首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new Lycoris radiata pathogenesis-related (PR)-4 gene, LrPR4 was isolated. LrPR4 encodes a 142 amino acid protein with a predicted molecular mass of 15.43 kDa and pI of 7.56. The putative LrPR4 shows high similarity to PR4 type proteins from various plant species and belongs to the Barwin family. Like other PR4s from monocot plants, LrPR4 protein contains a conserved Barwin domain and has a signal peptide at its N-terminus. The recombinant LrPR4 protein expressed in Escherichia coli showed activity towards hydrolysing RNA from L. radiata bulbs and antifungal activity. The results of this study suggest that LrPR4 may play a role in the disease resistance responses of plant against pathogen attacks though its antifungal activity.  相似文献   

2.
Recently the rice (Oryza sativa L.) OsPR1a and OsPR1b genes were primarily characterized against jasmonic acid, ethylene and protein phosphatase 2A inhibitors. The dicot PR1 are recognized as reliable marker genes in defence/stress responses, and we also propose OsPR1 as marker genes in rice, a model monocot crop genus. Therefore, to gain further insight into the expression/regulation of OsPR1 genes, we characterized their activation against signalling molecules such as salicylic acid (SA), abscisic acid (ABA) and hydrogen peroxide (H2O2), and the blast pathogen Magnaporthe grisea. Here, we report that SA and H2O2 strongly induced the mRNA level of both OsPR1 genes, whereas ABA was found to be moderately effective. These inductions were specific in nature and required a de novo synthesized protein factor. A potential interaction amongst the signalling molecules in modulating the expression of OsPR1 genes was observed. Moreover, a specific induction of OsPR1 expression in an incompatible versus compatible host-pathogen interaction was also found. Finally, based on our present and previous results, a model of OsPR1 expression/regulation has been proposed, which reveals their essential role in defence/stress responses in rice and use as potent gene markers.  相似文献   

3.
To control defense and cell‐death signaling, plants contain an abundance of pathogen recognition receptors such as leucine‐rich repeat (LRR) proteins. Here we show that pepper (Capsicum annuum) LRR1 interacts with the pepper pathogenesis‐related (PR) protein 4b, PR4b, in yeast and in planta. PR4b is synthesized in the endoplasmic reticulum, interacts with LRR1 in the plasma membrane, and is secreted to the apoplast via the plasma membrane. Binding of PR4b to LRR1 requires the chitin‐binding domain of PR4b. Purified PR4b protein inhibits spore germination and mycelial growth of plant fungal pathogens. Transient expression of PR4b triggers hypersensitive cell death. This cell death is compromised by co‐expression of LRR1 as a negative regulator in Nicotiana benthamiana leaves. LRR1/PR4b silencing in pepper and PR4b over‐expression in Arabidopsis thaliana demonstrated that LRR1 and PR4b are necessary for defense responses to Pseudomonas syringae pv. tomato and Hyaloperonospora arabidopsidis (Hpa) infection. The mutant of the PR4b Arabidopsis ortholog, pr4, showed enhanced susceptibility to Hpa infection. Together, our results suggest that PR4b functions as a positive modulator of plant cell death and defense responses. However, the activity of PR4b is suppressed by interaction with LRR1.  相似文献   

4.
5.
6.
Kinetin (KN) action in rice self-defense mechanism was studied using our established 2-week-old rice (Oryza sativa L. japonica-type cv. Nipponbare) seedling in vitro model system. It was strikingly observed that KN caused formation of brownish necrotic microlesions in leaves, suggesting it triggers a stress response in rice. Subsequent northern analyses revealed differential regulation (both up-and down-regulations) of 10 prominent defense/stress-related marker genes, including the critical pathogenesis-related (PR) protein genes of class 1, 5 and 10. A systemic effect of KN in leaves was shown using OsPR1b (basic) and OsPOX (peroxidase) genes as representatives. KN also exclusively triggered potent accumulation of PR proteins (OsPR5 and OsPR10), and a phytoalexin, sakuranetin. Interestingly, as KN failed to induce jasmonic acid (JA) inducible genes (OsPR1a and JIOsPR10), and had almost no effect on accumulated endogenous JA level due to wounding by cut, KN might act through a yet unknown (and JA-independent) pathway. These results provide a new aspect on the role of KN as a potent activator of the stress responses in the rice plant.  相似文献   

