首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To increase the basic understanding of killer whale (Orcinus orca) reproductive physiology necessary for the development of artificial breeding programs, we utilized radioimmunoassays (RIA) to detect urinary immunoreactive steroid metabolites (pregnanediol-3α-glucuronide [PdG] and estrone-conjugates [EC]) and gonadotropins (luteinizing hormone [LH] and follicle-stimulating hormone [FSH]) in urine samples from six female killer whales. Urine samples were collected from the whales by voluntary presentation behavior over a 2- to 4-year period. All urinary hormone values were corrected for intersample urine concentration variations by indexing with creatinine. Daily urine samples from four whales were collected during two conceptions and 18 complete estrous cycles. LH, FSH, EC, and PdG immunoreactive levels were determined and combined with observed copulatory activity in five cycles, including two conceptive cycles from two whales. Mean luteal phase lengths ranged from 9.7 to 19.2 days. Mean follicular phase lengths ranged from 6.5 to 16.8 days. Mean estrous cycle lengths based on the first detectable PdG levels were 41.6 ± 6.72 S.E.M. days. After PdG nadir, immunoreactive FSH levels showed a bimodal pattern with the first peak being greater in size, and both preceding a follicular phase EC increase. LH levels > the 95% confidence interval of the mean were considered significant. Combined LH immunoreactive values from whales 2 and 6 during two and three estrous cycles, respectively, had significant LH peak concentrations on day minus 2. These significant LH peaks were assumed to represent the preovulatory LH surge. Eight copulations during two conceptive cycles were observed between whales 2 and 6 and a breeding male. Six of these copulations (3 with each female whale) occurred within 72 hours of the beginning or the end of the presumptive preovulatory LH surge. Estrous activity was seen throughout the year for the herd. However, individuals had varying periods of anestrus that could not be linked to environmental, social, or nutritional influences. The whales that were reproductively successful had anestrus intervals that were usually influenced by gestation, postparturient period, or lactation. The information obtained during this research enhances the foundation for future artificial reproductive management techniques. © 1993 Wiley-Liss, Inc.  相似文献   

2.
The effect of sustained high plasma levels of prolactin, induced by repeated 2-h i.v. injections of thyrotrophin-releasing hormone (TRH; 20 micrograms), on ovarian oestradiol secretion and plasma levels of LH and FSH was investigated during the preovulatory period in the ewe. Plasma levels of progesterone declined at the same rate after prostaglandin-induced luteal regression in control and TRH-treated ewes. However, TRH treatment resulted in a significant increase in plasma levels of LH and FSH compared to controls from 12 h after luteal regression until 5 to 6 h before the start of the preovulatory surge of LH. In spite of this, and a similar increase in pulse frequency of LH in control and TRH-treated ewes, ovarian oestradiol secretion was significantly suppressed in TRH-treated ewes compared to that in control ewes. The preovulatory surge of LH and FSH, the second FSH peak and subsequent luteal function in terms of plasma levels of progesterone were not significantly different between control and TRH-treated ewes. These results show that TRH treatment, presumably by maintaining elevated plasma levels of prolactin, results in suppression of oestradiol secretion by a direct effect on the ovary in the ewe.  相似文献   

