首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the effects of adding a macromolecule, polyvinylpyrrolidone (10% PVP) and a sugar (0.3 M trehalose) to vitrification solutions (VS) containing either one (40% ethylene glycol [EG], two (25% EG+25% DMSO) or three (20% EG+20% DMSO+10% 1, 3-butanediol [BD]) permeable cryoprotectants on the survival and hatching of IVP bovine embryos, following vitrification, warming and in-straw cryoprotectant dilution. Grade 1 and 2 compact morulae and blastocysts were selected on Day 7 (Day 0=IVF) of culture in SOFaaBSA and equilibrated for 10 min at room temperature in 10% EG. Following exposure, for up to 1 min at 4 degrees C, to one of the above VS (with or without PVP+trehalose), the embryos were loaded into straws and immersed in liquid nitrogen. Following warming and in-straw cryoprotectant dilution, the embryos were cultured for 48 h to assess hatching. There was no effect of VS on the survival of embryos after 24 h, however fewer compact morulae than blastocysts survived after 24 h (24% vs. 75%; P<0.001) or hatched after 48 h (15% vs. 59%; P<0.001). When blastocysts only were considered, an interaction between VS and additional PVP+trehalose was also observed (P<0.01). Hatching was reduced when they were added to 25% EG+25% DMSO (70% vs. 45%) but was not affected for either 40% EG (44 and 49%) or to 20% EG+20% DMSO+10% BD (72 and 72%). Pregnancy rates (Day 90 ultrasound) of recipients that were transferred either two non-vitrified or two vitrified (20% EG+20% DMSO+10% BD) blastocysts, did not differ (3/6 [50%] and 11/20 [55%]). However, significantly (P<0.02) fewer recipients that received compact morulae maintained pregnancy to Day 90 although this was not affected by vitrification (fresh vs. vitrified; 1/5 [20%] vs. 3/18 [17]). These data demonstrate that a VS comprising three cryoprotectants, rather than one, enables more embryos to hatch during post-thaw culture and that the survival, following direct transfer of these vitrified embryos, is not different to non-vitrified embryos.  相似文献   

2.
Factorial experiments were carried out to examine the effects of equilibration time, precooling and developmental stage on the postthaw in vitro survival of vitrified mouse embryos. Eight-cell embryos, compacted morulae, or blastocysts were cryopreserved using vitrification Solution 1 (VS1; 10% glycerol + 20% propylene glycol), and vitrification Solution 2 (VS2; 25% glycerol + 25% propylene glycol) in phosphate buffered saline + 10% calf serum. Each embryo stage group was first equilibrated in VS1 for 5, 10 or 20 min and then exposed to either a precooled ( approximately 4 degrees C) or nonprecooled ( approximately 20 degrees C) VS2 in a 0.25-ml straw before they were plunged directly into liquid nitrogen. Results of this study showed an interaction between precooling, equilibration time and developmental stage which affect significantly post-thaw embryo survival (P< 0.05). High survival rates were obtained after 10 min equilibration in VS1 irrespective of the embryo developmental stage. Precooling of the VS2 significantly improved the survival mainly of blastocysts. However, eight-cell and morula-stage embryos also showed high survival rates when they were exposed to precooled VS2 after 5 min equilibration in VS1. It was further observed that morulae usually exhibit high survival rates, and vitrification conditions are more critical for early and advanced stage embryo development.  相似文献   

3.
In swine, five to six days post-insemination, morulae and blastocysts are collected together after uterine flushing. The purpose of this study was to vitrify zona pellucida-intact morulae with Open Pulled Straw (OPS) technology and obtain piglets after transfer. Morulae (200) were vitrified after a two-step equilibration in ethylene glycol, dimethyl sulfoxide and sucrose in Hepes-buffered TCM199 + 20% NBCS medium (TCM). 2-6 morulae were loaded into OPS and plunged into liquid nitrogen. At embryo warming, a three-step dilution with decreasing concentrations of sucrose was applied. In each of 10 recipients, 20 morulae were transferred surgically. Day 25, gestation rate and the farrowing rate were 80% and 70%, respectively. The pregnant recipients farrowed from 1 to 8 piglets and the survival of total transferred embryos was 13%. Although survival rates are still compromised, OPS technology is therefore appropriate to cryopreserve porcine morulae with intact zona pellucida.  相似文献   