7.
8.
9.
In continuation of our previous research on the development of novel pyrazole‐4‐carboxamide with potential antifungal activity, compound SCU2028 , namely N‐[2‐[(3‐chlorophenyl)amino]phenyl]‐3‐(difluoromethyl)‐1‐methyl‐1H‐pyrazole‐4‐carboxamide, was synthesized by new method, structurally characterized by IR, HR‐ESI‐MS, 1H‐ and 13C‐NMR spectra and further identified by single‐crystal X‐ray diffraction. In pot tests, compound SCU2028 showed good in vivo antifungal activity against Rhizoctonia solani (R. solani) and IC50 value of it was 7.48 mg L?1. In field trials, control efficacy of compound SCU2028 at 200 g.a.i. ha?1 was 42.30 % on the 7th day after the first spraying and 68.10 % on the 14th day after the second spraying, only slightly lower than that of thifluzamide (57.20 % and 71.40 %, respectively). Further in vitro inhibitory activity showed inhibitory ability of compound SCU2028 was 45‐fold higher than that of bixafen and molecular docking of compound SCU2028 to SDH predicted its binding orientation in the active site of the target protein SDH. These results suggested that compound SCU2028 was a potential fungicide for control of rice sheath blight.  相似文献   

10.
Xanthomonas campestris pv. vesicatoria (Xcv) type III effector AvrBsT triggers programmed cell death (PCD) and activates the hypersensitive response (HR) in plants. Here, we isolated and identified the plasma membrane localized pathogenesis‐related (PR) protein 4c gene (CaPR4c) from pepper (Capsicum annuum) leaves undergoing AvrBsT‐triggered HR cell death. CaPR4c encodes a protein with a signal peptide and a Barwin domain. Recombinant CaPR4c protein expressed in Escherichia coli exhibited cysteine protease‐inhibitor activity and ribonuclease (RNase) activity. Subcellular localization analyses revealed that CaPR4c localized to the plasma membrane in plant cells. CaPR4c expression was rapidly and specifically induced by avirulent Xcv (avrBsT) infection. Transient expression of CaPR4c caused HR cell death in pepper leaves, which was accompanied by enhanced accumulation of H2O2 and significant induction of some defense‐response genes. Deletion of the signal peptide from CaPR4c abolished the induction of HR cell death, indicating a requirement for plasma membrane localization of CaPR4c for HR cell death. CaPR4c silencing in pepper disrupted both basal and AvrBsT‐triggered resistance responses, and enabled Xcv proliferation in infected leaves. H2O2 accumulation, cell‐death induction, and defense‐response gene expression were distinctly reduced in CaPR4c‐silenced pepper. CaPR4c overexpression in transgenic Arabidopsis plants conferred greater resistance against infection by Pseudomonas syringae pv. tomato and Hyaloperonospora arabidopsidis. These results collectively suggest that CaPR4c plays an important role in plant cell death and defense signaling.  相似文献   

11.
We investigated the effect of 2,6‐dimethoxy‐1,4‐benzoquinone (DMBQ) on induced resistance to Magnaporthe oryzae in rice. DMBQ concentrations greater than 50 μg/ml inhibited spore germination and appressorium formation in M. oryzae. When rice leaves pretreated with 10 μg/ml DMBQ, which did not show antifungal activity against spore germination and appressorium formation of M. oryzae, were inoculated with M. oryzae spores 5 days after DMBQ pretreatment, blast lesion formation was inhibited compared with control leaves pretreated with distilled water. In addition, infection‐inhibiting activity against M. oryzae was significantly enhanced in rice leaf sheaths pretreated with 10 μg/ml DMBQ. H2O2 generation was observed in rice leaves pretreated with DMBQ, and PAL, POX, CHS and PR10a were significantly expressed in these leaves. These results suggested that DMBQ can protect rice from blast disease caused by M. oryzae.  相似文献   

