首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maltose chemoreceptor of Escherichia coli.   总被引:33,自引:24,他引:9       下载免费PDF全文
Strains carrying mutations in the maltose system of Escherichia coli were assayed for maltose taxis, maltose uptake at 1 and 10 muM maltose, and maltose-binding activity released by osmotic shock. An earlier conclusion that the metabolism of maltose is not necessary for chemoreception is extended to include the functioning of maltodextrin phosphorylase, the product of malP, and the genetic control of the maltose receptor by the product of malT is confirmed. Mutants in malF and malK are defective in maltose transport at low concentrations as well as high concentrations, as previously shown, but are essentially normal in maltose taxis. The product of malE has been previously shown to be the maltose-binding protein and was implicated in maltose transport. Most malE mutants are defective in maltose taxis, and all those tested are defective in maltose transport at low concentrations. Thus, as previously suggested, the maltose-binding protein probably serves as the recognition component of the maltose receptor, as well as a component of the transport system. tsome malE mutants release maltose-binding activity and are tactic toward maltose, although defective in maltose transport, implying that the binding protein has separate sites for interaction with the chemotaxis and transport systems. Some mutations in lamB, whose product is the receptor for the bacteriophage lamba, cause defects in maltose taxis, indicating some involvement of that product in maltose reception.  相似文献   

2.
Mutants affected in lamB, the structural gene for phage lambda receptor, are unable to utilize maltose when it is present at low concentrations (less than or equal 10 muM). During growth in a chemostat at limiting maltose concentrations, the lamB mutants tested were selected against in the presence of the wild-type strain. Transport studies demonstrate that most lamB mutants have deficient maltose transport capacities at low maltose concentrations. When antibodies against purified phage lambda receptor are added to a wild-type strain, transport of maltose at low concentrations is significantly reduced. These results strongly suggest that the phage lambda receptor molecule is involved in maltose transport.  相似文献   

3.
The barrier function of the Escherichia coli outer membrane against low concentrations of maltose in strains missing the lambda receptor was partially overcome by treating the cells for 3 h with 25 mM Ca2+. Kinetic analysis of maltose-transport revealed a Ca2+-induced shift of the apparent Km of the system from about 100 microM in cells pretreated with Tris to about 15 microM in cells pretreated with Tris plus Ca2+. In contrast to maltose transport in untreated cells, that of Ca2+-treated lamB cells was inhibited by molecules with a high molecular weight, such as amylopectin (molecular weight, 20,000), and anti-maltose-binding protein antibodies. In addition, lysozyme was shown to attack Ca2+-treated cells in contrast to untreated cells. The Ca2+-induced permeability increase of the outer membrane allowed reconstitution of maltose transport in a mutant missing the maltose-binding protein with osmotic shock fluid containing the maltose-binding protein. Even though Ca2+-treatment allowed the entry of large molecules, the release of the periplasmic maltose-binding protein or alkaline phosphatase was negligible.  相似文献   

4.
The Escherichia coli LamB protein is located in the outer membrane. It is both a component of the maltose and maltodextrin transport system, and the receptor for phages lambda and K10. It is a trimer composed of three identical polypeptide chains, each containing 421 residues. Six independent mutants have been isolated, in which the LamB protein is altered in its interaction with one or more monoclonal antibodies specific for regions of the protein that are exposed at the cell surface. Some of the mutations also altered the binding site for phage lambda. All of the mutations were clustered in the same region of the lamB gene, corresponding to residues 333-394 in the polypeptide. This and previous results strongly suggest that a rather large segment of the LamB polypeptide, extending from residue 315 to 401, is exposed at the outer face of the outer membrane. This segment would bear the epitopes for the four available anti-LamB monoclonal antibodies that react with the cell surface, and part of the binding site for phage lambda.  相似文献   

