首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lysophosphatidic acid (LPA) enhances urokinase plasminogen activator (uPA) expression in ovarian cancer cells; however, the molecular mechanisms responsible for this event have not been investigated. In this study, we used the invasive ovarian cancer SK-OV-3 cell line to explore the signaling molecules and pathways essential for LPA-induced uPA up-regulation. With the aid of specific inhibitors and dominant negative forms of signaling molecules, we determined that the G(i)-associated pathway mediates this LPA-induced event. Moreover, constitutively active H-Ras and Raf-1-activating H-Ras mutant enhance uPA expression, whereas dominant negative H-Ras and Raf-1 block LPA-induced uPA up-regulation, suggesting that the Ras-Raf pathway works downstream of G(i) to mediate this LPA-induced process. Surprisingly, dominant negative MEK1 or Erk2 displays only marginal inhibitory effect on LPA-induced uPA up-regulation, suggesting that a signaling pathway distinct from Raf-MEK1/2-Erk is the prominent pathway responsible for this process. In this report, we demonstrate that LPA activates NF-kappaB in a Ras-Raf-dependent manner and that blocking NF-kappaB activation with either non-phosphorylable IkappaB or dominant negative IkappaB kinase abolished LPA-induced uPA up-regulation and uPA promoter activation. Furthermore, introducing mutations to knock out the NF-kappaB binding site of the uPA promoter results in over 80% reduction in LPA-induced uPA promoter activation, whereas this activity is largely intact with the promoter containing mutations in the AP1 binding sites. Thus these results suggest that the G(i)-Ras-Raf-NF-kappaB signaling cascade is responsible for LPA-induced uPA up-regulation in ovarian cancer cells.  相似文献   

2.
For reliable protein identification and quantitation, it is important to minimize the variability associated with two-dimensional electrophoresis (2-DE) analysis. Since experimental factors contribute largely to the variability observed in 2-DE, most studies have focused on reducing this variability with modest concern to the variability associated with post-experimental analyses. Although often ignored, software analyses of 2-DE gel images present a considerable source of variability in the analysis of proteins. In particular, cropping of gel images prior to quantitative 2-DE analysis has been shown to contribute a significant amount of variability in image analysis. To address this problem, we propose a simple, reliable, and objective method of cropping 2-DE gel images to consequently minimize the variability in 2-DE analysis.  相似文献   

3.
Veeser S  Dunn MJ  Yang GZ 《Proteomics》2001,1(7):856-870
In proteomic research, two-dimensional electrophoresis (2-D) is an important tool for investigating differential patterns of qualitative and quantitative protein expression. The strength of the technique is due to its unrivalled power of being able to separate simultaneously thousands of proteins. The key to the comparison of 2-D protein profiles, however, lies in the use of a fast and robust image matching process which is essential to the subsequent quantification procedure. To satisfy the growing demand for a robust and fully automatic method of matching 2-D gel protein separation profiles, we describe in this paper a novel registration technique based on image intensity distribution rather than selected features. The method uses a multiresolution representation of the gel profiles and exploits the fact that coarse approximations to the optimal matching can be extracted efficiently from low-resolution images. This permits the removal of misalignments at different scales in a systematic manner and the strength of the new method has been confirmed by a double blind trial of 111 2-D gel pairs. The proposed method requires neither landmarks nor an a priori image alignment, and takes about five seconds for processing a typical gel pair on a standard personal computer.  相似文献   

4.
Secretion of urokinase plasminogen activator (uPA) by ovarian surface epithelium (OSE) adjacent to the preovulatory ovine follicle has been implicated in apical tissue degradation and follicular rupture. In vitro experiments were designed to test the hypothesis that uPA release by OSE is under direct hormonal control. Epithelial cells were isolated from the ovarian surface of sheep using a polytetrafluorethylene scraper designed to dislodge adherent cells from culture flasks. Amidolytic cleavage of a uPA-specific chromogen (carbobenzoxy-L-gamma-glutamyl [alpha-ot-but]-glycyl-arginine-p-nitroanilide monoacetate) was used as a measure of enzymatic bioactivity in OSE-conditioned incubation media. Secretion of uPA by OSE suspensions from proestrous ewes was stimulated by exposure (2 h) to a preovulatory surge-like concentration of LH. OSE cells obtained during the luteal phase or anestrus were not responsive to LH. Baseline rates of uPA secretion and expression of estradiol receptors (in situ immunofluorescence detection) were not affected by reproductive status. Induction of uPA secretion by anestrous OSE was attained after priming (6 h) with estradiol-17beta; responsiveness was attributed to gonadotropin receptor (ligand binding) up-regulation. Monolayers of OSE established on polyethylene membranes secreted uPA predominately in a basal (i.e., toward the substratum) direction. We suggest that OSE in juxtaposition with the (hyperemic) wall of the preovulatory follicle is perfused by surge levels of LH, invoking uPA release into underlying ovarian tissues.  相似文献   