12.
13.
Plant roots have important roles not only in absorption of water and nutrients, but also in stress tolerance such as desiccation, salt, and low temperature. We have investigated stress-response proteins from rice roots using 2-dimensional polyacrylamide-gel electrophoresis and found a rice protein, RO-292, which was induced specifically in roots when 2-week-old rice seedlings were subjected to salt and drought stress. The full-length RO-292 cDNA was cloned, and was determined to encode a protein of 160 amino acid residues (16.9 kDa, pI 4.74). The deduced amino acid sequence showed high similarity to known rice PR10 proteins, OsPR10a/PBZ1 and OsPR10b. RO-292 mRNA accumulated rapidly upon drought, NaCl, jasmonic acid and probenazole, but not by exposure to low temperature or by abscisic acid and salicylic acid. The RO-292 gene was also up-regulated by infection with rice blast fungus. Interestingly, induction was observed almost exclusively in roots, thus we named the gene RSOsPR10 (root specific rice PR10). The present results indicate that RSOsPR10 is a novel rice PR10 protein, which is rapidly induced in roots by salt, drought stresses and blast fungus infection possibly through activation of the jasmonic acid signaling pathway, but not the abscisic acid and salicylic acid signaling pathway.  相似文献   

14.
15.
Ethylene has been shown to be involved in triggering pathogenesis-related (PR) gene expression mainly in dicotyledonous species; however, less attention has been devoted identifying and characterizing PR genes in rice (Oryza sativa L.), a monocot and a model of cereal crop genera. Here, we demonstrate that ethylene induces at least three important rice PR genes, the PR10, PR1 basic (PR1b), and PR5 genes in rice (cv. Nipponbare) seedling leaf, upon treatment with the ethylene generator, ethephon (ET), in a light-, time- and dose-dependent manner. Induction of these PR genes was partially blocked by cycloheximide (CHX), a eukaryotic cytoplasmic protein synthesis inhibitor, which indicates an involvement of cytoplasmic de novo protein synthesis in their induction. These results clearly indicate a dynamic role for ethylene in PR genes induction in rice.  相似文献   

16.
The mold Aspergillus giganteus produces a basic, low molecular weight protein showing antifungal properties against economically important plant pathogens, the AFP (Antifungal Protein). In this study, we investigated the mechanisms by which AFP exerts its antifungal activity against Magnaporthe grisea. M. grisea is the causal agent of rice blast, one of the most devastating diseases of cultivated rice worldwide. AFP was purified from the extracellular medium of A. giganteus cultures. The AFP protein was found to induce membrane permeabilization in M. grisea cells. Electron microscopy studies revealed severe cellular degradation and damage of plasma membranes in AFP-treated fungal cells. AFP however failed to induce membrane permeabilization on rice or human HeLa cells. Furthermore, AFP enters the fungal cell and targets to the nucleus, as revealed by co-localization experiments of Alexa-labeled AFP with the SYTOX Green dye. Finally, AFP binds to nucleic acids, including M. grisea DNA. Our results suggest that the combination of fungal cell permeabilization, cell-penetrating ability and nucleic acid-binding activity of AFP determines its potent antifungal activity against M. grisea. These results are discussed in relation to the potential of the AFP protein to enhance crop protection against fungal diseases.  相似文献   

