首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Formyl peptide receptor (FPR) and C5a receptor (C5aR) are chemoattractant G protein-coupled receptors (GPCRs) involved in the innate immune response against bacterial infections and tissue injury. Like other GPCRs, they recruit beta-arrestin1/2 to the plasma membrane and activate the extracellular signal-regulated kinases 1 and 2 (ERK1/2). Previous studies with several GPCRs have suggested that beta-arrestins play an important role as signal transducers by scaffolding signaling molecules such as ERK1/2. This function of the beta-arrestins was not discovered until several years after their role in desensitization and endocytosis had been reported. In this study, we investigated the role of the beta-arrestins in the activation of ERK1/2 and receptor endocytosis. We took advantage of previously described mutants of FPR that have defects in G(i) coupling or beta-arrestin recruitment. The results obtained with the mutant FPRs, as well as experiments using an inhibitor of G(i) and cells overexpressing beta-arrestin2, showed that activation of ERK1/2 takes place through G(i) and is not affected by beta-arrestins. However, overexpression of beta-arrestin2 does enhance FPR sequestration from the cell surface, suggesting a role in desensitization, as shown for many other GPCRs. Experiments with CHO C5aR cells showed similar sensitivity to the G(i) inhibitor as CHO FPR cells, suggesting that the predominant activation of ERK1/2 through G protein may be a common characteristic among chemoattractant receptors.  相似文献   

3.
4.
beta-Arrestins are multifunctional proteins identified on the basis of their ability to bind and uncouple G protein-coupled receptors (GPCR) from heterotrimeric G proteins. In addition, beta-arrestins play a central role in mediating GPCR endocytosis, a key regulatory step in receptor resensitization. In this study, we visualize the intracellular trafficking of beta-arrestin2 in response to activation of several distinct GPCRs including the beta2-adrenergic receptor (beta2AR), angiotensin II type 1A receptor (AT1AR), dopamine D1A receptor (D1AR), endothelin type A receptor (ETAR), and neurotensin receptor (NTR). Our results reveal that in response to beta2AR activation, beta-arrestin2 translocation to the plasma membrane shares the same pharmacological profile as described for receptor activation and sequestration, consistent with a role for beta-arrestin as the agonist-driven switch initiating receptor endocytosis. Whereas redistributed beta-arrestins are confined to the periphery of cells and do not traffic along with activated beta2AR, D1AR, and ETAR in endocytic vesicles, activation of AT1AR and NTR triggers a clear time-dependent redistribution of beta-arrestins to intracellular vesicular compartments where they colocalize with internalized receptors. Activation of a chimeric AT1AR with the beta2AR carboxyl-terminal tail results in a beta-arrestin membrane localization pattern similar to that observed in response to beta2AR activation. In contrast, the corresponding chimeric beta2AR with the AT1AR carboxyl-terminal tail gains the ability to translocate beta-arrestin to intracellular vesicles. These results demonstrate that the cellular trafficking of beta-arrestin proteins is differentially regulated by the activation of distinct GPCRs. Furthermore, they suggest that the carboxyl-tail of the receptors might be involved in determining the stability of receptor/betaarrestin complexes and cellular distribution of beta-arrestins.  相似文献   

