element approach. We explore the effects and interplay of three different types of force driving invagination: 1), forces perpendicular to the membrane, generated by differences between actin polymerization rates at the edge of the patch and those at the center; 2), the inherent curvature of the coat-protein layer; and 3), forces parallel to the membrane that buckle the coat protein layer, generated by an actomyosin contractile ring. We find that with optimistic estimates for the stall stress of actin gel growth and the shear modulus of the actin gel, actin polymerization can generate almost enough force to overcome the turgor pressure. In combination with the other mechanisms, actin polymerization can the force over the critical value.  相似文献   

2.
A convergence of cellular, genetic and biochemical studies supports the hypothesis that the actin cytoskeleton is coupled to endocytic processes, but the roles played by actin filaments during endocytosis are not yet clear. Recent studies have identified several proteins that may functionally link the endocytic machinery with actin filament dynamics. Three of these proteins, Abp1p, Pan1p and cortactin, are activators of actin assembly nucleated by the Arp2/3 complex, a key regulator of actin assembly in vivo. Two others, intersectin and syndapin, bind N-WASp, a potent activator of actin assembly via the Arp2/3 complex. All of these proteins also bind components of the endocytic machinery, and thus, could coordinately regulate actin assembly and trafficking events. Hip1R, an F-actin-binding protein that associates with clathrin-coated vesicles, may physically link endocytic vesicles to actin filaments. The GTPase dynamin is implicated in modulating actin filaments at specialized actin-rich structures of the cell cortex, suggesting that dynamin may regulate the organization of cortical actin filaments as well as regulate actin dynamics during endocytosis. Finally, myosin VI may generate actin-dependent forces for membrane invagination or vesicle movement during the early stages of endocytosis.  相似文献   