3.
The steroid-dependent inhibition of LH secretion involves dopaminergic and serotoninergic systems but it is unclear how the plane of nutrition affects this inhibition during anestrus in melatonin treated ewes. Melatonin implants (18 mg) were inserted (Day 0) into ovariectomized, estradiol treated adult Rasa Aragonesa ewes on a high (H; n = 8) or low energy diet (L; n = 6) which were applied in early anestrus (Day 29-57) and late anestrus (Day 90-104). Cyproheptadine (0.1 mg/ kg), a serotoninergic (SHT2) receptor antagonist, was administered in early and late anestrus (Day 50 and 107) followed by pimozide (0.08 mg/kg), a dopaminergic2 receptor antagonist (Day 57 and 114). The H ewes had significantly higher LH concentrations (P < 0.05) before cyproheptadine treatment in early anestrus. The H and L ewes responded in a similar way to the antagonists in both early and late anestrus, except for L ewes who had a higher LH pulse amplitude after pimozide treatment in both periods (P < 0.05). During early anestrus, cyproheptadine tended to increase (P = 0.06) LH pulse frequency in L ewes and LH concentrations in H ewes. The LH secretion also increased in L ewes after pimozide administration during early anestrus (P < 0.05 for mean LH concentrations and LH pulse frequency and amplitude). However, pimozide dramatically increased LH secretion during late anestrus (Day 114) irrespective of the plane of nutrition (P = 0.06-0.08 for LH pulse frequency and P < 0.05 for LH concentrations and pulse amplitude). In melatonin treated Mediterranean ewes, the plane of nutrition appeared to modify the effect of dopaminergic and serotoninergic systems on the steroid-dependent inhibition of LH secretion throughout anestrus.  相似文献   

4.
Two experiments were performed to determine whether the eyes are necessary for photoperiodic control of reproduction in ewes. In the first, intact and estradiol-treated ovariectomized (OVX + E) ewes were housed in each of 2 photoperiod-controlled rooms with a vasectomized ram and subjected to 90-day alternations between long and short days. Prior to blinding, long days initiated anestrus in intact ewes and a suppression of serum luteinizing hormone (LH) levels in OVX + E ewes; short days caused onset of estrous cycles and an increase in LH levels in the intact and OVX + E ewes, respectively. After 1.5 years of such photoperiodic control, all ewes were blinded by bilateral orbital enucleation. Photoperiodic control was lost following blinding, but circannual alternations between cyclicity and anestrus or high and low LH levels, were maintained in most ewes for the remaining 2.5 years of the study. In one group of OVX + E ewes, serum LH levels remained synchronized to the 90-day shifts in photoperiod for about 1 year after blinding. Once the sighted ram was removed from the room, however, the 90-day rhythm in LH disappeared and a circannual pattern of LH became evident, suggesting that blind ewes may receive photoperiodic information from a sighted ram. This possibility was supported by the results of the second experiment in which 12 additional OVX + E ewes were blinded and exposed to 90 long days and 90 short days in the absence of a sighted ram. In these ewes, serum LH levels were not controlled by the changes in photoperiod. These results are consistent with the following conclusions: 1) the eyes are necessary for perception of photoperiod in the ewe and 2) ewes have an endogenous circannual rhythm of reproduction and/or they can be controlled by other environmental signals in the absence of photoperiodic input. Further, the results lead to the hypothesis that blind ewes can receive photoperiodic information indirectly from a sighted ram.  相似文献   

5.
The post-partum secretion of LH, FSH and prolactin was monitored in 15 suckling and 6 non-suckling Préalpes du Sud ewes lambing during the breeding season by measuring plasma hormone concentrations daily at 6-h intervals and also weekly at 20-min intervals for 6 h from parturition to resumption of regular cyclic ovarian activity. There was a constant phenomenon in the resumption of normal patterns of FSH and LH secretion: there was a rise in FSH values culminating on average on Day 4 post partum and returning subsequently to values observed during the oestrous cycle, and concurrently an increase in the frequency and amplitude of LH pulses more progressive in suckling than in non-suckling ewes which led to an elevation of LH mean concentrations and occurrence of an LH surge. Since neither the FSH secretory pattern nor FSH mean values differed between suckling and non-suckling ewes, the results suggested that LH pulsatile pattern was a major limiting factor for the resumption of normal oestrous cycles. Before regular oestrous cycles resumed other changes in preovulatory LH surges also occurred: (i) they increased in duration and probably in amplitude; (ii) they were preceded by an acceleration in LH pulse frequency and a large decrease in FSH values as in normal cyclic ewes; and (iii) at least in non-suckling ewes they occurred concurrently with a prolactin surge.  相似文献   