5.
Physiological effects of beta adrenergic receptor (beta2AR) stimulation have been classically shown to result from G(s)-dependent adenylyl cyclase activation. Here we demonstrate a novel signaling mechanism wherein beta-arrestins mediate beta2AR signaling to extracellular-signal regulated kinases 1/2 (ERK 1/2) independent of G protein activation. Activation of ERK1/2 by the beta2AR expressed in HEK-293 cells was resolved into two components dependent, respectively, on G(s)-G(i)/protein kinase A (PKA) or beta-arrestins. G protein-dependent activity was rapid, peaking within 2-5 min, was quite transient, was blocked by pertussis toxin (G(i) inhibitor) and H-89 (PKA inhibitor), and was insensitive to depletion of endogenous beta-arrestins by siRNA. beta-Arrestin-dependent activation was slower in onset (peak 5-10 min), less robust, but more sustained and showed little decrement over 30 min. It was insensitive to pertussis toxin and H-89 and sensitive to depletion of either beta-arrestin1 or -2 by small interfering RNA. In G(s) knock-out mouse embryonic fibroblasts, wild-type beta2AR recruited beta-arrestin2-green fluorescent protein and activated pertussis toxin-insensitive ERK1/2. Furthermore, a novel beta2AR mutant (beta2AR(T68F,Y132G,Y219A) or beta2AR(TYY)), rationally designed based on Evolutionary Trace analysis, was incapable of G protein activation but could recruit beta-arrestins, undergo beta-arrestin-dependent internalization, and activate beta-arrestin-dependent ERK. Interestingly, overexpression of GRK5 or -6 increased mutant receptor phosphorylation and beta-arrestin recruitment, led to the formation of stable receptor-beta-arrestin complexes on endosomes, and increased agonist-stimulated phospho-ERK1/2. In contrast, GRK2, membrane translocation of which requires Gbetagamma release upon G protein activation, was ineffective unless it was constitutively targeted to the plasma membrane by a prenylation signal (CAAX). These findings demonstrate that the beta2AR can signal to ERK via a GRK5/6-beta-arrestin-dependent pathway, which is independent of G protein coupling.  相似文献   

6.
The seven-membrane-spanning angiotensin II type 1A receptor activates the mitogen-activated protein kinases extracellular signal-regulated kinases 1 and 2 (ERK1/2) by distinct pathways dependent on either G protein (likely G(q)/G(11)) or beta-arrestin2. Here we sought to distinguish the kinetic and spatial patterns that characterize ERK1/2 activated by these two mechanisms. We utilized beta-arrestin RNA interference, the protein kinase C inhibitor Ro-31-8425, a mutant angiotensin II receptor (DRY/AAY), and a mutant angiotensin II peptide (SII-angiotensin), which are incapable of activating G proteins, to isolate the two pathways in HEK-293 cells. G protein-dependent activation was rapid (peak <2 min), quite transient (t((1/2)) approximately 2 min), and led to nuclear translocation of the activated ERK1/2 as assessed by confocal microscopy. In contrast, beta-arrestin2-dependent activation was slower (peak 5-10 min), quite persistent with little decrement noted out to 90 min, and entirely confined to the cytoplasm. Moreover, ERK1/2 activated via beta-arrestin2 accumulated in a pool of cytoplasmic endosomal vesicles that also contained the internalized receptors and beta-arrestin. Such differential regulation of the temporal and spatial patterns of ERK1/2 activation via these two pathways strongly implies the existence of distinct physiological endpoints.  相似文献   

7.
8.
Beta-arrestins target G protein-coupled receptors (GPCRs) for endocytosis via clathrin-coated vesicles. Beta-arrestins also become detectable on endocytic vesicles in response to angiotensin II type 1A receptor (AT1AR), but not beta2-adrenergic receptor (beta2AR), activation. The carboxyl-terminal tails of these receptors contribute directly to this phenotype, since a beta2AR bearing the AT1AR tail acquired the capacity to stimulate beta-arrestin redistribution to endosomes, whereas this property was lost for an AT1AR bearing the beta2AR tail. Using beta2AR/AT1AR chimeras, we tested whether the beta2AR and AT1AR carboxyl-terminal tails, in part via their association with beta-arrestins, might regulate differences in the intracellular trafficking and resensitization patterns of these receptors. In the present study, we find that beta-arrestin formed a stable complex with the AT1AR tail in endocytic vesicles and that the internalization of this complex was dynamin dependent. Internalization of the beta2AR chimera bearing the AT1AR tail was observed in the absence of agonist and was inhibited by a dominant-negative beta-arrestin1 mutant. Agonist-independent AT1AR internalization was also observed after beta-arrestin2 overexpression. After internalization, the beta2AR, but not the AT1AR, was dephosphorylated and recycled back to the cell surface. However, the AT1AR tail prevented beta2AR dephosphorylation and recycling. In contrast, although the beta2AR-tail promoted AT1AR recycling, the chimeric receptor remained both phosphorylated and desensitized, suggesting that receptor dephosphorylation is not a property common to all receptors. In summary, we show that the carboxyl-terminal tails of GPCRs not only contribute to regulating the patterns of receptor desensitization, but also modulate receptor intracellular trafficking and resensitization patterns.  相似文献   

