首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complexity and dynamics of microbial metagenomes may be evaluated by genome size, gene duplication and the disruption rate between lineages. In this study, we pyrosequenced the metagenomes of microbes obtained from the brine and sediment of a deep-sea brine pool in the Red Sea to explore the possible genomic adaptations of the microbes in response to environmental changes. The microbes from the brine and sediments (both surface and deep layers) of the Atlantis II Deep brine pool had similar communities whereas the effective genome size varied from 7.4 Mb in the brine to more than 9 Mb in the sediment. This genome expansion in the sediment samples was due to gene duplication as evidenced by enrichment of the homologs. The duplicated genes were highly disrupted, on average by 47.6% and 70% for the surface and deep layers of the Atlantis II Deep sediment samples, respectively. The disruptive effects appeared to be mainly due to point mutations and frameshifts. In contrast, the homologs from the Atlantis II Deep brine sample were highly conserved and they maintained relatively small copy numbers. Likely, the adaptation of the microbes in the sediments was coupled with pseudogenizations and possibly functional diversifications of the paralogs in the expanded genomes. The maintenance of the pseudogenes in the large genomes is discussed.  相似文献   

2.
The seafloor is a unique environment, which allows insights into how geochemical processes affect the diversity of biological life. Among its diverse ecosystems are deep-sea brine pools - water bodies characterized by a unique combination of extreme conditions. The 'polyextremophiles' that constitute the microbial assemblage of these deep hot brines have not been comprehensively studied. We report a comparative taxonomic analysis of the prokaryotic communities of the sediments directly below the Red Sea brine pools, namely, Atlantis II, Discovery, Chain Deep, and an adjacent brine-influenced site. Analyses of sediment samples and high-throughput pyrosequencing of PCR-amplified environmental 16S ribosomal RNA genes (16S rDNA) revealed that one sulfur (S)-rich Atlantis II and one nitrogen (N)-rich Discovery Deep section contained distinct microbial populations that differed from those found in the other sediment samples examined. Proteobacteria, Actinobacteria, Cyanobacteria, Deferribacteres, and Euryarchaeota were the most abundant bacterial and archaeal phyla in both the S- and N-rich sections. Relative abundance-based hierarchical clustering of the 16S rDNA pyrotags assigned to major taxonomic groups allowed us to categorize the archaeal and bacterial communities into three major and distinct groups; group I was unique to the S-rich Atlantis II section (ATII-1), group II was characteristic for the N-rich Discovery sample (DD-1), and group III reflected the composition of the remaining sediments. Many of the groups detected in the S-rich Atlantis II section are likely to play a dominant role in the cycling of methane and sulfur due to their phylogenetic affiliations with bacteria and archaea involved in anaerobic methane oxidation and sulfate reduction.  相似文献   

3.
Lower Red Eyes is an acid mine drainage site in Pennsylvania where low-pH Fe(II) oxidation has created a large, terraced iron mound downstream of an anoxic, acidic, metal-rich spring. Aqueous chemistry, mineral precipitates, microbial communities, and laboratory-based Fe(II) oxidation rates for this site were analyzed in the context of a depositional facies model. Depositional facies were defined as pools, terraces, or microterracettes based on cm-scale sediment morphology, irrespective of the distance downstream from the spring. The sediments were composed entirely of Fe precipitates and cemented organic matter. The Fe precipitates were identified as schwertmannite at all locations, regardless of facies. Microbial composition was studied with fluorescence in situ hybridization (FISH) and transitioned from a microaerophilic, Euglena-dominated community at the spring, to a Betaproteobacteria (primarily Ferrovum spp.)-dominated community at the upstream end of the iron mound, to a Gammaproteobacteria (primarily Acidithiobacillus)-dominated community at the downstream end of the iron mound. Microbial community structure was more strongly correlated with pH and geochemical conditions than depositional facies. Intact pieces of terrace and pool sediments from upstream and downstream locations were used in flowthrough laboratory reactors to measure the rate and extent of low-pH Fe(II) oxidation. No change in Fe(II) concentration was observed with (60)Co-irradiated sediments or with no-sediment controls, indicating that abiotic Fe(II) oxidation was negligible. Upstream sediments attained lower effluent Fe(II) concentrations compared to downstream sediments, regardless of depositional facies.  相似文献   