6.
Two experiments were performed to determine the endocrine and ovarian changes in medroxyprogesterone acetate (MAP)-primed ewes after ram introduction. Experiment 1 was performed during the mid-breeding season with 71 ewes primed with an intravaginal MAP sponge for 12 days. While the control (C) ewes (n = 35) were in permanent contact with rams, the ram effect (RE) ewes (n = 36) were isolated for 34 days prior to contact with rams. At sponge withdrawal, all ewes were joined with eight sexually experienced marking Corriedale rams and estrus was recorded over the next 4 days. The ovaries were observed by laparoscopy 4–6 days after estrus. Four weeks later, pregnancy was determined by transrectal ultrasonography. In eight ewes from each group, ovaries were ultrasonographically scanned; FSH, LH, and estradiol-17β were measured every 12 hours until ovulation or 96 hours after estrus. The response to the rams was not affected by the fact that ewes had been kept or not in close contact with males before teasing. No differences were found in FSH, LH, estradiol-17β concentrations, growth of the ovulatory follicle, onset of estrus, ovulation rate, or pregnancy rate. Experiment 2 was performed with 14 ewes during the nonbreeding season. Ewes were isolated from rams for 1 month, and received a 6-day MAP priming. Ovaries were ultrasonographically scanned every 12 hours, and FSH, LH, estradiol-17β, and progesterone were measured. Ewes that ovulated and came into estrus had higher FSH and estradiol-17β levels before introduction of the rams than did ewes that had a silent ovulation. The endocrine pattern of the induced follicular phase of ewes that came into estrus was more similar to a normal follicular phase, than in ewes that had a silent ovulation. The follicle that finally ovulated tended to emerge earlier and in a more synchronized fashion in those ewes that did come into estrus. All ewes that ovulated had an LH surge and reached higher maximum FSH levels than ewes that did not ovulate, none of which had an LH surge. We conclude that (a) the effect of ram introduction in cyclic ewes treated with MAP may vary depending on the time of the breeding season at which teasing is performed; (b) patterns of FSH, and estradiol-17β concentrations, as indicators of activity of the reproductive axis, may be used to classify depth of anestrus; and (c) the endocrine pattern of the induced follicular phase, which is related to the depth of anestrus, may be reflected in the behavioral responses to MAP priming and the ram effect.  相似文献   

7.
During the breeding season, five groups of three ewes were implanted at ovariectomy with 0.36, 0.5, 1.0 and 6.0 cm oestradiol implants or implants containing no steroid. Eleven days after receiving implants, blood samples were taken every 10 min for 6 h; implants were then removed. Treatments were repeated three times during each of two consecutive breeding seasons and four times during the intervening anoestrus. In ovariectomized ewes without steroid treatment, luteinizing hormone (LH) pulse frequency increased from early to mid-breeding season, decreased to a minimum at mid-anoestrus and increased to reach a maximum at the mid-point of the second breeding season, subsequently declining. LH pulse amplitude was inversely related to frequency. Basal serum LH concentrations decreased gradually from the first breeding season to reach a minimum at mid-anoestrus and gradually increased to reach a maximum at the end of the second breeding season. Mean serum LH and follicle-stimulating hormone (FSH) concentrations were higher at the end of the second breeding season compared with the beginning of the first breeding season. All parameters of gonadotrophin secretion were decreased much more by oestradiol during the anoestrus than during the breeding season. LH pulse frequency was decreased during anoestrus and at high oestradiol concentrations during the first breeding season. Apart from LH pulse amplitude, the decreases in all parameters of gonadotrophin secretion were less during the second compared with the first breeding season. The minimum effective dose of oestradiol required to decrease mean and basal serum concentrations of LH during anoestrus was lower than in the breeding season. The minimum effective dose of oestradiol required to decrease mean serum concentrations of FSH was lower in the first compared with the second breeding season. Oestradiol depression of LH pulse amplitude and mean serum concentrations of LH and FSH showed a dose dependency during the breeding season. During anoestrus dose dependency was seen for basal concentrations of LH and mean serum concentrations of LH and FSH. We conclude that significant chronic changes in gonadotrophin secretion occur in the ewe with time after ovariectomy. Sensitivity to oestradiol also changes, and the effects of oestradiol are not always dose dependent. We suggest that the circannual pattern of LH pulse frequency and basal LH secretion are directly linked to the circannual cycle of photoperiod.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
An increase in episodic release of LH is putatively the initial event leading to the onset of postpartum ovarian cyclicity in ewes. This experiment was conducted to determine the relationship between hypothalamic release of GnRH and onset of pulsatile secretion of LH during postpartum anestrus. Control ewes (n = 7) were monitored during the postpartum period to determine when normal estrous cycles resumed. In controls, the mean interval from parturition to the first postpartum estrus as indicated by a rise in serum progesterone greater than 1 ng/mg was 25.8 +/- 0.6 days. Additional ewes (n = 4-5) at 3, 7, 14, and 21 days postpartum (+/- 1 day) were surgically fitted with cannula for collection of hypophyseal-portal blood. Hypophyseal-portal and jugular blood samples were collected over a 6- to 7-h period at 10-min intervals. The number of GnRH pulses/6 h increased (p less than 0.05) from Day 3 postpartum (2.2 +/- 0.5) to Days 7 and 14 (3.6 +/- 0.2 and 3.9 +/- 0.4, respectively). A further increase (p less than 0.05) in GnRH pulse frequency was observed at Day 21 postpartum (6.4 +/- 0.4 pulses/6 h). Changes in pulsatile LH release paralleled changes observed in pulsatile GnRH release over Days 3, 7, 14, and 21 postpartum (0.83 +/- 0.3, 2.8 +/- 0.4, 2.9 +/- 0.6, and 4.0 +/- 1.1 pulses/6 h, respectively). GnRH pulse amplitude was higher at Day 21 than at Days 3, 7, or 14 postpartum. These findings suggest that an increase in the frequency of GnRH release promotes the onset of pulsatile LH release during postpartum anestrus in ewes.  相似文献   