5.
Some Escherichia coli K-12 lamB mutants, those producing reduced amounts of LamB protein (one-tenth the wild type amount), grow normally on dextrins but transport maltose when present at a concentration of 1 microM at about one-tenth the normal rate. lamB Dex- mutants were found as derivatives of these strains. These Dex- mutants are considerably impaired in the transport of maltose at low concentrations (below 10 microM), and they have a structurally altered LamB protein which is impaired in its interaction with phages lambda and K10 but still interacts with a lambda host range mutant lambda hh*. The Dex- mutants are double lamB mutants carrying one mutation, already present in the parental strains, that reduces LamB synthesis and a second that alters LamB structure. The secondary mutations, present in different independent Dex- mutants, are clustered in the same region of the lamB gene. Dex+ revertants were isolated and analyzed: when the altered LamB protein is made in wild-type amount, due to a reversion of the first mutation, the phenotype reverts to Dex+. However, these Dex+ revertants are still very significantly impaired in maltose transport at low concentrations (below 10 microM).  相似文献   

6.
The outer membrane of Escherichia coli was altered as a consequence of lysogeny by bacteriophages P1 and P1 cmts. The predominant change was a reduction in the size of lipopolysaccharide to a heptose-deficient form. P1 cmts lysogens were still sensitive to several bacteriophages but were resistant to lambda vir. Neither whole cells nor solubilized outer membranes from P1 cmts lysogens were able to inactivate lambda vir, and 32P-labeled lambda vir was unable to adsorb to P1 cmts lysogens. P1 cmts lysogens were also affected in maltose transport. The level of periplasmic maltose-binding protein was reduced somewhat, but there was no significant reduction in the level of the outer membrane lambda receptor (LamB). These membrane abnormalities were all corrected in strains cured of P1 cmts. It is suggested that P1 cmts affects lipopolysaccharide biosynthesis by a phage conversion mechanism and consequently the function of the lambda receptor.  相似文献   

7.
Proteins destined for either the periplasm or the outer membrane of Escherichia coli are translocated from the cytoplasm by a common mechanism. It is generally assumed that outer membrane proteins, such as LamB (maltoporin or lambda receptor), which are rich in beta-structure, contain additional targeting information that directs proper membrane insertion. During transit to the outer membrane, these proteins may pass, in soluble form, through the periplasm or remain membrane associated and reach their final destination via sites of inner membrane-outer membrane contact (zones of adhesion). We report lamB mutations that slow signal sequence cleavage, delay release of the protein from the inner membrane, and interfere with maltoporin biogenesis. This result is most easily explained by proposing a soluble, periplasmic LamB assembly intermediate. Additionally, we found that such lamB mutations confer several novel phenotypes consistent with an abortive attempt by the cell to target these tethered LamB molecules. These phenotypes may allow isolation of mutants in which the process of outer membrane protein targeting is altered.  相似文献   

8.
In Escherichia coli K12 the product of gene lamB is an outer membrane protein involved in the transport of maltose and maltodextrins and serving as a receptor for several bacteriophages including lambda. About 30 to 40% of this protein can be recovered associated to peptidoglycan when the cells are dissolved in sodium dodecyl sulfate in the presence of 2 mM Mg2+ ions. The bound protein can then be quantitatively eluted from peptidoglycan by incubating the complex in Triton X-100 and EDTA, or sodium dodecyl sulfate and NaCl. The protein eluted in such ways is still totally active in its phage-neutralizing activity. Two other membrane proteins known to behave similarly to the lamB protein are proteins Ia and Ib. However the binding of these proteins to peptidoglycan appears tighter, in several respects, than that of the lamB protein. The lamB protein may span the outer membrane since it appears to interact with the peptidoglycan on the inner side of this membrane while it is known to be accessible to both phages and antibodies at the cell surface.  相似文献   

9.
The maltose transport system of Escherichia coli contains at least five components, three of which, i.e. the products of lamB, malE, and malF genes, have so far been identified as constituents of the outer membrane, periplasmic space, and cytoplasmic membrane, respectively. We identified another component, a cytoplasmic membrane protein of an apparent molecular weight of 43,000, as the product of the malK gene on the basis of polyacrylamide gel electrophoretic analysis of various mutants and suppressed strains and by the incorporation of extra tyrosine residue into this proten in malK amber mutants containing the suppressor Su3+ allele. The transport of maltose thus appears to require at least two proteins associated with the cytoplasmic membrane.  相似文献   