4.
The objective of this experiment was to determine the optimal developmental stage to vitrify in vitro cultured porcine parthenogenetically activated (PA) embryos. Embryos were vitrified by Cryotop on Day 4, 5 or 6 after oocyte activation (Day 0), and immediately after warming they were either time-lapse monitored for 24h or analyzed by differential staining. After warming, the embryos had to be cultured for at least 8h before their survival rates were stabilized. Both the survival rate at 8h and the hatching rate at 24h of Day 4 embryos were significant higher than those vitrified on Day 5 or 6 (P<0.05), no matter if they were morulae or blastocysts. These results demonstrate that porcine PA embryos can survive successfully after vitrification/warming, that the optimal time for vitrification was Day 4 for both morulae and blastocysts, and that 8h after warming was the time needed to make an early evaluation of porcine PA embryo survival.  相似文献   

5.
Misumi K  Suzuki M  Sato S  Saito N 《Theriogenology》2003,60(2):253-260
This study was conducted to determine the efficiency of vitrification using the microdroplet (MD) method for early stage porcine embryos. Embryos at compacted morulae to early blastocyst stage were vitrified in a vitrification solution containing 40% (v/v) ethylene glycol, 0.6M sucrose and 2% (w/v) polyethylene glycol in M2 (ESP) without any pretreatment. The equilibration and dilution were carried out in third and fourth steps, respectively, at 38 degrees C. The survivability of the cryopreserved embryos was assessed for both in vitro culture (Experiment 1) and by embryo transfer (Experiment 2). In Experiment 1, the embryos were vitrified within a microdroplet or 0.25 ml straw (ST) and fresh embryos were used as a control group. The survival rates after 24h culture in the MD, ST and control groups were 21/23, 14/20 and 20/20, respectively. The hatching rates of the embryos after 48 h incubation were 14/23, 4/20 and 16/20, respectively. In Experiment 2, 171 vitrified embryos were transferred to 5 recipient gilts, and 17 healthy piglets were produced from 2 recipients (3 recipients aborted) in Group 1. In Group 2, 81 vitrified embryos and 16 fresh embryos in total were transferred to 4 recipient gilts, and 10 healthy piglets from the vitrified embryos were produced from 3 recipients. These results indicated that porcine embryos of compacted morulae to early blastocyst stage can survive cryopreservation using the microdroplet method without any special intracellular manipulation or treatment.  相似文献   

6.
The aim of this work was to investigate the possibilities of simplification, and to outline the limits of application, of a vitrification method for cow embryos. Morulae and blastocysts were produced by in vitro fertilization of slaughterhouse-derived, in vitro matured oocytes with frozen-thawed bull semen, and subsequent culture on a granulosa cell monolayer. Vitrification was performed by equilibration of embryos with 12.5% ethylene glycol and 12.5% dimethylsulphoxide at 20–22°C for 60 s, then with 25% ethylene glycol and 25% dimethylsulphoxide at 4°C for another 60 s. Embryos were then loaded in straws, placed in liquid nitrogen vapour for 2 min, and then plunged. Straws were thawed in a 22°C water-bath, the embryos were directly rehydrated and further incubated in straw, and were then expelled and cultured in vitro for 72 h. In the first experiment, embryos of different age and developmental stage (Day 5 compacted morulae, Day 6 early blastocysts, Days 6 and 7 blastocysts, Day 7 expanded blastocysts and Day 8 hatched blastocysts) as well as Days 7 and 5 blastocysts previously subjected to partial zona dissection were vitrified. After thawing, the re-expansion rates of blastocysts and zona-dissected embryos did not differ (67 and 87%, respectively), and hatching was more frequent for blastocysts frozen in advanced developmental stages (34, 47 and 63% for early blastocysts, blastocysts and expanded blastocysts, respectively). The re-expansion rate of morulae was lower (10%) and no hatching of these embryos was observed. In the second experiment, Day 7 expanded blastocysts were vitrified using PBS, PBS + albumin, TCM199 and TCM199 + calf serum as holding media. No differences in re-expansion and hatching rates were seen. However, when incubation with the concentrated cryoprotectant solution was performed at 20–22°C, the embryo survival rate decreased (PBS + albumin) or no embryo survived (TCM199 + calf serum) the vitrification procedure. In the third experiment, Day 7 expanded blastocysts were vitrified, thawed, cultured for 1 day, and then re-expanded embryos were again vitrified and thawed. Out of the 87% that survived the first cycle, 73% re-expanded and 47% hatched following the second vitrification and thawing. These observations prove that the vitrification procedure described is relatively harmless, that it can be used for blastocysts of different developmental stages and that an intact zona is not required to obtain high survival rates.  相似文献   