4.
Hydrothermal ecosystems have a wide distribution on Earth and many can be found in the basin of the Red Sea. Production of aromatic compounds occurs in a temperature window of ∼60–150 °C by utilizing organic debris. In the past 50 years, the temperature of the Atlantis II Deep brine pool in the Red Sea has increased from 56 to 68 °C, whereas the temperature at the nearby Discovery Deep brine pool has remained relatively stable at about 44 °C. In this report, we confirmed the presence of aromatic compounds in the Atlantis II brine pool as expected. The presence of the aromatic compounds might have disturbed the microbes in the Atlantis II. To show shifted microbial communities and their metabolisms, we sequenced the metagenomes of the microbes from both brine pools. Classification based on metareads and the 16S rRNA gene sequences from clones showed a strong divergence of dominant bacterial species between the pools. Bacteria capable of aromatic degradation were present in the Atlantis II brine pool. A comparison of the metabolic pathways showed that several aromatic degradation pathways were significantly enriched in the Atlantis II brine pool, suggesting the presence of aromatic compounds. Pathways utilizing metabolites derived from aromatic degradation were also significantly affected. In the Discovery brine pool, the most abundant genes from the microbes were related to sugar metabolism pathways and DNA synthesis and repair, suggesting a different strategy for the utilization of carbon and energy sources between the Discovery brine pool and the Atlantis II brine pool.  相似文献   

5.
Du J  Xiao K  Huang Y  Li H  Tan H  Cao L  Lu Y  Zhou S 《Antonie van Leeuwenhoek》2011,100(3):317-331
This study was conducted to characterize the diversity of microbial communities in marine sediments of the South China Sea by means of 16S rRNA gene clone libraries. The results revealed that the sediment samples collected in summer harboured a more diverse microbial community than that collected in winter, Deltaproteobacteria dominated 16S rRNA gene clone libraries from both seasons, followed by Gammaproteobacteria, Acidobacteria, Nitrospirae, Planctomycetes, Firmicutes. Archaea phylotypes were also found. The majority of clone sequences shared greatest similarity to uncultured organisms, mainly from hydrothermal sediments and cold seep sediments. In addition, the sedimentary microbial communities in the coastal sea appears to be much more diverse than that of the open sea. A spatial pattern in the sediment samples was observed that the sediment samples collected from the coastal sea and the open sea clustered separately, a novel microbial community dominated the open sea. The data indicate that changes in environmental conditions are accompanied by significant variations in diversity of microbial communities at the South China Sea.  相似文献   

6.
The ecosystems of the Red Sea are among the least-explored microbial habitats in the marine environment. In this study, we investigated the microbial communities in the water column overlying the Atlantis II Deep and Discovery Deep in the Red Sea. Taxonomic classification of pyrosequencing reads of the 16S rRNA gene amplicons showed vertical stratification of microbial diversity from the surface water to 1500 m below the surface. Significant differences in both bacterial and archaeal diversity were observed in the upper (2 and 50 m) and deeper layers (200 and 1500 m). There were no obvious differences in community structure at the same depth for the two sampling stations. The bacterial community in the upper layer was dominated by Cyanobacteria whereas the deeper layer harbored a large proportion of Proteobacteria. Among Archaea, Euryarchaeota, especially Halobacteriales, were dominant in the upper layer but diminished drastically in the deeper layer where Desulfurococcales belonging to Crenarchaeota became the dominant group. The results of our study indicate that the microbial communities sampled in this study are different from those identified in water column in other parts of the world. The depth-wise compositional variation in the microbial communities is attributable to their adaptations to the various environments in the Red Sea.  相似文献   

7.
Early diagenesis of organic matter in bottom sediments of Lake Baikal is a focus of many geochemical studies, because it is one of the few sites of petroleum formation in a nonmarine environment. Although Baikal is a rift lake and considered one of the prospective fields for deep biosphere investigations, the transformation processes of organic matter by microbial communities from deep bottom sediments and likely entering of the microorganisms from deep sediments into the near-surface sediments were not previously studied in Lake Baikal. The natural microbial community from near-surface sediments of the cold methane seep Goloustnoe (Southern Baikal Basin) was incubated with methane and the diatom Synedra acus at 80°C and 49.5 atm to simulate catagenesis. The 11-month incubation yielded the enrichment culture of viable thermophilic microorganisms. Their presence in low-temperature sediment layers may be indicative of their migration through fault zones together with gas-bearing fluids. After culturing, molecular biological methods allowed for the detection of both widespread microorganisms and unique clones whose phylogenetic status is currently unknown. The sediment after the experiment showed the formation of polycyclic aromatic hydrocarbon, retene. Retene can be either a conifer or algal biomarker, thus, interpretation of paleoclimate data is tenuous.  相似文献   