9.
Beta-arrestin1 is an adapter/scaffold for many G protein-coupled receptors during mitogen-activated protein kinase signaling. Phosphorylation of beta-arrestin1 at position Ser-412 is a regulator of beta-arrestin1 function, and in the present study, we showed that insulin led to a time- and dose-dependent increase in beta-arrestin1 Ser-412 phosphorylation, which blocked isoproterenol- and lysophosphatidic acid-induced Ser-412 dephosphorylation and impaired ERK signaling by these G protein-coupled receptor ligands. Insulin treatment also led to accumulation of Ser-412-phosphorylated beta-arrestin1 at the insulin-like growth factor 1 receptor and prevented insulin-like growth factor 1/Src association. Insulin-induced Ser-412 phosphorylation was partially dependent on ERK as treatment with the MEK inhibitor PD98059 inhibited the insulin effect (62% reduction, p = 0.03). Inhibition of phosphatidylinositol 3-kinase by wortmannin did not have a significant effect (9% reduction, p = 0.41). We also found that the protein phosphatase 2A (PP2A) was in a molecular complex with beta-arrestin1 and that the PP2A inhibitor okadaic acid increased Ser-412 phosphorylation. Concomitant addition of insulin and okadaic acid did not produce an additive effect on Ser-412 phosphorylation, suggesting a common mechanism. Small t antigen specifically inhibited PP2A, and in HIRcB cells expressing small t antigen, beta-arrestin1 Ser-412 phosphorylation was increased, and insulin had no further effect. Insulin treatment caused increased beta-arrestin1 Ser-412 phosphorylation, which blocked mitogen-activated protein kinase signaling and internalization by beta-arrestin1-dependent receptors with no effect on beta-adrenergic receptor Gs-mediated cAMP production. These findings provide a new mechanism for insulin-induced desensitization of ERK activation by Galphai-coupled receptors.  相似文献   

10.
11.
Beta-arrestins are key negative regulators and scaffolds of G protein-coupled receptor (GPCR) signalling. Beta-arrestin1 and beta-arrestin2 preferentially bind to the phosphorylated GPCRs in response to agonist stimulation, resulting in receptor internalization and desensitization. The critical roles of GPCR kinases (GRKs)-catalyzed receptor phosphorylation and interaction of beta-arrestins with the phosphorylated receptor in receptor internalization are well established. However, emerging evidence suggests that an agonist-stimulated internalization mechanism that is independent of receptor phosphorylation may also be employed in some cases, although the molecular mechanism for the phosphorylation-independent GPCR internalization is not clear. The current study investigated the role of receptor phosphorylation and the involvement of different beta-arrestin subtypes in agonist-induced delta-opioid receptor (DOR) internalization in HEK293 cells. Results from flow cytometry, fluorescence microscopy, and surface biotin labelling experiments showed that elimination of agonist-induced DOR phosphorylation by mutation GRK binding or phosphorylation sites only partially blocked agonist-induced receptor internalization, indicating the presence of an agonist-induced, GRK-independent mechanism for DOR internalization. Fluorescence and co-immunoprecipitation studies indicated that both the wild-type DOR and the phosphorylation-deficient mutant receptor could bind and recruit beta-arrestin1 and beta-arrestin2 to the plasma membrane in an agonist-stimulated manner. Furthermore, internalization of both the wild-type and phosphorylation-deficient receptors was increased by overexpression of either type of beta-arrestins and blocked by dominant-negative mutants of beta-arrestin-mediated internalization, demonstrating that both phosphorylation-dependent and -independent internalization require beta-arrestin. Moreover, double-stranded RNA-mediated interference experiments showed that either beta-arrestin1 or beta-arrestin2 subtype-specific RNAi only partially inhibited agonist-induced internalization of the wild-type DOR. However, agonist-induced internalization of the phosphorylation-deficient DOR was not affected by beta-arrestin1-specific RNAi but was blocked by RNAi against beta-arrestin2 subtype. These data indicate that endogenous beta-arrestin1 functions exclusively in the phosphorylation-dependent receptor internalization, whereas endogenous beta-arrestin2, but not beta-arrestin1, is required for the phosphorylation-independent receptor internalization. These results thus provide the first evidence of different requirement for beta-arrestin isoforms in the agonist induced phosphorylation-dependent and -independent GPCR internalization.  相似文献   