7.
The use of heat-stable plant proteins in an ethylene glycol-based solution for the vitrification of in vitro-derived embryos was examined. Day 7, 8 and 9 bovine in vitro matured, fertilized and cultured (IVMFC), full and expanded blastocysts were vitrified in solutions composed of 40% ethylene glycol (EG) plus 0.3 M sucrose supplemented with 20% Ficoll and 0.3% BSA (VF-1), 25 mg/ml heat-stable plant proteins (HSPP; VF-2), or with no supplement (VF-3). In Experiment 1, embryos were expelled from the straw after thawing, and EG was diluted from embryos with 0.5 M sucrose. There were no differences in post-thaw embryo survival rates or in hatching/hatched rates after 24 h of culture between the VF-1, VF-2 and VF-3 solutions (40.1, 54.1 and 50.8% and 10.7, 16.4 and 17.5%, respectively). Transfer of 12 frozen/thawed embryos to 6 recipients (2 recipients per treatment) resulted in 2 pregnancies from the VF-2 group and 1 pregnancy from the VF-3 group. In Experiment 2, EG was diluted from embryos after thawing within the straw with 0.5 M sucrose. There were no differences in post-thaw survival or hatching/hatched rates after 24 h of culture (19.0, 13.6 and 23.8% and 9.5, 9.0 and 14.4% for VF-1, VF-2 and VF-3, respectively). Transfer of 6 frozen/thawed embryos to 3 recipients (1 recipient per treatment) resulted in no pregnancies. The post-thaw histology of Day 7, 8 and 9 IVMFC blastocysts showed typical ultrastructure with well preserved cell-to-cell contacts. There were no major differences in the fine structure of blastocysts regardless of treatment. The use of HSPP at a concentration of 25 mg/ml in the vitrification medium did not affect the post-thaw embryo survival over that of no protein supplementation. The presence of macro molecules in a 40% EG/sucrose vitrification solution also did not improve post-thaw viability of IVMFC-derived blastocysts.  相似文献   

8.
The objectives of this study were to identify an improved in vitro cell-free embryo culture system and to compare post-warming development of in vitro produced (IVP) bovine embryos following vitrification versus slow freezing. In Experiment 1, non-selected presumptive zygotes were randomly allocated to four medium treatments without co-culture: (1) SOF + 5% FCS for 9 days; (2) KSOM + 0.1% BSA for 4 days and then KSOM + 1% BSA to Day 9; (3) SOF + 5% FCS for 4 days and then KSOM + 1% BSA to Day 9; and (4) KSOM + 0.1% BSA for 4 days and then SOF + 5% FCS to Day 9. Treatment 4 (sequential KSOM-SOF culture system) improved (P > 0.05) morulae (47%), early blastocysts (26%), Day-7 blastocysts (36%), cell numbers, as well as total hatching rate (79%) compared to KSOM alone (Treatment 2). Embryos cultured in KSOM + BSA alone developed slowly and most of them hatched late on Day 9, compared to other treatments. In Experiment 2, the sequential KSOM-SOF culture system was used and Day-7 blastocysts were subjected to following cryopreservation comparison: (1) vitrification (VS3a, 6.5 M glycerol); or (2) slow freezing (1.36 M glycerol). Warmed embryos were cultured in SOF with 7.5% FCS. Higher embryo development and hatching rates (P < 0.05) were obtained by vitrification at 6h (71%), 24h (64%), and 48h (60%) post-warming compared to slow freezing (48, 40, and 31%, respectively). Following transfer of vitrified embryos to synchronized recipients, a 30% pregnancy rate was obtained. In conclusion, replacing KSOM with SOF after 4 days of culture produced better quality blastocysts. Vitrification using VS3a may be used more effectively to cryopreserve in vitro produced embryos than the conventional slow freezing method.  相似文献   