8.
Barite chimneys are known to form in hydrothermal systems where barium‐enriched fluids generated by leaching of the oceanic basement are discharged and react with seawater sulfate. They also form at cold seeps along continental margins, where marine (or pelagic) barite in the sediments is remobilized because of subseafloor microbial sulfate reduction. We test the possibility of using multiple sulfur isotopes (δ34S, Δ33S, ?36S) of barite to identify microbial sulfate reduction in a hydrothermal system. In addition to multiple sulfur isotopes, we present oxygen (δ18O) and strontium (87Sr/86Sr) isotopes for one of numerous barite chimneys in a low‐temperature (~20 °C) venting area of the Loki's Castle black smoker field at the ultraslow‐spreading Arctic Mid‐Ocean Ridge (AMOR). The chemistry of the venting fluids in the barite field identifies a contribution of at least 10% of high‐temperature black smoker fluid, which is corroborated by 87Sr/86Sr ratios in the barite chimney that are less radiogenic than in seawater. In contrast, oxygen and multiple sulfur isotopes indicate that the fluid from which the barite precipitated contained residual sulfate that was affected by microbial sulfate reduction. A sulfate reduction zone at this site is further supported by the multiple sulfur isotopic composition of framboidal pyrite in the flow channel of the barite chimney and in the hydrothermal sediments in the barite field, as well as by low SO4 and elevated H2S concentrations in the venting fluids compared with conservative mixing values. We suggest that the mixing of ascending H2‐ and CH4‐rich high‐temperature fluids with percolating seawater fuels microbial sulfate reduction, which is subsequently recorded by barite formed at the seafloor in areas where the flow rate is sufficient. Thus, low‐temperature precipitates in hydrothermal systems are promising sites to explore the interactions between the geosphere and biosphere in order to evaluate the microbial impact on these systems.  相似文献   

9.
Microbial communities associated with a variety of hydrothermal emissions at the Yonaguni Knoll IV hydrothermal field, the southernmost Okinawa Trough, were analyzed by culture-dependent and -independent techniques. In this hydrothermal field, dozens of vent sites hosting physically and chemically distinct hydrothermal fluids were observed. Variability in the gas content and formation in the hydrothermal fluids was observed and could be controlled by the potential subseafloor phase-separation and -partition processes. The hydrogen concentration in the hydrothermal fluids was also variable (0.8–3.6 mmol kg−1) among the chimney sites, but was unusually high as compared with those in other Okinawa Trough hydrothermal fields. Despite the physical and chemical variabilities of the hydrothermal fluids, the microbial communities were relatively similar among the habitats. Based on both culture-dependent and -independent analyses of the microbial community structures, members of Thermococcales, Methanococcales and Desulfurococcales likely represent the predominant archaeal components, while members of Nautiliaceae and Thioreductoraceae are considered to dominate the bacterial population. Most of the abundant microbial components appear to be chemolithotrophs sustained by hydrogen oxidation. The relatively consistent microbial communities found in this study could have been because of the sufficient input of hydrogen from the hydrothermal fluids rather than other chemical properties.  相似文献   