10.
lamB is the structural gene for the lambda receptor, an oligomeric outer membrane protein from Escherichia coli K12 involved in phage lambda adsorption. We show that, under certain conditions, in a strain diploid for gene lamB, all the missense lamB mutations conferring lambda resistance that we have tested are dominant with respect to wild-type. We propose a model which allows a quantitative interpretation of the data. It is based on negative complementation at the level of oligomerisation. Wild-type and mutant subunits would assemble at random forming homo- and hetero-oligomers. Only wild-type homo-oligomers would be efficient for phage inactivation. For some classes of missense mutations the hetero-oligomers would have the capacity to bind, but not to inactivate the phage. The model confirms that active lambda receptor is a trimer and implies that for this secreted protein there is no preferential assembly of subunits originating from the same polysome.  相似文献   

11.
lamB is the structural gene for the bacteriophage lambda receptor in Escherichia coli K-12. In vivo and in vitro studies of the lambda receptor from lamB missence mutants selected as resistant to phage lambda h+ showed the following. (i) Resistance was not due to a change in the amount of lambda receptor protein present in the outer membrane but rather to a change in activity. All of the mutants were still sensitive to phage lambda hh*, a two-step host range mutant of phage lambda h+. Some (10/16) were still sensitive to phage lambda h, a one-step host range mutant. (ii) Resistance occurred either by a loss of binding ability or by a block in a later irreversible step. Among the 16 mutations, 14 affected binding of lambda h+. Two (lamB106 and lamB110) affected inactivation but not binding; they represented the first genetic evidence for a role of the lambda receptor in more than one step of phage inactivation. Similarly, among the six mutations yielding resistance to lambda h, five affected binding and one (lamB109) did not. (iii) The pattern of interactions between the mutated receptors and lambda h+ and its host range mutants were very similar, although not identical, in vivo and in vitro. Defects were usually more visible in vitro than in vivo, the only exception being lamB109. (iv) The ability to use dextrins as a carbon source was not appreciably affected in the mutants. Possible working models and the relations between phage infection and dextrins transport were briefly discussed.  相似文献   

12.
In one malE mutant known to be deficient in the transport of maltose and maltodextrins across the outer membrane, the altered MalE protein was shown to be defective in its interaction with the phage lambda receptor, or LamB protein, of the outer membrane.  相似文献   

13.
Affinity-chromatographic selection on immobilized starch was used to selectively enhance the affinity of the maltodextrin-specific pore protein ( maltoporin , LamB protein, or lambda receptor protein) in the outer membrane of E. coli. Selection strategies were established for rare bacteria in large populations producing maltoporin variants with enhanced affinities for both starch and maltose, for starch but not maltose and for maltose but not starch. Three classes of lamB mutants with up to eight-fold increase in affinity for particular ligands were isolated. These mutants provide a unique range of modifications in the specificity of a transport protein.  相似文献   

14.
Two types of proteins are discussed in their role of facilitating the transport of maltose and sn-glycerol-3-phosphate in E. coli. The first protein is the receptor for phage δ, known to be an outer membrane protein. By facilitating the diffusion of maltose and the higher maltodextrins through the outer membrane the effect of the δ receptor is to decrease the Km of the transport system without influencing the Vmax of substrate flux. The second protein is a periplasmic protein that is induced by growth on glycerol and is essential for transport of sn-glycerol-3-phosphate in whole cells but not in membrane vesicles. This protein has solely been identified by the use of a two-dimensional polyacrylamide gel electrophoresis of periplasmic proteins in wild-type and mutants defective in sn-glycerol-3-phosphate transport.  相似文献   