17.
Wang G  Ding X  Yuan M  Qiu D  Li X  Xu C  Wang S 《Plant molecular biology》2006,60(3):437-449
The function of OsDR8, a rice disease resistance-responsive gene, was studied. Silencing of OsDR8 using an RNA interference approach resulted in phenotypic alteration of the plants. The transgenic plants with repressed expression of OsDR8 showed reduced resistance or susceptibility to Xanthomonas oryzae pv. oryzae and Magnaporthe grisea causing bacterial blight and blast, which are two of the most devastating diseases in rice worldwide, respectively. The putative product of OsDR8 was highly homologous to an enzyme involved in the biosynthesis of the thiazole precursor of thiamine. Transgenic plants showing repressed expression of OsDR8 and reduced resistance had significantly lower levels of thiamine than the control plants. Exogenous application of thiamine could complement the compromised defense of the OsDR8-silenced plants. The expression level of several defense-responsive genes including the earlier functional genes of defense transduction pathway, OsPOX and OsPAL, and the downstream genes of the pathway, OsPR1a, OsPR1b, OsPR4, OsPR5 and OsPR10, was also decreased in the OsDR8-silenced plants. These results suggest that the impact of OsDR8 on disease resistance in rice may be through the regulation of expression of other defense-responsive genes and the site of OsDR8 function is on the upstream of the signal transduction pathway. In addition, the accumulation of thiamine may be essential for bacterial blight resistance and blast resistance. Gongnan Wang, Xinhua Ding: These authors contributed equally to this work.  相似文献   

18.
Twenty new trichodermin derivatives, 2a – 5 , containing alkoxy, acyloxy, and Br groups in 4‐, 8‐, 9‐, 10‐ and 16‐positions were synthesized and characterized. The antifungal activities of the new compounds against rice false smut (Ustilaginoidea virens), rice sheath blight (Rhizoctonia solani), and rice blast (Magnaporthe grisea) were evaluated. The results of bioassays indicated that the antifungal activities were particularly susceptible to changes at 4‐, 8‐, and 16‐positions, but low to changes at 9‐ and 10‐positions. Most of these target compounds exhibited good antifungal activities at the concentration of 50 mg l?1. Compound 4 (9‐formyltrichodermin; EC50 0.80 mg l?1) with an CHO group at 9‐position displayed nearly the same level of antifungal activity against Ustilaginoidea virens as the commercial fungicide prochloraz (EC50 0.82 mg l?1), while compound 3f ((8R)‐8‐{[(E)‐3‐phenylprop‐2‐enoyl]oxy}trichodermin; EC50 3.58 and 0.74 mg l?1) with a cinnamyloxy group at C(8) exhibited much higher antifungal activities against Rhizoctonia solani and Magnaporthe grisea than the commercial fungicides prochloraz (EC50 0.96 mg l?1) and propiconazole (EC50 5.92 mg l?1), respectively. These data reveal that compounds 3f and 4 possess high antifungal activities and may serve as lead compounds for the development of fungicides in the future.  相似文献   

19.
20.
Chadha P  Das RH 《Planta》2006,225(1):213-222
A pathogenesis related protein (AhPR10) is identified from a clone of 6-day old Arachis hypogaea L. (peanut) cDNA library. The clone expressed as a ∼20 kDa protein in E. coli. Nucleotide sequence derived amino acid sequence of the coding region shows its homology with PR10 proteins having Betv1 domain and P loop motif. Recombinant AhPR10 has ribonuclease activity, and antifungal activity against the peanut pathogens Fusarium oxysporum and Rhizoctonia solani. Mutant protein AhPR10-K54N where lys54 is mutated to asn54 loses its ribonuclease and antifungal activities. FITC labeled AhPR10 and AhPR10-K54N are internalized by hyphae of F. oxysporum and R. solani but the later protein does not inhibit the fungal growth. This suggests that the ribonuclease function of AhPR10 is essential for its antifungal activity. Energy and temperature dependent internalization of AhPR10 into sensitive fungal hyphae indicate that internalization of the protein occurs through active uptake.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .The nucleotide sequence of AhPR10 reported in this paper is submitted to NCBI Nucleotide Sequence Database under the Accession number AY726607.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号