10.
The impacts of lithologic structure and geothermal gradient on subseafloor microbial communities were investigated at a marginal site of the Iheya North hydrothermal field in the Mid-Okinawa Trough. Subsurface marine sediments composed of hemipelagic muds and volcaniclastic deposits were recovered through a depth of 151 m below the seafloor at site C0017 during Integrated Ocean Drilling Program Expedition 331. Microbial communities inferred from 16S rRNA gene clone sequencing in low-temperature hemipelagic sediments were mainly composed of members of the Chloroflexi and deep-sea archaeal group. In contrast, 16S rRNA gene sequences of marine group I Thaumarchaeota dominated the microbial phylotype communities in the coarse-grained pumiceous gravels interbedded between the hemipelagic sediments. Based on the physical properties of sediments such as temperature and permeability, the porewater chemistry, and the microbial phylotype compositions, the shift in the physical properties of the sediments is suggested to induce a potential subseafloor recharging flow of oxygenated seawater in the permeable zone, leading to the generation of variable chemical environments and microbial communities in the subseafloor habitats. In addition, the deepest section of sediments under high-temperature conditions (∼90°C) harbored the sequences of an uncultivated archaeal lineage of hot water crenarchaeotic group IV that may be associated with the high-temperature hydrothermal fluid flow. These results indicate that the subseafloor microbial community compositions and functions at the marginal site of the hydrothermal field are highly affected by the complex fluid flow structure, such as recharging seawater and underlying hydrothermal fluids, coupled with the lithologic transition of sediments.  相似文献   

11.
Cobalt-rich crusts are important metallic mineral resources with great economic potential, usually distributed on seamounts located in the Pacific Ocean. Microorganisms are believed to play a role in the formation of crusts as well as in metal cycling. To explore the microbial diversity related to cobalt-rich crusts, 16S ribosomal RNA gene clone libraries were constructed from three consecutive sediment layers. In total, 417 bacterial clones were obtained from three bacterial clone libraries, representing 17 distinct phylogenetic groups. Proteobacteria dominated in the bacterial communities, followed by Acidobacteria and Planctomycetes. Compared with high bacterial diversity, archaea showed a remarkably low diversity, with all 137 clones belonging to marine archaeal group I except one novel euryarchaeotal clone. The microbial communities were potentially involved in sulfur, nitrogen and metal cycling in the area of cobalt-rich crusts. Sulfur oxidation and metal oxidation were potentially major sources of energy for this ecosystem. This is the first reported investigation of microbial diversity in sediments associated with cobalt-rich crusts, and it casts fresh light on the microbial ecology of these important ecosystems.  相似文献   

12.
To determine the microbial community diversity within old oceanic crust, a novel sampling strategy was used to collect crustal fluids at Baby Bare Seamount, a 3.5 Ma old outcrop located in the north-east Pacific Ocean on the eastern flank of the Juan de Fuca Ridge. Stainless steel probes were driven directly into the igneous ocean crust to obtain samples of ridge flank crustal fluids. Genetic signatures and enrichment cultures of microorganisms demonstrate that these crustal fluids host a microbial community composed of species indigenous to the subseafloor, including anaerobic thermophiles, and species from other deep-sea habitats, such as seawater and sediments. Evidence using molecular techniques indicates the presence of a relatively small but active microbial population, dominated by bacteria. The microbial community diversity found in the crustal fluids may indicate habitat variability in old oceanic crust, with inputs of nutrients from seawater, sediment pore-water fluids and possibly hydrothermal sources. This report further supports the presence of an indigenous microbial community in ridge flank crustal fluids and advances our understanding of the potential physiological and phylogenetic diversity of this community.  相似文献   

13.
14.
The ultimate fate of hydrothermal sulphides on the seafloor depends on the nature and rate of abiotic and microbially catalysed reactions where sulphide minerals are exposed to oxic seawater. This study combines organic and inorganic geochemical with microbiological measurements across a suboxic transition zone of highly altered sulphidic sediments from the Trans‐Atlantic Geotransverse hydrothermal field to characterize the reaction products and microbial communities present. There is distinct biogeochemical zonation apparent within the sediment sequence from oxic surface layers through a suboxic transition zone into the sulphide material. The microbial communities in the sediment differ significantly between the biogeochemical horizons sampled, with the identified microbes inferred to be associated with Fe and S redox cycling. In particular, Marinobacter species, organisms associated with circumneutral Fe oxidation, are dominant in a sulphide lens present in the lower core. The dominance of Marinobacter‐related sequences within the relict sulphide lens implies that these organisms play an important role in the alteration of sulphides at the seafloor once active venting has ceased.  相似文献   