3.
The formation of clathrin-coated endocytic vesicles is driven by a complex and highly dynamic molecular machinery. In this issue, Idrissi et al. (Idrissi, F.-Z., H. Grötsch, I.M. Fernández-Golbano, C. Presciatto-Baschong, H. Riezman, and M.-I. Geli. 2008. J. Cell Biol. 180:1219–1232) reveal some of the secrets of this machinery by analyzing the localizations of nine endocytic proteins during vesicle budding in yeast using quantitative immunoelectron microscopy.More than 50 different proteins are thought to have roles in the formation of clathrin-coated endocytic vesicles. These proteins assemble together at the plasma membrane, forming the molecular machinery that drives budding of endocytic vesicles. Although clathrin-mediated endocytosis has been studied already for more than four decades, an understanding of the molecular mechanisms of the process is still quite limited. The difficulty of unraveling the molecular mechanisms is not only a result of the large number of involved proteins but is also a result of the dynamic nature of the endocytic machinery. Endocytic proteins are recruited to the site of vesicle formation in a sequential manner, each protein having its specific times of arrival and departure. The composition of the endocytic machinery can change in a matter of seconds. Many of the recent insights into the process of clathrin-mediated endocytosis have come from imaging of fluorescently labeled proteins in living cells using fluorescence microscopy. Light microscopy provides a good temporal resolution of dynamic events, but its spatial resolution is quite limiting when studying endocytic vesicle budding. On the other hand, electron microscopy offers much better spatial resolution but only provides still images.In this issue, one study (see Idrissi et al. on p. 1219) uses immunoelectron microscopy to study the localizations of nine different proteins at sites of endocytosis in yeast cells. Most of the proteins involved in clathrin-mediated endocytosis in yeast are conserved throughout eukaryotes, including mammals, making yeast a good model system for studying the basic mechanisms of endocytosis. However, only a few studies have addressed the organization of the endocytic machinery at the ultrastructural level in yeast (Mulholland et al., 1994; Young et al., 2004; Rodal et al., 2005). Idrissi et al. (2008) start by looking at clathrin, Pan1 (Eps15 homologue), and Sla1 (intersectin-like protein), which, when visualized in living cells by fluorescence microscopy, show similar behaviors. These proteins accumulate at the plasma membrane, forming small fluorescent spots that are initially nonmotile but then move ∼200 nm from the surface toward the interior of the cell at a constant speed for ∼10 s, after which the spots are rapidly disassembled (Kaksonen et al., 2005; Newpher et al., 2005). Idrissi et al. (2008) show by immunoelectron microscopy that clathrin, Pan1, and Sla1 each localize to tips of plasma membrane invaginations, which are ∼50 nm in diameter and have variable lengths up to 180 nm (Fig. 1). This confirms the earlier hypothesis that the movement of these proteins seen in living cells corresponds to the invagination of a clathrin-coated pit, not to the movement of an already budded vesicle. Importantly, these observations show that the length of the endocytic invagination can be used as an indicator for its age.Open in a separate windowFigure 1. Schematic model showing the localization of nine proteins on an endocytic invagination. An invagination of intermediate length (∼100 m) is depicted. The coat proteins, including clathrin, coat the tip of the invagination. Rvs167, Las17, and Bbc1 occupy the neck region below the tip. Myo5 concentrates to the base of the invagination. Actin and actin-binding protein Abp1 form a shell covering the whole invagination. The quantitative immunoelectron microscopy analysis is then applied to six other proteins involved in endocytosis: Rvs167, Las17, Bbc1, Myo5, actin, and Abp1 (Fig. 1). Rvs167 is a homologue of mammalian amphiphysin, a protein involved in pinching vesicles off from the tips of clathrin-coated pits (Takei et al., 1999). The other studied proteins are regulators or components of the actin cytoskeleton, which, in yeast, is essential for endocytosis, specifically for the movement of clathrin and other coat-associated proteins away from the cell surface (i.e., for the membrane invagination; Kubler and Riezman, 1993; Kaksonen et al., 2003). This analysis reveals many exciting details about the dynamic organization of the endocytic machinery. The yeast amphiphysin homologue Rvs167 is shown to localize to the tubular area of the membrane invagination, just below its clathrin-coated tip. Las17 (yeast Wiskott-Aldrich syndrome protein), a strong activator of the actin filament nucleator Arp2/3 (Winter et al., 1999), and Bbc1, an inhibitor of Las17 (Rodal et al., 2003), both localize to the same area as Rvs167. Myo5, a type I myosin, which is both an actin-dependent molecular motor and an activator of the Arp2/3 complex (Sun et al., 2006), localizes mostly to the base of the invagination, where the membrane has a negative curvature. Genetic experiments together with live cell imaging have suggested that Las17 and Myo5 are both needed sequentially for actin-driven invagination of the membrane (Sirotkin et al., 2005; Sun et al., 2006; Galletta et al., 2008). Las17 has a role in initiating the actin polymerization at endocytic sites, whereas Myo5 is needed for the subsequent internalization process. Interestingly, these two major activators of the Arp2/3 complex localize slightly differently: Myo5 closer to the base of the invagination and Las17 in the middle. This suggests that actin polymerization may be spatially restricted to different areas during different stages of endocytosis. Analysis of actin and actin filament–binding protein Abp1 reveals that they are localized throughout the invagination. However, when compared with the other proteins, immunogold labeling for actin and Abp1 is significantly further away from the lipid bilayer, suggesting that the actin cytoskeleton forms an outer shell covering the rest of the endocytic protein machinery.Using the invagination length as an indicator for the age of the endocytic site, Idrissi et al. (2008) are able to add the time dimension to their data, revealing some interesting temporal dynamics of protein localizations. The temporal order of protein recruitment derived from the electron microscopy data matches observations made using live cell imaging, but the localizations can now be seen at much higher resolution and in relation to the shape of the membrane. Bbc1 and Rvs167 colocalize with Las17, but they appear only on longer, older invaginations. Similarly, Las17 localization precedes Myo5 accumulation, which is consistent with their postulated order of function. The shortest invaginations (<50 nm) show very little labeling for actin. This may mean that the initial membrane bending is independent of actin and could be caused by clathrin or other coat proteins. In older invaginations, actin shows an intriguing distribution. The initial continuous labeling is split into two. Part of the staining localizes to the base of the invagination, and another part localizes to the tip. Similar behavior is also described for Myo5, which initially is concentrated at the base of the invagination but later also appears at the tip. It is not clear whether this staining pattern reflects two separate structures or whether one structure breaks into two. However, this finding shows that the organization of the actin cytoskeleton associated with the endocytic sites may be more complex than previously thought.One of the key events on the endocytic pathway, vesicle scission, still escapes analysis. Scission and the following disassembly are probably too transient to be caught in fixed cells frequently enough to yield sufficient data for analysis. Other very transient events may also go undetected because they could get smeared as a result of the averaging of data from tens of different invaginations. For these very transient events, live cell imaging is likely to remain the method of choice (Merrifield et al., 2005). However, the superior resolution offered by electron microscopy will clearly continue to provide critical insights. Idrissi et al. (2008) analyzed localizations of nine different proteins. At least 40 yeast proteins involved in endocytic internalization remain to be studied. The rich collections of endocytic mutants will also provide many interesting samples for analysis. What happens to the organization of the endocytic machinery when one of the Arp2/3 activators is mutated? Does the shape or size of the invagination change if one of the coat components is deleted? What would be the effect of inhibiting the motor activity of Myo5? These are just a few examples of exciting questions that can now be addressed.  相似文献   