15.
Outer membrane permeability conferred by lambda receptor protein and porins to maltose-maltodextrins and other oligosaccharides was studied in vitro with reconstituted vesicle membranes and in vivo with mutant strains lacking either one of these proteins. The vesicle membranes reconstituted from phospholipids, lipopolysaccharide, and purified lambda receptor allowed rapid diffusion of maltose and maltose-maltodextrins of up to six glucose residues, but the membranes acted essentially as a molecular sieve for sucrose, raffinose, stachyose, and inulins of molecular weights 800, 920, and 1,380. The vesicle membranes containing porins allowed rapid diffusion of maltose but not of maltose-maltodextrins larger than maltose. The apparent transport Km values for maltose-maltodextrins of up to six glucose residues from the strain carrying lamB+ ompB (lambda receptor+, porin-) were similar (about 5 X 10(-6) M), whereas the transport Km values for maltose- and maltotriose of the strain carrying lamB ompB+ (lambda receptor-, porin+) alleles appeared to be 300 and about 20,000 X 10(-6) M. These results suggest that lambda receptor protein forms permeability pores that facilitate the diffusion of maltose-maltodextrins and function as a molecular sieve for other saccharides.  相似文献   

16.
lamB is the structural gene for the bacteriophage lambda receptor, a multifunctional protein located in the outer membrane of Escherichia coli K-12. We present a method for deletion mapping of any lamB mutations with a recognizable pheno-type. This method involves a transducing phage constructed by in vitro recombination which can also be used for complementation, deoxyribonucleic acid sequence, and in vitro protein synthesis studies with the mutated lamB gene. Using this method, we mapped 18 lamB missense mutations which confer resistance to phage lambda h+ (wild-type host range). The main results were the following. (i) None of the 18 mutations was located in the first 4 deletion intervals out of the 11 of the genetic map. (ii) These mutations were clustered according to their phenotype as follows. (a) Class I mutations, which allow growth of lambda h and lambda hh* (one-step and two-step host range mutants of lambda, respectively), were located in three regions--three in interval V, four in interval VIII-IX, and three in interval X-XI. Only the last three mutations still allowed growth of phage K10 which also uses the lambda receptor, and two of them still allowed reversible binding of lambda h+. (b) All seven class II mutations allowed only growth of lambda hh* and mapped in interval V. These results are discussed in the frame of a genetic approach to the functional topology of the lambda receptor.  相似文献   

17.
Aspartate taxis mutants of the Escherichia coli tar chemoreceptor.   总被引:13,自引:8,他引:5       下载免费PDF全文
The Tar protein of Escherichia coli belongs to a family of methyl-accepting inner membrane proteins that mediate chemotactic responses to a variety of compounds. These transmembrane signalers monitor the chemical environment by means of specific ligand-binding sites arrayed on the periplasmic side of the membrane, and in turn control cytoplasmic signals that modulate the flagellar rotational machinery. The periplasmic receptor domain of Tar senses two quite different chemoeffectors, aspartate and maltose. Aspartate is detected through direct binding to Tar molecules, whereas maltose is detected indirectly when complexed with the periplasmic maltose-binding protein. Saturating levels of either aspartate or maltose do not block behavioral responses to the other compound, indicating that the detection sites for these two attractants are not identical. We initiated structure-function studies of these chemoreceptor sites by isolating tar mutants which eliminate aspartate or maltose taxis, while retaining the ability to respond to the other chemoeffector. Mutants with greatly reduced aspartate taxis are described and characterized in this report. When present in single copy in the chromosome, these tar mutations generally eliminated chemotactic responses to aspartate and structurally related compounds, such as glutamate and methionine. Residual responses to these compounds were shifted to higher concentrations, indicating a reduced affinity of the aspartate-binding site in the mutant receptors. Maltose responses in the mutants ranged from 10 to 80% of normal, but had no detectable threshold shifts, indicating that these receptor alterations may have little effect on maltose detection sensitivity. The mutational changes in 17 mutants were determined by DNA sequence analysis. Each mutant exhibited a single amino acid replacement at residue 64, 69, or 73 in the Tar molecule. The wild-type Tar transducer contains arginines at all three of these positions, implying that electrostatic forces may play an important role in aspartate detection.  相似文献   