12.
Agonist stimulation of G protein-coupled receptors causes receptor activation, phosphorylation, beta-arrestin binding and receptor internalization. Angiotensin II (AngII) causes rapid internalization of the AT1 receptors, whereas AngII-bound AT2 receptors do not internalize. Although the activation of the rat AT1A receptor with AngII causes translocation of beta-arrestin2 to the receptor, no association of this molecule with the AT2 receptor can be detected after AngII treatment with confocal microscopy or bioluminescence resonance energy transfer. These data demonstrate that the two subtypes of angiotensin receptors have different mechanisms of regulation.  相似文献   

13.
Beta-arrestins are multifunctional adapters involved in the internalization and signaling of G protein-coupled receptors (GPCRs). They target receptors to clathrin-coated pits (CCPs) through binding with clathrin and clathrin adapter 2 (AP-2) complex. They also act as transducers of signaling by recruiting c-Src kinase to certain GPCRs. Here we sought to determine whether c-Src regulates the recruitment of AP-2 to beta-arrestin and the angiotensin II (Ang II) type 1 receptor (AT1R) during internalization. We show that the agonist stimulation of native AT1R in vascular smooth muscle cells (VSMCs) induces the formation of an endogenous complex containing c-Src, beta-arrestins and AP-2. In vitro studies using coimmunoprecipitation experiments and a yeast three-hybrid assay reveal that c-Src stabilizes the agonist-independent association between beta-arrestin2 and the beta-subunit of AP-2 independently of the kinase activity of c-Src. However, although c-Src expression promoted the rapid dissociation of AP-2 from both beta-arrestin and AT1R after receptor stimulation, a kinase-inactive mutant of c-Src failed to induce the dissociation of AP-2 from the agonist-occupied receptor. Thus, the consequence of c-Src in regulating the dissociation of AP-2 from the receptor was also examined on the internalization of AT1R by depleting c-Src in human embryonic kidney (HEK) 293 cells using a small interfering RNA strategy. Experiments in c-Src depleted cells reveal that AT1R remained mostly colocalized with AP-2 at the plasma membrane after Ang II stimulation, consistent with the observed delay in receptor internalization. Moreover, coimmunoprecipitation experiments in c-Src depleted HEK 293 cells and VSMCs showed an increased association of AP-2 to the agonist-occupied AT1R and beta-arrestin, respectively. Together, our results support a role for c-Src in regulating the dissociation of AP-2 from agonist-occupied AT1R and beta-arrestin during the clathrin-mediated internalization of receptors and suggest a novel function for c-Src kinase in the internalization of AT1R.  相似文献   

14.
The N-formyl peptide receptor-like 1 (FPRL1) is a G protein-coupled receptor (GPCR) that transmits intracellular signals in response to a variety of agonists, many of them being clearly implicated in human pathology. beta-arrestins are adaptor proteins that uncouple GPCRs from G protein and regulate receptor internalization. They can also function as signal transducers through the scaffolding of signaling molecules, such as components of the extracellular signal-regulated kinase (ERK) cascade. We investigated the role of beta-arrestins in ligand-induced FPRL1 internalization and signaling. In HEK293 cells expressing FPRL1, fluorescence microscopy revealed that agonist-stimulated FPRL1 remained co-localized with beta-arrestins during endocytosis. Internalization of FPRL1, expressed in a mouse embryonic fibroblast (MEF) cell line lacking endogenous beta-arrestins, was highly compromised. This distinguishes FPRL1 from the prototypical formyl peptide receptor FPR that is efficiently internalized in the absence of beta-arrestins. In both HEK293 and MEF cells, FPRL1-mediated ERK1/2 activation was a rapid and transient event. The kinetics and extent of ERK1/2 activation were not significantly modified by beta-arrestin overexpression. The pattern of FPRL1-mediated ERK1/2 activation was similar whether cells express or not beta-arrestins. Furthermore, treatment of the FPRL1 expressing cells with pertussis toxin inhibited ERK1/2 activation in MEF and in HEK293 cells. These results led us to conclude that activation of ERK1/2 mediated by FPRL1 occurs primarily through G protein signaling. Since beta-arrestin-mediated signaling has been observed essentially for receptors coupled to G proteins other than G(i), this may be a characteristic of G(i) protein-coupled chemoattractant receptors.  相似文献   