9.
In ewes, anestrus results from a reduction in LH pulsatility due to an increased sensitivity of the hypothalamic estradiol negative feedback system. Considerable evidence has implicated the A15 group of dopaminergic neurons in the retrochiasmatic area in this seasonally dependent estradiol effect. Moreover, estradiol administered to the retrochiasmatic area in ovariectomized anestrous ewes inhibits LH secretion. However, A15 neurons do not appear to contain the classical estrogen receptors (ERalpha). Therefore, we tested the hypothesis that beta-estrogen receptors mediate the action of estradiol in the retrochiasmatic area by comparing the effects of estradiol and genistein, a selective ERbeta agonist. We also examined whether there are seasonal changes in response of the retrochiasmatic area to these agonists and if these effects are mediated by dopamine. To test these hypotheses, ovariectomized ewes were implanted with bilateral guide cannulae targeting the retrochiasmatic area. Crystalline agonists were administered via microimplants inserted down the cannulae. Blood samples taken before and 4 days after microimplant insertion were analyzed for LH concentrations, pulse frequency, and amplitude. Genistein treatment produced no significant change in LH levels in either season. Estradiol treatment decreased both mean LH concentrations and pulse frequency in anestrous but not breeding-season ewes. Administration of the dopamine antagonist sulpiride to ovariectomized ewes with estradiol microimplants in the retrochiasmatic area returned LH pulse frequency to levels indistinguishable from controls. From these data, we hypothesize that estradiol acts on local ERalpha-containing neurons in this area to stimulate a dopaminergic pathway that inhibits LH secretion during anestrus.  相似文献   