5.
The invasive ability of tumor cells plays a key role in prostate cancer metastasis and is a major cause of treatment failure. Urokinase plasminogen activator-(uPA) and its receptor (uPAR)-mediated signaling have been implicated in tumor cell invasion, survival, and metastasis in a variety of cancers. This study was undertaken to investigate the biological roles of uPA and uPAR in prostate cancer cell invasion and survival, and the potential of uPA and uPAR as targets for prostate cancer therapy. uPA and uPAR expression correlates with the metastatic potential of prostate cancer cells. Thus, therapies designed to inhibit uPA and uPAR expression would be beneficial. LNCaP, DU145, and PC3 are prostate cancer cell lines with low, moderate, and high metastatic potential, respectively, as demonstrated by their capacity to invade the extracellular matrix. In this study we utilized small hairpin RNAs (shRNAs), also referred to as small interfering RNAs, to target human uPA and uPAR. These small interfering RNA constructs significantly inhibited uPA and uPAR expression at both the mRNA and protein levels in the highly metastatic prostate cancer cell line PC3. Our data demonstrated that uPA-uPAR knockdown in PC3 cells resulted in a dramatic reduction of tumor cell invasion as indicated by a Matrigel invasion assay. Furthermore, simultaneous silencing of the genes for uPA and uPAR using a single plasmid construct expressing shRNAs for both uPA and uPAR significantly reduced cell viability and ultimately resulted in the induction of apoptotic cell death. RNA interference for uPA and uPAR also abrogated uPA-uPAR signaling to downstream target molecules such as ERK1/2 and Stat 3. In addition, our results demonstrated that intratumoral injection with the plasmid construct expressing shRNAs for uPA and uPAR almost completely inhibited established tumor growth and survival in an orthotopic mouse prostate cancer model. These findings uncovered evidence of a complex signaling network operating downstream of uPA-uPAR that actively advances tumor cell invasion, proliferation, and survival of prostate cancer cells. Thus, RNA interference-directed targeting of uPA and uPAR is a convenient and novel tool for studying the biological role of the uPA-uPAR system and raises the potential of its application for prostate cancer therapy.  相似文献   

6.
Plasminogen activator inhibitor 1 (PAI-1) was purified from medium conditioned by cultured bovine aortic endothelial cells by successive chromatography on concanavalin A Sepharose, Sephacryl S-200, Blue B agarose, and Bio-Gel P-60. As shown previously for conditioned media (C. M. Hekman and D. J. Loskutoff (1985) J. Biol. Chem. 260, 11581-11587) the purified PAI-1 preparation contained latent inhibitory activity which could be stimulated 9.4-fold by sodium dodecyl sulfate and 45-fold by guanidine-HCl. The specific activity of the preparation following treatment with 0.1% sodium dodecyl sulfate was 2.5 X 10(3) IU/mg. The reaction between purified, guanidine-activated PAI-1 and both urokinase and tissue plasminogen activator (tPA) was studied. The second-order rate constants (pH 7.2, 35 degrees C) for the interaction between guanidine-activated PAI-1 and urokinase (UK), and one- and two-chain tPA are 1.6 X 10(8), 4.0 X 10(7), and 1.5 X 10(8) M-1 S-1, respectively. The presence of CNBr fibrinogen fragments had no affect on the rate constants of either one- or two-chain tPA. Steady-state kinetic analysis of the effect of PAI-1 on the rate of plasminogen activation revealed that the initial UK/PAI-1 interaction can be competed with plasminogen suggesting that the UK/PAI-1 interaction may involve a competitive type of inhibition. In contrast, the initial tPA/PAI-1 interaction can be competed only partially with plasminogen, suggesting that the tPA/PAI-1 interaction may involve a mixed type of inhibition. The results indicate that PAI-1 interacts more rapidly with UK and tPA than any PAI reported to date and suggest that PAI-1 is the primary physiological inhibitor of single-chain tPA. Moreover, the interaction of PAI-1 with tPA differs from its interaction with UK, and may involve two sites on the tPA molecule.  相似文献   