4.
During endocytosis in S. cerevisiae, actin polymerization is proposed to provide the driving force for invagination against the effects of turgor pressure. In previous studies, Ysc84 was demonstrated to bind actin through a conserved N-terminal domain. However, full length Ysc84 could only bind actin when its C-terminal SH3 domain also bound to the yeast WASP homologue Las17. Live cell-imaging has revealed that Ysc84 localizes to endocytic sites after Las17/WASP but before other known actin binding proteins, suggesting it is likely to function at an early stage of membrane invagination. While there are homologues of Ysc84 in other organisms, including its human homologue SH3yl-1, little is known of its mode of interaction with actin or how this interaction affects actin filament dynamics. Here we identify key residues involved both in Ysc84 actin and lipid binding, and demonstrate that its actin binding activity is negatively regulated by PI(4,5)P2. Ysc84 mutants defective in their lipid or actin-binding interaction were characterized in vivo. The abilities of Ysc84 to bind Las17 through its C-terminal SH3 domain, or to actin and lipid through the N-terminal domain were all shown to be essential in order to rescue temperature sensitive growth in a strain requiring YSC84 expression. Live cell imaging in strains with fluorescently tagged endocytic reporter proteins revealed distinct phenotypes for the mutants indicating the importance of these interactions for regulating key stages of endocytosis.  相似文献   

5.
Ayscough KR 《Protoplasma》2005,226(1-2):81-88
Summary. Endocytosis is an essential eukaryotic process that, in many systems, has been reported to require a functional actin cytoskeleton. The process of endocytosis is critical for controlling the protein–lipid composition of the plasma membrane and uptake of nutrients as well as pathogens and also plays an important role in regulation of cell signalling. While several distinct pathways for endocytosis have been characterised, all of these require remodelling of the cell cortex. The importance of a dynamic actin cytoskeleton for facilitating endocytosis has been recognised for many years in budding yeast and is increasingly supported by studies in mammalian cells. Current evidence suggests that cortical patches are sites of endocytosis in Saccharomyces cerevisiae and that these sites are composed of sequentially forming protein complexes. Distinct stages in complex formation are characterised by the presence of different activators of F-actin polymerisation. Disassembly of the complexes is also essential for the endocytosis to proceed. Mutants lacking the kinases Ark1 and Prk1 accumulate actin and endocytic machinery in a single large clump in cells. Phosphorylation of endocytic proteins including Sla1p is proposed to cause their removal from the complex and allow later stages of the invagination process to occur. Dephosphorylation of endocytic components may then allow subsequent reincorporation into new sites of endocytic complex assembly. Correspondence and reprints: Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom.  相似文献   

6.
Amphiphysin 1, an endocytic adaptor concentrated at synapses that couples clathrin-mediated endocytosis to dynamin-dependent fission, was also shown to have a regulatory role in actin dynamics. Here, we report that amphiphysin 1 interacts with N-WASP and stimulates N-WASP- and Arp2/3-dependent actin polymerization. Both the Src homology 3 and the N-BAR domains are required for this stimulation. Acidic liposome-triggered, N-WASP-dependent actin polymerization is strongly impaired in brain cytosol of amphiphysin 1 knock-out mice. FRET-FLIM analysis of Sertoli cells, where endogenously expressed amphiphysin 1 co-localizes with N-WASP in peripheral ruffles, confirmed the association between the two proteins in vivo. This association undergoes regulation and is enhanced by stimulating phosphatidylserine receptors on the cell surface with phosphatidylserine-containing liposomes that trigger ruffle formation. These results indicate that actin regulation is a key function of amphiphysin 1 and that such function cooperates with the endocytic adaptor role and membrane shaping/curvature sensing properties of the protein during the endocytic reaction.  相似文献   