15.
16.
Classically, the FSH receptor (FSH-R) mediates its effects through coupling to guanine nucleotide-binding protein alpha S subunit (Galpha(s)) and activation of the cAMP/protein kinase A (PKA) signaling pathway. beta-Arrestins are rapidly recruited to the FSH-activated receptor and play key roles in its desensitization and internalization. Here, we show that the FSH-R expressed in HEK 293 cells activated ERK by two temporally distinct pathways dependent, respectively, on Galpha(s)/PKA and beta-arrestins. Galpha(s)/PKA-dependent ERK activation was rapid, transient, and blocked by H89 (a PKA inhibitor), but it was insensitive to small interfering RNA-mediated depletion of beta-arrestins. beta-Arrestin-dependent ERK activation was slower but more sustained and was insensitive to H89. We identified five Ser/Thr residues in the C terminus of the receptor (638-644) as a major phosphorylation site. Mutation of these residues into Ala (5A FSH-R) significantly reduced the stability of FSH-induced beta-arrestin 1 and 2 interaction when compared with the wild-type receptor. As expected, the 5A FSH-R-mediated cAMP accumulation was enhanced, and its internalization was reduced. In striking contrast, the ability of the 5A FSH-R to activate ERK via the beta-arrestin-dependent pathway was increased. G protein-coupled receptor kinase 5 (GRK5) and GRK6 were required for beta-arrestin-dependent ERK activation by both the wild-type and 5A FSH-R. By contrast, GRK2 depletion enhanced ERK activation by the wild-type FSH-R but not by the 5A FSH-R. In conclusion, we demonstrate the existence of a beta-arrestin-dependent, GRK-regulated mechanism for ERK activation by the FSH-R. A phosphorylation cluster in the C terminus of the FSH-R, identified as a site of beta-arrestin recruitment, positively regulated both desensitization and internalization but negatively regulated beta-arrestin-dependent ERK activation.  相似文献   

17.
Homologous desensitization of beta2-adrenergic and other G-protein-coupled receptors is a two-step process. After phosphorylation of agonist-occupied receptors by G-protein-coupled receptor kinases, they bind beta-arrestins, which triggers desensitization and internalization of the receptors. Because it is not known which regions of the receptor are recognized by beta-arrestins, we have investigated beta-arrestin interaction and internalization of a set of mutants of the human beta2-adrenergic receptor. Mutation of the four serine/threonine residues between residues 355 and 364 led to the loss of agonist-induced receptor-beta-arrestin2 interaction as revealed by fluorescence resonance energy transfer (FRET), translocation of beta-arrestin2 to the plasma membrane, and receptor internalization. Mutation of all seven serine/threonine residues distal to residue 381 did not affect agonist-induced receptor internalization and beta-arrestin2 translocation. A beta2-adrenergic receptor truncated distal to residue 381 interacted normally with beta-arrestin2, whereas its ability to internalize in an agonist-dependent manner was compromised. A similar impairment of internalization was observed when only the last eight residues of the C terminus were deleted. Our experiments show that the C terminus distal to residue 381 does not affect the initial interaction between receptor and beta-arrestin, but its last eight amino acids facilitate receptor internalization in concert with beta-arrestin2.  相似文献   