7.
The effect of TGFbeta1 on the proliferation and plasminogen activator system (PA) of two prostate carcinoma cell lines, PC3 and DU145, was investigated. PA, particularly urokinase plasminogen activator (uPA), has been implicated in extracellular proteolysis, local invasiveness, metastatic spread and angiogenesis. High levels of uPA and plasminogen activator inhibitor-1 (PAI-1) correlate with poor prognosis in several cancers. TGFbeta1 had no significant effect on the proliferation of either cell line. TGFbeta1 increased the production of uPA in PC3 and DU145 cells. Despite the very low PAI-1 protein levels in both cell lines, TGFbeta1 treatment resulted in a remarkable increase in PAI-1 secretion. PAI-2 protein was also increased by 59% in the PC3 cells. A divergent effect of TGFbeta1 on the uPA enzyme activity was observed (28% decrease in PC3 and 131% increase in DU145 cells). Overall, TGFbeta1 treatment did not affect the invasion of reconstituted basement membrane of PC3 cells. In addition to the uPA:PAI-1 ratio, the presence of PAI-2 may be an important factor in the determination of metastatic sites for prostate cancer cells. In conclusion, the potential contribution of TGFbeta1 to tumor invasion may be considered as positive, based on both loss of growth inhibition and stimulation of components of the invasive system of prostate carcinoma.  相似文献   

8.
Urokinase plasminogen activator (uPA) and/or its receptor (uPAR) are essential for metastasis, and overexpression of these molecules is strongly correlated with poor prognosis in a variety of malignant tumours. Impairment of uPA and/or uPAR function, or inhibition of the expression of these components, impedes the metastatic potential of many tumours. Several approaches have been employed to target uPAR with the aim of disrupting its ligand-independent action or interaction with uPA, including the more recent antigene technology. This review discusses the in vivo use of antigene approaches for downregulating uPAR as a potential therapy for cancer. Preclinical studies are advancing towards the translational phase, provided that established orthotopic tumours, which mimic clinical progression and presentation, are treated using clinically acceptable modes of nucleic acid delivery.  相似文献   

9.
10.
C Lee  S E Hu  M S Lok  Y C Chen  C C Tseng 《BioTechniques》1988,6(3):216-224
The intent of this overview is to provide the readers, especially those who are currently conducting two-dimentional electrophoresis, a basic understanding in the construction and use of microcomputer-based systems for the analysis of protein profiles generated by two-dimensional gel electrophoresis. In addition, a microcomputer-based system, employing fixed-point operations and effective algorithms, has been evaluated. The validity of this system has been demonstrated by using the two-dimensional silver-stained gels and fluorograms derived from the rat prostate. It is concluded that the present system can be used to aid the analysis of two-dimensional electrophoresis gels. An overall consideration of hardware and software components of a computer-based system is briefly discussed.  相似文献   

11.

Background  

Expression of the urokinase plasminogen activator receptor (UPAR) has been shown to have clinical relevance in various cancers. We have recently identified UPAR as an asthma susceptibility gene and there is evidence to suggest that uPAR may be upregulated in lung diseases such as COPD and asthma. uPAR is a key receptor involved in the formation of the serine protease plasmin by interacting with uPA and has been implicated in many physiological processes including proliferation and migration. The current aim was to determine key regulatory regions and splice variants of UPAR and quantify its expression in primary human tissues and cells (including lung, bronchial epithelium (HBEC), airway smooth muscle (HASM) and peripheral cells).  相似文献   