9.
The objective was to improve the protocol that was used to obtain the first reported piglets from transferred vitrified and warmed zona-intact blastocysts. Blastocysts were collected from superovulated sows and gilts, centrifuged to polarize lipid, vitrified, warmed and cultured for 24h or transferred immediately. Removing the zona pellucida after warming increased the number of cells in the surviving blastocysts (zona-free 60.8+/-4.3, zona-intact 39.1+/-2.8; P<0.05). Thinning the zona pellucida produced similar results to zona removal. Changing the basal medium of the vitrification and warming solutions from modified PBS to phosphate buffered NCSU-23 increased the number of cells (44.7+/-2.2 versus 56.0+/-3.9, respectively; P<0.05). Reducing the plunge temperature of the liquid nitrogen from -196 degrees C to less than -204 degrees C improved the embryo survival rate (61.9% versus 82.9%, respectively; P<0.05). These modifications were incorporated into the vitrification protocol that was used to vitrify and warm 105 blastocysts (that were subsequently transferred into four recipients). Three recipients became pregnant, farrowing three litters (average litter size, 5.3; 18.8% embryo survival in farrowing sows). Changing the warming protocol to using sucrose rather than ethylene glycol resulted in a trend towards improved embryo survival (73.5% versus 91.2%) but this was not statistically significant. Incorporating this modification, 203 blastocysts were vitrified, warmed and transferred into seven recipients. Five became pregnant and 36 fetuses were recovered (average litter size 7.2; 24.8% embryo survival in pregnant sows) at Day 40 of pregnancy. In conclusion, changes made to the vitrification protocol improved pregnancy rate and in vivo embryo survival compared to an earlier study using the original protocol.  相似文献   

10.
The present study was designed to determine the effect of pooling embryos from two donors on the reproductive success of transfer of vitrified/warmed porcine blastocysts. Intact blastocysts were collected from superovulated Large White Hyperprolific gilts (n = 24) on Days 5-5.5 after artificial insemination. Embryos were recovered by flushing the uterine horns, and unhatched blastocysts were selected. Vitrification and warming were performed as described by Berthelot et al. [Cryobiology 41(2000) 116]. To evaluate in vitro development, 37 vitrified/warmed blastocysts were cultured, non-vitrified embryos (n = 48) were used as controls. Embryo transfers were conducted in asynchronous (-24 h) Meishan gilts (n = 20). Twenty vitrified/warmed blastocysts were surgically transferred into one uterine horn. Ten recipients received embryos from one donor (Group 1) and the other 10 transfers were performed with mixed embryos from two donors (Group 2). Pregnancy was assessed ultrasonographically at Day 25 after estrus and recipients were slaughtered at Day 30 after transfer. In vitro survival rate of the vitrified/warmed blastocysts was lower (P < 0.01) than that from control embryos (73.0% versus 93.7%). The pregnancy rate for Group 1 (70%) was not different (P > 0.05) than that from Group 2 (90%). No significant differences were detected between Groups 1 and 2 for in vivo embryo development (number fetuses/transferred embryos in pregnant recipients) or in vivo embryo survival (number viable fetuses/transferred embryos in pregnant recipients). However, the in vivo efficiency (number viable fetuses/total transferred embryos) was higher (P < 0.05) when transfers were performed with embryos from two donors (19.5% versus 30.5%). These results indicate that pooling embryos from two donors increases the in vivo efficiency after transfer of vitrified/warmed porcine blastocysts.  相似文献   