7.
W Kukulski  M Schorb  M Kaksonen  JA Briggs 《Cell》2012,150(3):508-520
Endocytosis, like many dynamic cellular processes, requires precise temporal and spatial orchestration of complex protein machinery to mediate membrane budding. To understand how this machinery works, we directly correlated fluorescence microscopy of key protein pairs with electron tomography. We systematically located 211 endocytic intermediates, assigned each to a specific time window in endocytosis, and reconstructed their ultrastructure in 3D. The resulting virtual ultrastructural movie defines the protein-mediated membrane shape changes during endocytosis in budding yeast. It reveals that clathrin is recruited to flat membranes and does not initiate curvature. Instead, membrane invagination begins upon actin network assembly followed by amphiphysin binding to parallel membrane segments, which promotes elongation of the invagination into a tubule. Scission occurs on average 9?s after initial bending when invaginations are ~100?nm deep, releasing nonspherical vesicles with 6,400?nm(2) mean surface area. Direct correlation of protein dynamics with ultrastructure provides a quantitative 4D resource.  相似文献   

8.
The role of the actin cytoskeleton during receptor-mediated endocytosis (RME) has been well characterized in yeast for many years. Only more recently has the interplay between the actin cytoskeleton and RME been extensively explored in mammalian cells. These studies have revealed the central roles of BAR proteins in RME, and have demonstrated significant roles of BAR proteins in linking the actin cytoskeleton to this cellular process. The actin cytoskeleton generates and transmits mechanical force to promote the extension of receptor-bound endocytic vesicles into the cell. Many adaptor proteins link and regulate the actin cytoskeleton at the sites of endocytosis. This review will cover key effectors, adaptors and signalling molecules that help to facilitate the invagination of the cell membrane during receptor-mediated endocytosis, including recent insights gained on the roles of BAR proteins. The final part of this review will explore associations of alterations to genes encoding BAR proteins with cancer.  相似文献   

9.
Yeast and other walled cells possess high internal turgor pressure that allows them to grow and survive in the environment. This turgor pressure, however, may oppose the invagination of the plasma membrane needed for endocytosis. Here we study the effects of turgor pressure on endocytosis in the fission yeast Schizosaccharomyces pombe by time-lapse imaging of individual endocytic sites. Decreasing effective turgor pressure by addition of sorbitol to the media significantly accelerates early steps in the endocytic process before actin assembly and membrane ingression but does not affect the velocity or depth of ingression of the endocytic pit in wild-type cells. Sorbitol also rescues endocytic ingression defects of certain endocytic mutants and of cells treated with a low dose of the actin inhibitor latrunculin A. Endocytosis proceeds after removal of the cell wall, suggesting that the cell wall does not contribute mechanically to this process. These studies suggest that endocytosis is governed by a mechanical balance between local actin-dependent inward forces and opposing forces from high internal turgor pressure on the plasma membrane.  相似文献   

10.
In clathrin-mediated endocytosis, a principal membrane trafficking route of all eukaryotic cells, forces are applied to invaginate the plasma membrane and form endocytic vesicles. These forces are provided by specific endocytic proteins and the polymerizing actin cytoskeleton. One of the best-studied endocytic systems is endocytosis in yeast, known for its simplicity, experimental amenability, and overall similarity to human endocytosis. Importantly, the yeast endocytic protein machinery generates and transmits tremendous force to bend the plasma membrane, making this system beneficial for mechanistic studies of cellular force-driven membrane reshaping. This review summarizes important protein players, molecular functions, applied forces, and open questions and perspectives of this robust, actin-powered membrane-remodeling protein machine.  相似文献   

11.
Endocytosis of receptors at the plasma membrane is controlled by a complex mechanism that includes clathrin, adaptors, and actin regulators. Many of these proteins are conserved in yeast yet lack observable mutant phenotypes, which suggests that yeast endocytosis may be subject to different regulatory mechanisms. Here, we have systematically defined genes required for internalization using a quantitative genome-wide screen that monitors localization of the yeast vesicle-associated membrane protein (VAMP)/synaptobrevin homologue Snc1. Genetic interaction mapping was used to place these genes into functional modules containing known and novel endocytic regulators, and cargo selectivity was evaluated by an array-based comparative analysis. We demonstrate that clathrin and the yeast AP180 clathrin adaptor proteins have a cargo-specific role in Snc1 internalization. We additionally identify low dye binding 17 (LDB17) as a novel conserved component of the endocytic machinery. Ldb17 is recruited to cortical actin patches before actin polymerization and regulates normal coat dynamics and actin assembly. Our findings highlight the conserved machinery and reveal novel mechanisms that underlie endocytic internalization.  相似文献   