18.
Maltose-binding protein (MBP) is essential for maltose transport and chemotaxis in Escherichia coli. To perform these functions it must interact with two sets of cytoplasmic membrane proteins, the MalFGK transport complex and the chemotactic signal transducer Tar. MBP is present at high concentrations, on the order of 1 mM, in the periplasm of maltose-induced or malTc constitutive cells. To determine how the amount of MBP affects transport and taxis, we utilized a series of malE signal-sequence mutations that interfere with export of MBP. The MBP content in shock fluid from cells carrying the various mutations ranged from 4 to 23% of the malE+ level. The apparent Km for maltose transport varied by less than a factor of 2 among malE+ and mutant strains. At a saturating maltose concentration 9% (approximately 90 microM) of the malE+ amount of MBP was required for half-maximal uptake rates. Transport exhibited a sigmoidal dependence on the amount of periplasmic MBP, indicating that MBP may be involved in a cooperative interaction at some stage of the transport process. The chemotactic response to a saturating maltose stimulus exhibited a first-order dependence on the amount of periplasmic MBP. Thus, interaction of a single substrate-bound MBP with Tar appears sufficient to initiate a chemotactic signal from the transducer. A half-maximal chemotactic response occurred at 25% of the malE+ MBP level, suggesting that in vivo the KD for binding of maltose-loaded MBP to Tar is quite high (approximately 250 microM).  相似文献   

19.
On Some Genetic Aspects of Phage λ Resistance in E. COLI K12   总被引:12,自引:0,他引:12  
J. P. Thirion  M. Hofnung 《Genetics》1972,71(2):207-216
Most mutations rendering E. coli K12 resistant to phage lambda, map in two genetic regions malA and malB.-The malB region contains a gene lamB specifically involved in the lambda receptor synthesis. Twenty-one independent lamB mutations studied by complementation belonged to a single cistron. This makes it very likely that lamB is monocistronic. Among the lamB mutants some are still sensitive to a host range mutant of phage lambda. Mutations mapping in a proximal gene essential for maltose metabolism inactivate gene lamB by polarity confirming that both genes are part of the same operon. Because cases of intracistronic complementation have been found, the active lamB product may be an oligomeric protein.-Previously all lambda resistant mutations in the malA region have been shown to map in the malT cistron. malT is believed to be a positive regulatory gene necessary for the induction of the "maltose operons" in the malA region and in the malB region of the E. coli K12 genetic map. No trans dominant malT mutation have been found. Therefore if they exist, they occur at a frequency of less than 10(-8), or strongly reduce the growth rate of the mutants.  相似文献   

20.
The starch polysaccharides amylose and amylopectin are not utilized by Escherichia coli, but are bound by the bacteria. The following evidence supports the view that the outer membrane lambda receptor protein, a component of the maltose/ maltodextrin transport system is responsible for the binding. (i) Amylose and amylopectin both inhibit the transport of maltose into E. coli. (ii) Both polysaccharides prevent binding of non-utilizable maltodextrins by the intact bacterium, a process previously shown to be dependent on components of the maltose transport system (T. Ferenci, Eur. J. Biochem., in press). (iii) A fluorescent amylopectin derivative, O-(fluoresceinyl thiocarbamoyl)-amylopectin, has been synthesized and shown to bind to E. coli in a reversible, saturable manner. Binding of O-(fluoresceinyl thiocarbamoyl)-amylopectin is absent in mutants lacking the lambda receptor, but mutations in any of the other components of the maltose transport system do not affect binding as long as lambda receptor is present. (iv) Using the inhibition of lambda receptor-dependent O-(fluoresceinyl thiocarbamoyl)-amylopectin binding as an assay, the affinities of the lambda receptor for maltodextrins and other sugars have been estimated. The affinity for dextrins increases with increasing degree of polymerization (K(d) for maltose, 14 mM; for maltotetraose, 0.3 mM; for maltodecaose, 0.075 mM). Maltose and some other di- and trisaccharides are inhibitory to amylopectin binding, but only at concentrations above 1 mM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号