11.
Vitrification of mouse embryos in two cryoprotectant solutions   总被引:5,自引:0,他引:5  
The objective of this study was to compare the efficiency of 2 media on the vitrification of mouse compacted morulae, early blastocysts and expanded blastocysts after equilibration at room temperature of 4 degrees C. Embryos were equilibrated for 10 min in either 25% VS3 (Rall Equilibration Medium, REM) or 10% glycerol + 20% propylene glycol (Massip Equilibration Medium, MEM) in DPBS at 20 degrees C or 4 degrees C. For vitrification either 100% VS3 (Rall Vitrification Medium, RVM) or 25% glycerol + 25% propylene glycol (Massip Vitrification Medium, MVM) in DPBS was used. Embryos equilibrated at room temperature were loaded in 20 microL of vitrification media into 250 microL straws and then immediately (30 sec) plunged into liquid nitrogen (LN2). After equilibration at 4 degrees C the embryos were put into straws with 20 microL of precooled vitrification medium, and after 20 min at 4 degrees C they were plunged into LN2. Embryos from both groups were thawed in a 20 degrees C water bath for 20 sec, transferred to 1.0 M sucrose in DPBS for 5 min and then cultured for 24 to 48 h in Whitten's medium at 37 degrees C in 5% CO2 in air. In the groups of embryos prepared for vitrification at room temperature the survival rate of compact morulae vitrified in RVM was higher than those vitrified in MVM (65/70, 93% vs 49/74, 66%; P < 0.01). No difference was found in the survival rate of early blastocysts and expanded blastocysts vitrified in RVM or MVM (30/83, 36% vs 25/75, 33% and 4/66, 6% vs 4/76, 5%). No difference was found between the survival rate of compact morulae after equilibration with RVM or MVM at 4 degrees C (62/75, 83% vs 52/74, 70%). Both the early blastocysts and expanded blastocysts equilibrated at 4 degrees C MVM yielded a higher survival rate than RVM (28/74, 38% and 40/70, 57% vs 4/75, 5% and 4/77, 5%; P < 0.01). We conclude that, of the 3 developmental stages, compact morulae withstand the vitrification process best, and reduction of the temperature prior to plunging into LN2 is not required. A 10-fold increase in the survival rate of expanded blastocysts can be achieved using low temperature equilibration (4 degrees C) and MVM.  相似文献   

12.
Two experiments were conducted to examine the effect of membrane stabilization through the modification of in vitro culture medium or freezing medium on post-thaw survival of in vitro-produced bovine embryos. In Experiment 1, Day 7 (Day 0 = day of IVF) late morulae and blastocysts that developed following culture in SOF/aa/BSA (IVC medium) were frozen slowly to -35 degrees C in the presence of 1.5 M ethylene glycol prepared in ovum culture medium (OCM) or in OCM supplemented with 10, 25 or 50% fetal calf serum (FCS) or 5, 10 or 25 mg/mL BSA. Post-thaw survival was assessed by re-expansion and/or hatching following 48 h of culture in IVC medium + 10% FCS. Overall, survival was significantly (P < 0.01) affected by embryo stage, with more hatched blastocysts surviving (71%) than blastocysts (59%) or late morulae (51%). Addition of FCS significantly (P < 0.01) reduced survival compared with control embryos or those frozen in BSA-supplemented medium (50.48 vs 68.01 vs 63.53%, respectively). There was also a significant interaction between embryo stage and protein type (P < 0.05). The survival of late morulae/early blastocysts following freezing was improved in the presence of additional BSA but not FCS. In Experiment 2, the IVC medium was supplemented with liposomes containing lecithin, sphingomyelin and cholesterol. Sphingomyelin and cholesterol at ratios of 1:1, 1:4 and 4:1 were added to 50, 100 or 150 micrograms/mL lecithin to yield a final lipid concentration of 200 micrograms/mL. A further group contained 200 micrograms/mL lecithin only. Blastocysts were frozen in 1.5 M ethylene glycol in OCM, then thawed and assessed as in Experiment 1. The presence of liposomes during IVC did not affect the proportion of cleaved embryos that developed to blastocysts or survival following freezing. However, the survival of blastocysts that developed in the presence of 200 micrograms/mL lecithin only was significantly lower than in any other treatment (6%; P < 0.03). These studies demonstrate that the protein composition of the freezing medium can significantly affect survival after thawing and that the survival of late morulae can be improved with additional BSA. The presence of lecithin only in the liposome preparation did not affect embryo development, but significantly reduced survival after freezing, suggesting it can affect post-thaw embryo survival, perhaps by altering embryonic membrane composition.  相似文献   