15.
The delicate balance of the major global biogeochemical cycles greatly depends on the transformation of Earth materials at or near its surface. The formation and degradation of rocks, minerals, and organic matter are pivotal for the balance, maintenance, and future of many of these cycles. Microorganisms also play a crucial role, determining the transformation rates, pathways, and end products of these processes. While most of Earth's crust is oceanic rather than terrestrial, few studies have been conducted on ocean crust transformations, particularly those mediated by endolithic (rock-hosted) microbial communities. The biology and geochemistry of deep-sea and sub-seafloor environments are generally more complicated to study than in terrestrial or near-coastal regimes. As a result, fewer, and more targeted, studies usually homing in on specific sites, are most common. We are studying the role of endolithic microorganisms in weathering seafloor crustal materials, including basaltic glass and sulfide minerals, both in the vicinity of seafloor hydrothermal vents and off-axis at unsedimented (young) ridge flanks. We are using molecular phylogenetic surveys and laboratory culture studies to define the size, diversity, physiology, and distribution of microorganisms in the shallow ocean crust. Our data show that an unexpected diversity of microorganisms directly participate in rock weathering at the seafloor, and imply that endolithic microbial communities contribute to rock, mineral, and carbon transformations.  相似文献   

16.
The shallow marine and subaerial sedimentary and hydrothermal rocks of the ~3.48 billion‐year‐old Dresser Formation are host to some of Earth's oldest stromatolites and microbial remains. This study reports on texturally distinctive, spherulitic barite micro‐mineralization that occur in association with primary, autochthonous organic matter within exceptionally preserved, strongly sulfidized stromatolite samples obtained from drill cores. Spherulitic barite micro‐mineralization within the sulfidized stromatolites generally forms submicron‐scale aggregates that show gradations from hollow to densely crystallized, irregular to partially radiating crystalline interiors. Several barite micro‐spherulites show thin outer shells. Within stromatolites, barite micro‐spherulites are intimately associated with petrographically earliest dolomite and nano‐porous pyrite enriched in organic matter, the latter of which is a possible biosignature assemblage that hosts microbial remains. Barite spherulites are also observed within layered barite in proximity to stromatolite layers, where they are overgrown by compositionally distinct (Sr‐rich), coarsely crystalline barite that may have been sourced from hydrothermal veins at depth. Micro‐spherulitic barite, such as reported here, is not known from hydrothermal systems that exceed the upper temperature limit for life. Rather, barite with near‐identical morphology and micro‐texture is known from zones of high bio‐productivity under low‐temperature conditions in the modern oceans, where microbial activity and/or organic matter of degrading biomass controls the formation of spherulitic aggregates. Hence, the presence of micro‐spherulitic barite in the organic matter‐bearing Dresser Formation sulfidized stromatolites lend further support for a biogenic origin of these unusual, exceptionally well‐preserved, and very ancient microbialites.  相似文献   

17.
In this study we determined the composition and biogeochemistry of novel, brightly colored, white and orange microbial mats at the surface of a brine seep at the outer rim of the Chefren mud volcano. These mats were interspersed with one another, but their underlying sediment biogeochemistries differed considerably. Microscopy revealed that the white mats were granules composed of elemental S filaments, similar to those produced by the sulfide-oxidizing epsilonproteobacterium "Candidatus Arcobacter sulfidicus." Fluorescence in situ hybridization indicated that microorganisms targeted by a "Ca. Arcobacter sulfidicus"-specific oligonucleotide probe constituted up to 24% of the total the cells within these mats. Several 16S rRNA gene sequences from organisms closely related to "Ca. Arcobacter sulfidicus" were identified. In contrast, the orange mat consisted mostly of bright orange flakes composed of empty Fe(III) (hydr)oxide-coated microbial sheaths, similar to those produced by the neutrophilic Fe(II)-oxidizing betaproteobacterium Leptothrix ochracea. None of the 16S rRNA gene sequences obtained from these samples were closely related to sequences of known neutrophilic aerobic Fe(II)-oxidizing bacteria. The sediments below both types of mats showed relatively high sulfate reduction rates (300 nmol x cm(-3) x day(-1)) partially fueled by the anaerobic oxidation of methane (10 to 20 nmol x cm(-3) x day(-1)). Free sulfide produced below the white mat was depleted by sulfide oxidation within the mat itself. Below the orange mat free Fe(II) reached the surface layer and was depleted in part by microbial Fe(II) oxidation. Both mats and the sediments underneath them hosted very diverse microbial communities and contained mineral precipitates, most likely due to differences in fluid flow patterns.  相似文献   