12.
The aim of this study was to determine the effects of hypoxia on mRNA levels, cell-associated and -secreted protein concentration, activity, and protein complex formation of urokinase-type plasminogen activator, its receptor, and plasminogen activator inhibitor type-1 in corneal epithelium. Non-transformed human corneal epithelial cells were cultured in 20% oxygen (normoxic conditions) or 2% oxygen (hypoxic conditions) for 1, 3, 5, or 7 days. Relative changes in mRNA levels of plasminogen activator, receptor, and plasminogen activator inhibitor-1 were determined using a cDNA expression array, chemiluminescence, and densitometry. Protein concentrations were determined using enzyme linked immunosorbent assays. Activity assays were also used. Protein complex formation was assayed using cell surface biotinylation, immunoprecipitation, and Western blot analysis. Hypoxic corneal epithelial cells demonstrated no significant differences in plasminogen activator or receptor mRNA. Cell-associated plasminogen activator and membrane-associated receptor protein levels were unchanged. In contrast decreases in mRNA and secreted plasminogen activator inhibitor-1 protein were observed in hypoxic cells. Concurrently, increased cell-associated plasminogen activator activity was observed in hypoxic cells. The formation of plasminogen activator/receptor/plasminogen activator inhibitor-1 complex at the cell surface was not inhibited by hypoxia. However, in hypoxic cells less plasminogen activator inhibitor-1 was associated with receptor. It is concluded that in corneal epithelium cultured in 2% oxygen plasminogen activator inhibitor-1 may be an important regulatory factor of the plasminogen activator system resulting in increased urokinase plasminogen activator activity.  相似文献   

13.
The present study investigated the role of integrin-linked kinase (ILK) in TGFbeta1-stimulated invasion/migration of human ovarian cancer cells. We investigated TGFbeta1 regulation of ILK, and effects of ILK knockdown on TGFbeta1-stimulated invasion/migration and the associated proteinase systems, urokinase plasminogen activator (uPA) and matrix metalloproteinases (MMPs) in SKOV3 cells. TGFbeta1 stimulated ILK kinase activity, and had no effect on ILK protein/mRNA levels. Transient transfection of an ILK-specific siRNA (ILK-H) reduced ILK protein level, mRNA level and kinase activity. ILK knockdown by ILK-H suppressed the basal and TGFbeta1-stimulated invasion and migration. Further, ILK-H reduced the basal and TGFbeta1-stimulated secretion of uPA, and increased the secretion of its inhibitor (PAI-1). Conversely, ILK-H did not affect TGFbeta1-stimulated secretion of MMP2 and its cell-associated activator MT1-MMP. Additionally, TGFbeta1 activated Smad2 phosphorylation, and this was not affected by ILK knockdown. Earlier reports indicate that Smad2 activation increased the expression of MMP2 and MT1-MMP. Thus, TGFbeta1 may act through ILK-independent and Smad2-dependent signaling in regulating MMP2 and MT1-MMP in SKOV3 cells. Collectively, this study suggests that ILK serves as a key mediator in TGFbeta1 regulation of uPA/PAI-1 system critical for the invasiveness of human ovarian cancer cells. And ILK is a potential target for cancer therapy.  相似文献   

14.
15.
The vascular endothelial growth factor (VEGF) and the plasminogen activator system play an essential role in solid tumor angiogenesis and in tumor invasion and metastasis. In the present study we investigated the relationship between patient outcome and levels of VEGF, urokinase plasminogen activator (uPA) and plasminogen activator inhibitor-1 (PAI-1) in tumor cytosols of 196 node-negative primary invasive breast cancer patients who did not receive any adjuvant therapy. The median follow-up was 65 months. VEGF, uPA and PAI-1 were measured by commercially available enzyme-linked immunosorbent assays. Cox's univariate analysis showed that pT (p = 0.0007), uPA (p = 0.0156) and PAI-1 (p = 0.0015) had a significant impact on relapse-free survival, whereas VEGF did not have any prognostic value (p = 0.18). Bivariate analysis showed significant interactions between uPA and PAI-1 (p = 0.0035) and between VEGF and PAI-1 (p = 0.006). Our study confirms that uPA and PAI-1 cytosol levels can be considered as prognostic factors for relapse-free survival in node-negative breast cancer. Moreover, the interaction between VEGF and PAI-1 warrants further investigation into the relationship between the biomarkers of angiogenesis and those of the protease cascade.  相似文献   