13.
The aim of this study was to evaluate pregnancy and embryo survival rate of vitrified in vivo produced Merino sheep and Criolla goat (morulae and blastocysts) embryos, using the plastic tips of micropipettes, as containers (Cryo-tips). The embryos were exposed, at room temperature, to two successive equilibration solutions for a period of 5 min and then to a vitrification solution (VS) for 30 s. Then embryos were then loaded in 1 μl VS, into a plastic micropipette tip, and plunged into liquid nitrogen. On thawing, the embryos were warmed (37 °C) and placed into cryoprotectant dilutions (three-step-process). In the ovine, the morula and blastocyst pregnancy rates (47.1% vs 50%) and embryo survival rates (41.2% vs 50%) recorded were similar for both embryonic stages. Unlike the sheep, no pregnancies were recorded in goat vitrified/thawed morulae embryos, following transfer. However, in contrast, goats receiving blastocysts recorded high rates of pregnancy and embryo survival (64% and 64%, respectively). This technique allows for easy handling of cryopreserved embryos, is simple and efficient in both ovine embryo stages and also for goat vitrified blastocysts. The technique has definite potential application.  相似文献   

14.
This study was performed to pursue the optimal condition for the cryopreservation of mouse morulae by a two-step OPS method and to investigate the feasibility of the optimal condition for vitrification of embryos at other developmental stages. First, the mouse morulae were vitrified in OPS using one-step procedure-that is, embryos were vitrified after direct exposure to EDFS30 (15% ethylene glycol (EG), 15% dimethyl sulfoxide (DMSO), Ficoll and sucrose), or two-step method-that is, embryos were first pretreated in 10%E + 10%D (10% EG and 10% DMSO in mPBS) for 30 sec, then exposed to EDFS30 for 15 to 60 sec, respectively. After vitrification and warming, the embryos were morphologically evaluated and assessed by their development to blastocysts, expanded/hatched blastocysts, or to term after transfer. The result showed that all the vitrified-warmed morulae had similar blastocyst rate compared to that of control (91.7% vs. 100%), and the highest developmental rate to expanded blastocysts (100%) or hatched blastocysts (62.3%) was observed when the morulae were pretreated with 10%E + 10%D for 0.5 min, exposed to EDFS30for 25 sec before vitrification and warming in 0.5 M sucrose for 5 min. After transfer, the survival rate (33.1%) in vivo of the vitrified morulae was higher (P > 0.05) than that of the fresh embryos (24.6%). Secondly, embryos at different stages were cryopreserved and thawed following the above program. Most (93.4 to 100%) of the embryos recovered after vitrification were morphologically normal at all the developmental stages. The blastocyst rates of the vitrified one-cell (52.5 to 66.7%) and the two-cell (63.3 to 68.9%) embryos were lower (P < 0.05) than those of the vitrified four-cell embryos (81.7 to 86.4%), the eight-cell embryos (90.0 to 93.3%), morulae (96.7 to 100%), and the expanded blastocysts rate (98.3 to 100.0%) of the vitrified early blastocysts. The highest survival rate in vivo of vitrified embryos were from the early blastocysts (40.4%), which was similar to that of fresh embryos (48.6%). The data demonstrate that the optimal protocol for the cryopreservation of morulae was suitable for the four-cell embryos to early blastocyst stages and that the early blastocyst stage is the most feasible stage for mouse embryo cryopreservation under our experimental conditions.  相似文献   

15.
This study was performed to pursue the optimal condition for the cryopreservation of mouse morulae by a two-step OPS method and to investigate the feasibility of the optimal condition for vitrification of embryos at other developmental stages. First, the mouse morulae were vitrified in OPS using one-step procedure—that is, embryos were vitrified after direct exposure to EDFS30 (15% ethylene glycol (EG), 15% dimethyl sulfoxide (DMSO), Ficoll and sucrose), or two-step method—that is, embryos were first pretreated in 10%E+10%D (10% EG and 10% DMSO in mPBS) for 30 sec, then exposed to EDFS30 for 15 to 60 sec, respectively. After vitrification and warming, the embryos were morphologically evaluated and assessed by their development to blastocysts, expanded/hatched blastocysts, or to term after transfer. The result showed that all the vitrified-warmed morulae had similar blastocyst rate compared to that of control (91.7% vs. 100%), and the highest developmental rate to expanded blastocysts (100%) or hatched blastocysts (62.3%) was observed when the morulae were pretreated with 10%E+10%D for 0.5 min, exposed to EDFS30 for 25 sec before vitrification and warming in 0.5 M sucrose for 5 min. After transfer, the survival rate (33.1%) in vivo of the vitrified morulae was higher (P > 0.05) than that of the fresh embryos (24.6%). Secondly, embryos at different stages were cryopreserved and thawed following the above program. Most (93.4 to 100%) of the embryos recovered after vitrification were morphologically normal at all the developmental stages. The blastocyst rates of the vitrified one-cell (52.5 to 66.7%) and the two-cell (63.3 to 68.9%) embryos were lower (P < 0.05) than those of the vitrified four-cell embryos (81.7 to 86.4%), the eight-cell embryos (90.0 to 93.3%), morulae (96.7 to 100%), and the expanded blastocysts rate (98.3 to 100.0%) of the vitrified early blastocysts. The highest survival rate in vivo of vitrified embryos were from the early blastocysts (40.4%), which was similar to that of fresh embryos (48.6%). The data demonstrate that the optimal protocol for the cryopreservation of morulae was suitable for the four-cell embryos to early blastocyst stages and that the early blastocyst stage is the most feasible stage for mouse embryo cryopreservation under our experimental conditions.  相似文献   