18.
The abundance and phylogenetic diversity of the microbial community in the hydrogenetic ferromanganese crust, sandy sediment and overlying seawater were investigated using a culture-independent molecular analysis based on the 16S rRNA gene. These samples were carefully collected from the Takuyo-Daigo Seamount, located in the northwest Pacific Ocean, by a remotely operated vehicle. Based on quantitative PCR analysis, Archaea occupy a significant portion of the prokaryotic communities in the ferromanganese crust and the sediment samples, while Bacteria dominated in the seawater samples. Phylotypes belonging to Gammaproteobacteria and to Marine group I (MGI) Crenarchaeota were abundant in clone libraries constructed from the ferromanganese crust and sediment samples, while those belonging to Alphaproteobacteria were abundant in that from the seawater sample. Comparative analysis indicates that over 80% of the total phylotype richness estimates for the crust community were unique as compared with the sediment and seawater communities. Phylotypes related to Nitrosospira belonging to the Betaproteobacteria and those related to Nitrosopumilus belonging to MGI Crenarchaeota were detected in the ferromanganese crust, suggesting that these ammonia-oxidizing chemolithoautotrophs play a role as primary producers in the microbial ecosystem of hydrogenetic ferromanganese crusts that was formed as precipitates from seawater.  相似文献   

19.
Crusts and chimneys composed of authigenic barite are found at methane seeps and hydrothermal vents that expel fluids rich in barium. Microbial processes have not previously been associated with barite precipitation in marine cold seep settings. Here, we report on the precipitation of barite on filaments of sulfide‐oxidizing bacteria at a brine seep in the Gulf of Mexico. Barite‐mineralized bacterial filaments in the interiors of authigenic barite crusts resemble filamentous sulfide‐oxidizing bacteria of the genus Beggiatoa. Clone library and iTag amplicon sequencing of the 16S rRNA gene show that the barite crusts that host these filaments also preserve DNA of Candidatus Maribeggiatoa, as well as sulfate‐reducing bacteria. Isotopic analyses show that the sulfur and oxygen isotope compositions of barite have lower δ34S and δ18O values than many other marine barite crusts, which is consistent with barite precipitation in an environment in which sulfide oxidation was occurring. Laboratory experiments employing isolates of sulfide‐oxidizing bacteria from Gulf of Mexico seep sediments showed that under low sulfate conditions, such as those encountered in brine fluids, sulfate generated by sulfide‐oxidizing bacteria fosters rapid barite precipitation localized on cell biomass, leading to the encrustation of bacteria in a manner reminiscent of our observations of barite‐mineralized Beggiatoa in the Gulf of Mexico. The precipitation of barite directly on filaments of sulfide‐oxidizing bacteria, and not on other benthic substrates, suggests that sulfide oxidation plays a role in barite formation at certain marine brine seeps where sulfide is oxidized to sulfate in contact with barium‐rich fluids, either prior to, or during, the mixing of those fluids with sulfate‐containing seawater in the vicinity of the sediment/water interface. As with many other geochemical interfaces that foster mineral precipitation, both biological and abiological processes likely contribute to the precipitation of barite at marine brine seeps such as the one studied here.  相似文献   

20.
After World War II, large amounts of obsolete ammunition were dumped in various lakes in Sweden. Trinitrotoluene, TNT, was one of the main components of the dumped explosives. In this study, four different lake microcosms originating from lakes where relatively large amounts of ammunition were dumped were used to mimic the effect of TNT release on the natural microbial community. Increased microbial growth was found in lake microcosms amended with TNT. However, negligible mineralization of TNT was detected, suggesting that TNT was not utilized as a carbon source, but as a nitrogen source. Random amplified polymorphic DNA (RAPD) analysis indicated that the TNT induced no significant differences in microbial community composition and therefore, no major changes in natural selection, despite the increased microbial growth in the presence of the compound. More than 95% of the added TNT bound irreversibly to the sediments, possibly as a result of microbial transformation to reactive metabolites that subsequently bound covalently to components of the sediment. The results, taken together, suggest that no permanent change in the microbial ecology occurred as a result of the TNT amendment. This was probably due partly to the transient exposure of the microbial communities to the TNT before it became irreversibly bound to the sediment, and partly to the fact that TNT was not a primary growth substrate that strongly affects natural selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号