10.
In the ewe, two types of seasonal fluctuations in secretion of tonic luteinizing hormone (LH) have been described: a steroid-dependent change whereby estradiol gains the capacity to suppress LH pulse frequency in anestrus, and a steroid-independent decrease in pulse frequency in ovariectomized animals during anestrus. We have proposed that the former reflects activation, in anestrus, of estradiol-sensitive catecholaminergic neurons that inhibit gonadotropin-releasing hormone (GnRH). Three results reported here support this hypothesis: dopaminergic (pimozide) and alpha-adrenergic (phenoxybenzamine) antagonists increased LH in intact anestrous ewes without altering pituitary responses to GnRH; other dopaminergic (fluphenazine) and alpha-adrenergic (dibenamine) antagonists also increased LH in anestrus; agonists for dopaminergic (apomorphine) and alpha-adrenergic (clonidine) receptors suppressed LH secretion in both seasons, suggesting that the appropriate receptors are present in breeding-season ewes. In contrast, catecholamines do not appear to mediate the steroid-independent suppression of pulse frequency; neither pimozide nor phenoxybenzamine increased LH pulse frequency in ovariectomized ewes during anestrus. When antagonists for 6 other neurotransmitter receptors (muscarinic and nicotinic cholinergic, GABAnergic, serotonergic, opioid, and beta-adrenergic) were tested in anestrus, only cyproheptadine, the serotonergic antagonist, increased pulse frequency in ovariectomized ewes. Cyproheptadine had no effect on frequency during the breeding season. On the basis of these results, we propose that the steroid-dependent and -independent actions of anestrous photoperiod occur via catecholaminergic and serotonergic neurons, respectively.  相似文献   

11.
To determine the acute and chronic effects of estradiol on synthesis and secretion of LH and FSH, ovariectomized ewes were administered estradiol via silastic capsules for 0 h, 12 h, 1 day, 2 days, 4 days, 8 days, 16 days, or 32 days (n = 5/group). Concentrations of GnRH in the median eminence began to decrease within 12 h and were lower (p less than 0.05) than in control ewes from 1 to 4 days after estradiol administration was begun. Serum concentrations of LH were decreased relative to pretreatment control levels from 1 to 10 h, elevated during a preovulatory-like surge from 11 to 22 h, and then decreased and remained below 1 ng/ml for the duration of the experiment. Serum concentrations of FSH followed a pattern similar to those for LH except that the magnitude of change was smaller. Treatment with estradiol initially (12 h) reduced (p less than 0.05) quantities of mRNA for alpha-, LH beta-, and FSH beta-subunits, after which the quantities of mRNA for the subunits returned to near or above control levels by Day 2. After 8 days of treatment the amounts of mRNAs for gonadotropin subunits were again less (p less than 0.05) than those of controls, and they remained suppressed through Day 32. Pituitary concentrations of LH and FSH decreased (p less than 0.05) during the first day of treatment and remained suppressed for the duration of the experiment. Thus, estradiol had a triphasic effect on secretion of gonadotropins and steady-state levels of mRNA for the gonadotropin subunits, but not on pituitary content of gonadotropins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Administration of FSH increases the number of developing follicles, and affects oocyte health and cleavage rate. To determine the optimal level of FSH treatment, studies were conducted during the normal breeding season and seasonal anestrus. In Experiment 1, ewes were implanted with SyncroMate-B (SMB; norgestomet) for 14 days during the breeding season. Beginning on day 12 or 13 after SMB implantation, ewes were treated with saline (control; n=10), or treated with FSH for two days (2D; n=9) or three days (3D; n=10). In Experiment 2, conducted during seasonal anestrus, ewes were implanted with SMB for 14 days (n=23) or were not implanted (n=26). The SMB-implanted and nonimplanted ewes were assigned to one of three treatments as in Experiment 1: control (n=13), 2D (n=21) or 3D (n=15). In Experiments 1 and 2, ewes were laparotomized to count the number of follicles < or = 3 mm and > 3 mm and to retrieve oocytes. Healthy oocytes from each treatment were used for IVF. In Experiment 3, ewes (n=6) were implanted twice with SMB for 14 days during seasonal anestrus. Ewes were injected with FSH for 2 days, and the oocytes were collected and fertilized as in Experiments 1 and 2. In Experiment 1, FSH-treatment increased (P < 0.05) the number of follicles > 3 mm, the number of oocytes retrieved from follicles < or = 3 mm and > 3 mm, the proportion of healthy oocytes, and the number of oocytes used for IVF. Oocytes from control and 2D ewes had greater (P < 0.01) cleavage rates than 3D ewes (68% and 71% vs. 42%). In Experiment 2, implanted and nonimplanted ewes had similar (P > 0.05) numbers of follicles, total oocytes, and healthy oocytes; therefore, data were combined. The FSH treatment increased (P < 0.01) the number of follicles > 3 mm, and the number of oocytes recovered from follicles > 3 mm. The recovery rate of oocytes and the percentage of healthy oocytes were similar for control and FSH-treated ewes. The cleavage rate in Experiment 2 ranged from 4 to 16%. In Experiment 3, the cleavage rate for ewes treated twice with SMB was 27% which tended to be greater (P < 0.07) than for the 2D ewes that received one SMB implant in Experiment 2. These data indicate that FSH increased the number of developing follicles and the number of healthy oocytes retrieved from ewes during the breeding season and seasonal anestrus. However, cleavage rates during seasonal anestrus were lower than during the normal breeding season in both FSH-treated and control ewes. Treatment of ewes for 2 days with FSH resulted in a greater cleavage rate than treatment of ewes for 3 days.  相似文献   