12.
Actin polymerization essential for endocytic internalization in budding yeast is controlled by four nucleation promoting factors (NPFs) that each exhibits a unique dynamic behavior at endocytic sites. How each NPF functions and is regulated to restrict actin assembly to late stages of endocytic internalization is not known. Quantitative analysis of NPF biochemical activities, and genetic analysis of recruitment and regulatory mechanisms, defined a linear pathway in which protein composition changes at endocytic sites control actin assembly and function. We show that yeast WASP initiates actin assembly at endocytic sites and that this assembly and the recruitment of a yeast WIP-like protein by WASP recruit a type I myosin with both NPF and motor activities. Importantly, type I myosin motor and NPF activities are separable, and both contribute to endocytic coat inward movement, which likely represents membrane invagination. These results reveal a mechanism in which actin nucleation and myosin motor activity cooperate to promote endocytic internalization.  相似文献   

13.
Cell membranes undergo continuous curvature changes as a result of membrane trafficking and cell motility. Deformations are achieved both by forces extrinsic to the membrane as well as by structural modifications in the bilayer or at the bilayer surface that favor the acquisition of curvature. We report here that a family of proteins previously implicated in the regulation of the actin cytoskeleton also have powerful lipid bilayer-deforming properties via an N-terminal module (F-BAR) similar to the BAR domain. Several such proteins, like a subset of BAR domain proteins, bind to dynamin, a GTPase implicated in endocytosis and actin dynamics, via SH3 domains. The ability of BAR and F-BAR domain proteins to induce tubular invaginations of the plasma membrane is enhanced by disruption of the actin cytoskeleton and is antagonized by dynamin. These results suggest a close interplay between the mechanisms that control actin dynamics and those that mediate plasma membrane invagination and fission.  相似文献   

14.
Regulation of actin polymerization is essential for cell functioning. Here, we predict a novel phenomenon-the force-driven polymerization of actin filaments mediated by proteins of the formin family. Formins localize to the barbed ends of actin filaments, but, in contrast to the standard capping proteins, allow for actin polymerization in the barbed direction. First, we show that the mechanism of such "leaky capping" can be understood in terms of the elasticity of the formin molecules. Second, we demonstrate that if a pulling force acts on the filament end via the leaky cap, the elastic stresses can drive actin polymerization. We estimate that a moderate pulling force of approximately 3.4 pN is sufficient to reduce the critical actin concentration required for barbed end polymerization by an order of magnitude. Furthermore, the pulling force increases the polymerization rate. The suggested mechanism of force-driven polymerization could be a key element in a variety of cellular mechanosensing devices.  相似文献   

15.
Burkholderia pseudomallei is the causative agent of melioidosis, a serious infectious disease of humans and animals that is endemic in subtropical areas. B. pseudomallei is a facultative intracellular pathogen that may invade and survive within eukaryotic cells for prolonged periods. After internalization, the bacteria escape from endocytic vacuoles into the cytoplasm of infected cells and form membrane protrusions by inducing actin polymerization at one pole. It is believed that survival within phagocytic cells and cell-to-cell spread via actin protrusions is required for full virulence. We have studied the role of a putative type III protein secretion apparatus (Bsa) in the interaction between B. pseudomallei and host cells. The Bsa system is very similar to the Inv/Mxi-Spa type III secretion systems of Salmonella and Shigella. Moreover, B. pseudomallei encodes proteins that are very similar to Salmonella and Shigella Inv/Mxi-Spa secreted proteins required for invasion, escape from endocytic vacuoles, intercellular spread and pathogenesis. Antibodies to putative Bsa-secreted proteins were detected in convalescent serum from a melioidosis patient, suggesting that the system is functionally expressed in vivo. B. pseudomallei mutant strains lacking components of the Bsa secretion and translocation apparatus were constructed. The mutant strains exhibited reduced replication in J774.2 murine macrophage-like cells, an inability to escape from endocytic vacuoles and a complete absence of formation of membrane protrusions and actin tails. These findings indicate that the Bsa type III secretion system plays an essential role in modulating the intracellular behaviour of B. pseudomallei.  相似文献   