16.
Herr CM  Wright R 《Theriogenology》1988,30(1):159-168
Mouse embryos of different stages of development were cultured to expanded blastocysts following storage (1 to 8 d) at 4 degrees C in the presence or absence of HCO(3)(-). The effect of oxygen tension on the cold storage of one- and two-cell mouse embryos at 4 degrees C was evaluated by 37 degrees C culture and transfer to pseudopregnant recipients. Survival at 4 degrees C of early, one- to four-cell mouse embryos was improved with HCO(3)(-) in the medium. The presence of HCO(3)(-) was not of benefit for morulae or blastocyst survival following cold storage. Reducing the oxygen atmosphere from 20 to 5% O(2) improved survival of one-cell mouse embryos stored at 4 degrees C. The survival of two- and four-cell embryos, morulae and blastocysts at 4 degrees C was similar in 90% N(2), 5% CO(2) and 5% CO(2) in air, but it was significantly poorer in air alone. The collapse of morulae and blastocysts during cold storage up to 5 d was reduced with HCO(3)(-) in the storage medium. Blastocysts stored for 6 d at 4 degrees C failed to survive following immediate transfer to pseudopregnant recipients. Blastocyst survival was improved compared to controls (direct transfer of unstored blastocysts to recipients) when cultured for 36 h at 37 degrees C following 6 d of cold storage. This result suggests that cold-stored mouse blastocysts may require a metabolic period of readjustment to survive following transfer to synchronized recipients.  相似文献   

17.
Mouse oocytes and embryos at various developmental stages were exposed directly to an ethylene glycol-based vitrification solution (EFS) for 2 or 5 minutes at 20 degrees C. They were then vitrified at -196 degrees C and were warmed rapidly. At the germinal vesicle stage, the proportion of morphologically normal oocytes was 36 to 39% if they had cumulus cells, whereas in cumulus-removed immature oocytes and in ovulated oocytes it was only 2 to 4%. This low survival was attributed to the harmful action of ethylene glycol. After fertilization, on the other hand, the post-warming survival rate of 1-cell zygotes, as assessed by cleavage to the 2-cell stage, increased markedly (62%). As the developmental stage proceeded, higher proportions of vitrified embryos developed to expanded blastocysts; the rates increased up to 77 and 80% in 2-cell and 4-cell embryos, respectively. For embryos at the 8-cell, morula and early blastocyst stages, the proportion of embryos developed after vitrification (90 to 95%) was not significantly different from that of the untreated embryos (95 to 100%) when the period of exposure to EFS solution was 2 minutes. As the blastocoel began to enlarge, however, survival began to decrease again, with rates of 79 and 57% in blastocysts and expanded blastocysts, respectively. After the cryopreserved 2-cell, 4-cell and 8-cell embryos as well as morulae and blastocysts were transferred to recipients, 43 to 57% of the recipients became pregnant, and 48 to 60% of these various stage embryos developed into live young.  相似文献   