13.
Experiments were conducted with ewes to investigate the effects of an enriched bovine follicular fluid inhibin preparation (INH) on gonadotrophin secretion after the onset of oestrus. Administration of INH (10 mg) 1 h after the onset of oestrus did not significantly alter the preovulatory FSH and LH surges or the second FSH peak. To determine the effects of INH on the second FSH surge, ewes were treated with saline (N = 7) or INH (N = 10) at 4 h (10 mg) and 24 h (5 mg) after the peak of the preovulatory LH surge. The second FSH surge was delayed about 24 h (P less than 0.05) in ewes treated with INH; however, the delay did not alter the interval to the next oestrus. In a third experiment, 16 ewes were assigned to 4 groups in a 2 x 2 factorial with the main effects being ovariectomy at 4 h and INH treatment (10 mg) at 4, 20 and 36 h after the peak of the LH surge. Controls received sham ovariectomy and saline injection as appropriate. Ovariectomy resulted in a rapid increase in serum FSH but not LH and this was delayed (P less than 0.05) by INH treatment. These results indicate that inhibin has a selective inhibitory action on FSH secretion in ewes and suggests that the second FSH surge results from increased basal FSH secretion due to decreased endogenous inhibin levels.  相似文献   

14.
The levels of plasma LH and FSH were measured in serial blood samples taken at 15-min intervals for 6 h from ewes that had remained fertile after grazing oestrogenic pasture (clover-fertile ewes), from ewes that were permanently affected by clover disease (clover-infertile ewes) and from normal ewes. Two flocks of ewes from different locations were studied. In flock 1, tonic LH secretion (total area under the curve of LH concentration versus time, 1 area unit = 1 ng ml-1 x 1 h) was significantly (P < 0.05) greater in clover-infertile ewes (10.4 area units) during anoestrus than in ewes that had remained fertile after prolonged grazing of oestrogenic clover (5.4 area units). Tonic LH and FSH secretions during the bleeding season and FSH secretion during anoestrus were not significantly different. In flock 2, LH levels during the breeding season were significantly (P < 0.05) elevated in clover-infertile ewes (10.9 area units) compared to normal ewes (5.4 area units) that had never grazed oestrogenic clover. LH secretion in clover-infertile ewes (7.8 area units) was intermediate to that found in infertile and control ewes. Concentrations of FSH, progesterone and ovarian vein oestradiol-17 beta (E2) during the breeding season were similar in the three groups. In another experiment, the positive feedback release of LH following administration of E2 (12.5, 25 or 50 micrograms per ewe) was measured in anoestrous ewes of flock 2. Significantly (P < 0.01) more clover-infertile ewes demonstrated a positive feedback effect than control ewes when given 12.5 micrograms E2 but not when given higher doses. The elevation of LH secretion in permanently affected clover-infertile ewes is inconsistent with the hypothesis that the hypothalamo-pituitary axis of these ewes is less responsive to the negative feedback effect of oestrogen. Furthermore, the patency of the positive feedback loop is consistent with the ability to ovulate.  相似文献   