16.
Endocytosis is an important way for cells to take up liquids and particles from their environment. It requires membrane bending to be coupled with membrane fission, and the actin cytoskeleton has an active role in membrane remodelling. Here, we review recent research into the function of Bin-Amphiphysin-Rvs (BAR) domain proteins, which can sense membrane curvature and recruit actin to membranes. BAR proteins interact with the endocytic and cytoskeletal machinery, including the GTPase dynamin (which mediates vesicle fission), N-WASP (an Arp2/3 complex regulator) and synaptojanin (a phosphoinositide phosphatase). We describe three classes of BAR domains, BAR, N-BAR and F-BAR, providing examples of each discussing and how they function in linking membranes to the actin cytoskeleton in endocytosis.  相似文献   

17.
An intimate interplay of the plasma membrane with curvature-sensing and curvature-inducing proteins would allow for defining specific sites or nanodomains of action at the plasma membrane, for example, for protrusion, invagination, and polarization. In addition, such connections are predestined to ensure spatial and temporal order and sequences. The combined forces of membrane shapers and the cortical actin cytoskeleton might hereby in particular be required to overcome the strong resistance against membrane rearrangements in case of high plasma membrane tension or cellular turgor. Interestingly, also the opposite might be necessary, the inhibition of both membrane shapers and cytoskeletal reinforcement structures to relieve membrane tension to protect cells from membrane damage and rupturing during mechanical stress. In this review article, we discuss recent conceptual advances enlightening the interplay of plasma membrane curvature and the cortical actin cytoskeleton during endocytosis, modulations of membrane tensions, and the shaping of entire cells.  相似文献   

18.
Clathrin-mediated endocytosis is the major mechanism by which proteins and membrane lipids gain access into cells. Over the past several years, an array of proteins has been identified that define the molecular machinery regulating the formation of clathrin-coated pits and vesicles. This article focuses on how the identification of this machinery has begun to reveal a molecular basis for a link between endocytosis and the actin cytoskeleton--a link that had long been suspected to exist in mammalian cells but which had remained elusive. In particular, I discuss the relationship between actin and three components of the endocytic machinery--dynamin, HIPs (huntingtin-interacting proteins) and intersectin.  相似文献   

19.
Notch signaling induced by cell surface ligands is critical to development and maintenance of many eukaryotic organisms. Notch and its ligands are integral membrane proteins that facilitate direct cell-cell interactions to activate Notch proteolysis and release the intracellular domain that directs Notch-specific cellular responses. Genetic studies suggest that Notch ligands require endocytosis, ubiquitylation, and epsin endocytic adaptors to activate signaling, but the exact role of ligand endocytosis remains unresolved. Here we characterize a molecularly distinct mode of clathrin-mediated endocytosis requiring ligand ubiquitylation, epsins, and actin for ligand cells to activate signaling in Notch cells. Using a cell-bead optical tweezers system, we obtained evidence for cell-mediated mechanical force dependent on this distinct mode of ligand endocytosis. We propose that the mechanical pulling force produced by endocytosis of Notch-bound ligand drives conformational changes in Notch that permit activating proteolysis.  相似文献   

20.
A modular design for the clathrin- and actin-mediated endocytosis machinery   总被引:38,自引:0,他引:38  
Kaksonen M  Toret CP  Drubin DG 《Cell》2005,123(2):305-320
Endocytosis depends on an extensive network of interacting proteins that execute a series of distinct subprocesses. Previously, we used live-cell imaging of six budding-yeast proteins to define a pathway for association of receptors, adaptors, and actin during endocytic internalization. Here, we analyzed the effects of 61 deletion mutants on the dynamics of this pathway, revealing functions for 15 proteins, and we analyzed the dynamics of 8 of these proteins. Our studies provide evidence for four protein modules that cooperate to drive coat formation, membrane invagination, actin-meshwork assembly, and vesicle scission during clathrin/actin-mediated endocytosis. We found that clathrin facilitates the initiation of endocytic-site assembly but is not needed for membrane invagination or vesicle formation. Finally, we present evidence that the actin-meshwork assembly that drives membrane invagination is nucleated proximally to the plasma membrane, opposite to the orientation observed for previously studied actin-assembly-driven motility processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号