18.
In cryopreserved rat embryos, survival rates obtained in vitro are not always consistent with the rates obtained in vivo. To determine the optimal conditions for in vivo development to term, rat embryos at the 4-cell, 8-cell, and morula stages were vitrified in EFS40 by a one-step method and transferred into oviducts or uterine horns of recipients at various times during pseudopregnancy. Vitrified and fresh 4-cell embryos only developed after transfer into oviducts of asynchronous recipients on Days -1 to -2 of synchrony (i.e., at a point in pseudopregnancy 1-2 days earlier than the embryos). Approximately half the vitrified embryos transferred into oviducts on Day -1 developed to term, but only a minority of embryos, whether vitrified (10%-34%) or fresh (24%-33%), transferred at later times did so, suggesting that this may not be the most suitable stage for cryopreservation. Very few 8-cell embryos, either vitrified or fresh, developed when transferred into oviducts on Day 0 to -0.5. However, when transferred into uterine horns, high proportions of vitrified 8-cell embryos ( approximately 63%) developed to term in reasonably synchronous recipients (Day 0 to -0.5) but not in more asynchronous ones (6%; Day -1). A majority of vitrified morulae also developed to term (52%-68%) in a wider range of recipients (Days 0 to -1), the greatest success occurring in recipients on Day -0.5. Similar proportions of vitrified and fresh 4-cell embryos, 8-cell embryos, and morulae developed to term when appropriate synchronization existed between embryo and recipient. Thus, vitrification of preimplantation-stage rat embryos does not appear to impair their developmental potential in vivo.  相似文献   

19.
The objectives of this study were: (1) to evaluate the influence of porcine embryo developmental stage on in vitro embryo development after vitrification, (2) to study the efficiency of the one-step dilution procedure, compared with conventional warming, for vitrified embryos at different stages of development, and (3) to determine the influence of the embryo donor on the in vitro survival of vitrified embryos at morulae and blastocyst stages. Two to four cell embryos, morulae and blastocysts were collected by laparotomy from weaned crossbred sows (n=55). Vitrification and conventional warming were performed using the OPS procedure with Superfine Open Pulled Straws (SOPS). For one-step dilution, embryos were placed in 800 microl TCM199-HEPES containing 20% of new born calf serum and 0.13 M sucrose for 5 min. To evaluate development, two to four cell embryos, morulae and blastocysts were cultured in vitro for 120, 48 and 24h, respectively. Some fresh embryos from each developmental stage were not vitrified and cultured as controls. Embryos were morphologically evaluated for their developmental capacity during the in vitro culture by stereomicroscopy. The total cell number of embryos was assessed by Hoechst-33342 staining and fluorescence microscope observation. There was a significant effect of the stage of development on the in vitro survival, perihatching rate and the number of cells of embryos after vitrification and warming (Experiment 1; p<0.001). The survival and perihatching rates of two to four cell embryos were lower than those obtained for morulae and blastocysts (p<0.001). No differences (p>0.05) in survival rates were found between vitrified and fresh blastocysts. The warming procedure did not affect the development and total cell number of vitrified two to four cell embryos, morulae or blastocysts (Experiment 2). However, donor had a significant effect (p<0.001) on the in vitro development and the number of cells of morulae and blastocysts after vitrification and warming (Experiment 3). In conclusion, the embryo developmental stage and the embryo donor were important factors that affected the development of porcine embryos after OPS-vitrification and warming. OPS-vitrification and the one-step dilution are efficient procedures to be used with intact porcine morulae and blastocysts.  相似文献   

20.
To determine the relative survival of porcine embryos after co-culture with cells producing an avian retrovirus, four-cell stage embryos were obtained from sows following synchronization with altrenogest and superovulation with gonadotropins. These embryos were randomly assigned to the following treatments: no manipulation (zona-intact); zona removed with acidified Tyrode's solution (zona-free); and zona removed followed by co-culture with D-17 canine cells producing an avian retrovirus vector derived from spleen necrosis virus (zona-free + co-culture). The survival rates of four-cell stage embryos to morulae or early blastocysts during a 48-h culture period were 93.3, 80.0 and 57.7% in zona-intact, zona-free and zona-free + co-culture groups, respectively. Following embryo transfer, the development of embryos to fetuses at six weeks of gestation was 37.5, 30.0 and 11.7% in zona-intact, zona-free and zona-free + co-culture groups. These results indicate that early preimplantation porcine embryos can develop to apparently normal fetuses following co-culture with cells producing a retrovirus, and the feasibility of this method for retrovirus-mediated gene transfer in pigs was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号