15.
To characterize the pulsatile secretion of LH and FSH and their relationships with various stages of follicular wave development (follicles growing from 3 to > or =5 mm) and formation of corpora lutea (CL), 6 Western white-faced ewes underwent ovarian ultrasonography and intensive blood sampling (every 12 min for 6 h) each day, for 10 and 8 consecutive days, commencing 1 and 2 d after estrus, respectively. Basal serum concentrations of LH and LH pulse frequency declined, whereas LH pulse duration and FSH pulse frequency increased by Day 7 after ovulation (P<0.05). LH pulse amplitude increased (P<0.05) at the end of the growth phase of the largest ovarian follicles in the first follicular wave of the cycle. The amplitude and duration of LH pulses rose (P<0.05) 1 d after CL detection. Mean and basal serum FSH concentrations increased (P<0.05) on the day of emergence of the second follicular wave, and also at the beginning of the static phase of the largest ovarian follicles in the first follicular wave of the cycle. FSH pulse frequency increased (P<0.05) during the growth phase of emergent follicles in the second follicle wave. The detection of CL was associated with a transient decrease in mean and basal serum concentrations of FSH (P<0.05), and it was followed by a transient decline in FSH pulse frequency (P<0.05). These results indicate that LH secretion during the luteal phase of the sheep estrous cycle reflects primarily the stage of development of the CL, and only a rise in LH pulse amplitude may be linked to the end of the growth phase of the largest follicles of waves. Increases in mean and basal serum concentrations of FSH are tightly coupled with the days of follicular wave emergence, and they also coincide with the end of the growth phase of the largest follicles in a previous wave, but FSH pulse frequency increases during the follicle growth phase, especially at mid-cycle.  相似文献   

16.
Experiments were carried out to test the hypothesis that inhibin and oestradiol act synergistically to inhibit the secretion of FSH, to test for effects of progesterone, and to compare the FSH and LH responses to ovarian feedback. In Exp. 1, with 11 ovariectomized and 12 intact Romanov ewes during the anoestrous season, doses of oestradiol (administered by means of subcutaneous implants) that restored normal LH pulse frequencies were insufficient to restore normal concentrations of FSH. In Exp. 2, with 48 ovariectomized Welsh Mountain ewes during the breeding season, a factorial design with 4 ewes per cell was used to assess the responses in LH and FSH to 3 doses of oestradiol (s.c. implants) and 4 doses of bovine follicular fluid ('inhibin', 0.2-1.6 ml s.c. every 8 h). This was done initially in the absence of progesterone and then after 7 days of treatment with progesterone (s.c. implants). Analysis of variance revealed a significant synergistic interaction between oestradiol and inhibin on the plasma concentrations of FSH. Progesterone had little effect. In contrast, there was a significant synergistic interaction between oestradiol and progesterone on the concentrations of LH. 'Inhibin' also inhibited LH secretion but this effect was independent of the two steroids. We conclude that there are basic differences in the way that ovarian feedback acts to control the secretion of LH and FSH in the ewe. FSH secretion appears to be primarily controlled by the synergistic action of oestradiol and inhibin on the anterior pituitary gland, while the secretion of LH is inhibited during the follicular phase by an effect of oestrogen at pituitary level and during the luteal phase by the synergistic action of oestradiol and progesterone at the hypothalamic level. Inhibin, or another non-steroidal factor in follicular fluid, may also play a minor role in the control of LH secretion.  相似文献   

17.
The ovarian activity of 8 Niger Peulh ewes was followed for 2 1 2 years by assaying the levels of progesterone in blood plasma sampled daily and by endoscopic observation. Although the ewes did not experience seasonal anestrus, their cycles were not regular. Most animals had persistent corpora lutea at some stage, but particularly in June. This resulted in cycles averaging 49.9+/-6.8 days in length instead of the normal 16.9+/-0.1 days. Intervals between successive luteal phases lasted 4-15 days as compared with 2.3+/-0.06 days seen in normal cycles. This occurred in most ewes at least once during the period from December to April. In these cases, the preovulatory discharge of LH was delayed until 7.5+/-1.8 days after the fall in the level of progesterone. The incidence of these anomalies suggests that the ewes had 69% of the ovulations and 56% of the behavioral estrus as compared to ewes that cycled regularly.  相似文献   