18.
The G protein-coupled thyrotropin-releasing hormone (TRH) receptor is phosphorylated and binds to beta-arrestin after agonist exposure. To define the importance of receptor phosphorylation and beta-arrestin binding in desensitization, and to determine whether beta-arrestin binding and receptor endocytosis are required for receptor dephosphorylation, we expressed TRH receptors in fibroblasts from mice lacking beta-arrestin-1 and/or beta-arrestin-2. Apparent affinity for [(3)H]MeTRH was increased 8-fold in cells expressing beta-arrestins, including a beta-arrestin mutant that did not permit receptor internalization. TRH caused extensive receptor endocytosis in the presence of beta-arrestins, but receptors remained primarily on the plasma membrane without beta-arrestin. beta-Arrestins strongly inhibited inositol 1,4,5-trisphosphate production within 10 s. At 30 min, endogenous beta-arrestins reduced TRH-stimulated inositol phosphate production by 48% (beta-arrestin-1), 71% (beta-arrestin-2), and 84% (beta-arrestins-1 and -2). In contrast, receptor phosphorylation, detected by the mobility shift of deglycosylated receptor, was unaffected by beta-arrestins. Receptors were fully phosphorylated within 15 s of TRH addition. Receptor dephosphorylation was identical with or without beta-arrestins and almost complete 20 min after TRH withdrawal. Blocking endocytosis with hypertonic sucrose did not alter the rate of receptor phosphorylation or dephosphorylation. Expressing receptors in cells lacking Galpha(q) and Galpha(11) or inhibiting protein kinase C pharmacologically did not prevent receptor phosphorylation or dephosphorylation. Overexpression of dominant negative G protein-coupled receptor kinase-2 (GRK2), however, retarded receptor phosphorylation. Receptor activation caused translocation of endogenous GRK2 to the plasma membrane. The results show conclusively that receptor dephosphorylation can take place on the plasma membrane and that beta-arrestin binding is critical for desensitization and internalization.  相似文献   

19.
The functions of beta-arrestin1 to facilitate clathrin-mediated endocytosis of the beta2-adrenergic receptor and to promote agonist-induced activation of extracellular signal-regulated kinases (ERK) are regulated by its phosphorylation/dephosphorylation at Ser-412. Cytoplasmic beta-arrestin1 is almost stoichiometrically phosphorylated at Ser-412. Dephosphorylation of beta-arrestin1 at the plasma membrane is required for targeting a signaling complex that includes the agonist-occupied receptors to the clathrin-coated pits. Here we demonstrate that beta-arrestin1 phosphorylation and function are modulated by an ERK-dependent negative feedback mechanism. ERK1 and ERK2 phosphorylate beta-arrestin1 at Ser-412 in vitro. Inhibition of ERK activity by a dominant-negative MEK1 mutant significantly attenuates beta-arrestin1 phosphorylation, thereby increasing the concentration of dephosphorylated beta-arrestin1. Under such conditions, beta-arrestin1-mediated beta2-adrenergic receptor internalization is enhanced as is its ability to bind clathrin. In contrast, if ERK-mediated phosphorylation is increased by transfection of a constitutively active MEK1 mutant, receptor internalization is inhibited. Our results suggest that dephosphorylated beta-arrestin1 mediates endocytosis-dependent ERK activation. Following activation, ERKs phosphorylate beta-arrestin1, thereby exerting an inhibitory feedback control of its function.  相似文献   

20.
To dissect the interaction between beta-arrestin ((beta)arr) and family B G protein-coupled receptors, we constructed fusion proteins between the glucagon-like peptide 1 receptor and (beta)arr2. The fusion constructs had an increase in apparent affinity selectively for glucagon, suggesting that (beta)arr2 interaction locks the receptor in a high-affinity conformation, which can be explored by some, but not all, ligands. The fusion constructs adopted a signaling phenotype governed by the tethered (beta)arr2 with an attenuated G protein-mediated cAMP signal and a higher maximal internalization compared with wild-type receptors. This distinct phenotype of the fusion proteins can not be mimicked by coexpressing wild-type receptor with (beta)arr2. However, when the wild-type receptor was coexpressed with both (beta)arr2 and G protein-coupled receptor kinase 5, a phenotype similar to that observed for the fusion constructs was observed. We conclude that the glucagon-like peptide 1 fusion construct mimics the natural interaction of the receptor with (beta)arr2 with respect to binding peptide ligands, G protein-mediated signaling and internalization, and that this distinct molecular phenotype is reminiscent of that which has previously been characterized for family A G protein-coupled receptors, suggesting similarities in the effect of (beta)arr interaction between family A and B receptors also at the molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号