18.
Endocrine control of estrous cycle in mithun (Bos frontalis)   总被引:1,自引:0,他引:1  
The objective of the present study was to establish the profiles of luteinising hormone (LH), follicle stimulating hormone (FSH), estradiol 17beta (E2) and progesterone (P4) secretion and their interrelationships during the natural estrous cycle of mithun (Bos frontalis). Daily blood samples were collected from second or third postpartum estrous cycles for determination of plasma concentrations of LH, FSH, E2 and P4. Concentration of P4 was found to be lowest on the day of estrus. It increased following estrus, attained the highest concentration on day 11 and decreased thereafter. Concentrations of LH and FSH varied significantly (p<0.01) during the first and last 6 days of the cycle and their variations were found to be synchronised. Both LH and FSH attained a biphasic peak during the estrous cycle. This biphasic peak lasted on from day -5 to day 3 of the cycle. The variations in maximum LH and FSH concentrations of both the phases did not differ significantly. During the entire estrous cycle, the E2 concentrations attained either one peak or two peaks. The first peak, approximately on day 4 before estrus was common in all animals. One additional peak was found on the day of estrus in 45% animals. A significant (p<0.01) negative relationship was found between P4 and, LH and FSH during the first and last 6 days of cycle. But a significant (p相似文献   

19.
In the ewe, seasonal anestrus appears to result from two effects of inhibitory photoperiod: 1) estradiol gains the capacity to suppress luteinizing hormone (LH) pulse frequency and hence becomes a potent inhibitor of tonic LH secretion and 2) a steroid-independent decrease in LH pulse frequency occurs in ovariectomized ewes. In this study, we have obtained evidence, using pentobarbital anesthesia, that both these actions of photoperiod reflect the activation, in anestrus, of an inhibitory neural system. Administration of pentobarbital to intact anestrous ewes produced a dramatic, 3-fold increase in LH pulse frequency during the 6 h of anesthesia. In contrast, during the breeding season, pentobarbital inhibited LH pulse frequency in luteal phase animals. There was also a seasonal variation in the effects of pentobarbital in ovariectomized ewes. During the breeding season this drug again suppressed LH secretion, inhibiting both LH pulse amplitude and frequency. In anestrus, pentobarbital also suppressed pulse amplitude, but it produced a transitory increase (lasting 3 h) in pulse frequency. To account for the stimulatory actions of pentobarbital, we propose that in anestrus, but not the breeding season, LH pulse frequency is held in check by a set of estradiol-sensitive inhibitory neurons. Further, we suggest that these neurons are activated by inhibitory photoperiod and account for both the steroid-dependent and steroid-independent actions of photoperiod.  相似文献   

20.
To test the hypothesis that the anestrous increase in estradiol negative feedback prevents estrous cycles by suppressing hypothalamic gonadotropin-releasing hormone (GnRH) pulse frequency, a variety of regimens of increasing GnRH pulse frequency were administered to anestrous ewes for 3 days. A luteinizing hormone (LH) surge was induced in 45 of 46 ewes regardless of amplitude or frequency of GnRH pulses, but only 19 had luteal phases. Estradiol administration induced LH surges in 6 of 6 ewes, only 3 having luteal phases. Anestrous luteal phase progesterone profiles were similar in incidence, time course, and amplitude to those of the first luteal phases of the breeding season, which in turn had lower progesterone maxima than late breeding season luteal phases. In the remaining ewes, progesterone increased briefly or not at all, the increases being similar to the transient rises in progesterone occurring in most ewes at the onset of the breeding season. These results demonstrate that increasing GnRH pulse frequency induces LH surges in anestrus and that the subsequent events are similar to those at the beginning of the breeding season. Finally, they support the hypothesis that the negative feedback action of estradiol prevents cycles in anestrus by suppressing the frequency of the hypothalamic pulse generator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号