16.
Ahmed N  Oliva K  Wang Y  Quinn M  Rice G 《Proteomics》2003,3(3):288-298
Expression of urokinase plasminogen activator (uPA) and its receptor (uPAR) strongly correlates with a malignant tumour cell phenotype. In the multistep process of metastasis, uPA binding to uPAR influences different cellular functions. In the present study, a highly metastatic colon cancer cell line, HCT116 was transfected with an expression vector containing a 5' uPAR cDNA fragment in an antisense orientation. This construct was most effective in reducing uPAR cell surface expression as confirmed by flow cytometry analysis. Antisense transfection of HCT116 cells had no effect on proliferation but the following effects were observed: (1) a 1.3-fold decreased adhesion; (2) a two-fold decreased Erk MAP kinase activity; (3) a 2.7-fold decrease in Src kinase activity; (4) a 1.5- and two-fold decrease in uPA cell surface expression and secretion; (5) abrogation of promatrix metalloproteinase-9 secretion; and (6) a complete suppression of plasminogen-dependent matrix degradation. Using proteomic analysis, we demonstrate loss of approximately 200 proteins and quantitative differences in the expression of 141 other proteins in an antisense-clone compared to wild-type and mock-transfected control. Such changes in protein expression with the down-regulation of uPAR may be an important contributor in colon cancer progression and metastasis and may not only provide a basis to develop a proteomic data bank of uPAR-mediated signaling molecules but may also lead to the development of therapeutic approaches for the cure and better management of colon cancer.  相似文献   

17.
Primary Breast Cancer, Urokinase-Type Plasminogen Activator, Inhibitors The aim of the study was to monitor urokinase plasminogen activator antigen concentrations and its type 1 (PAI-1) and type 2 (PAI-2) inhibitors in histologically defined forms of primary breast cancer and a comparison with these antigens levels in normal tissue. Another goal was a search for a relationship/or its lack/between the occurrence of the new generation markers of neoplastic disease and a presence/or absence/of lymph node metastases. U-PA, PAI-1 and PAI-2 antigen levels were determined by ELISA tests in protein extracts of breast cancer tissues. Among the studied breast tumors 32 specimens were ductal carcinomas, 15 specimens were lobular carcinomas and the remaining 13 were other rare histological forms. In comparison to the obtained values of u-PA antigen levels in normal tissue, the values in neoplastic tissues were elevated several times: 11-fold, 6-fold and 15-fold in ductal c., lobular c. and other rare neoplasms. The values of PAI-1 antigen levels were about 20-fold higher for all studied, histologically defined primary breast cancers. The greatest differences of PAI-2 antigen levels growth was observed in histologically defined primary breast cancer forms. It was augmented 10-fold, 40-fold and 20-fold, respectively, for ductal carcinoma, lobular carcinoma and rare forms of neoplasms. In various forms of invasive breast cancer and those without lymph node metastases the content of u-PA, PAI-1 and PAI-2 were also significantly elevated. Among the new generation of independent markers of the neoplastic process, PAI-2 seems to be the most reliable marker for the identification of primary breast cancer. The goal of the present study was to evaluate a possible combined prognostic value of the three major components of the u-PA system (u-PA, PAI-1 and PAI-2) in patients with defined histopathological forms of primary breast cancer.  相似文献   

18.
In order to separate hydrophobic membrane proteins, we have developed a novel two-dimensional electrophoresis system. For the iso-electric focusing, agarose was used as a supporting matrix and n-dodecyl-beta-D-maltopyranoside was used as a surfactant. In combination with a previously developed Tris/MES electrophoresis system in the second dimension, distinct spots were reproducibly detected from hydrophobic membrane proteins whose grand average hydropathicity (GRAVY) exceed 0.3. In contrast to the immobilized pH gradient system, c-type heme was also visualized in this system.  相似文献   

19.
Human renal glomerular epithelial cells possess membrane urokinase receptors. Addition of purified active urokinase to these cells in serum free minimum medium induced a dose-dependent increase in 3H-thymidine incorporation and a doubling of cell number after 48 hours of incubation. Both receptor occupancy and enzymatic activity of u-PA were required to stimulate cell proliferation. This effect was inhibited by down regulation of protein kinase C (PKC) or by H7, an inhibitor of PKC. It involved a pertussis toxin-sensitive pathway. This effect of urokinase was additive with EGF but not with thrombin growth factor activity and was not inhibited by aprotinin, an inhibitor of plasmin.  相似文献   

20.
Completion of the human genome sequence has provided scientists with powerful resources with which to explore the molecular events associated with disease states such as diabetes. Understanding the relative levels of expression of gene products, especially of proteins, and their post-translational modifications will be critical. However, though the pancreatic islets play a key role in glucose homeostasis, global protein expression data in human are decidedly lacking. We here report the two-dimensional protein map and database of human pancreatic islets. A high level of reproducibility was obtained among the gels and a total of 744 protein spots were detected. We have successfully identified 130 spots corresponding to 66 different protein entries and generated a reference map of human islets. The functionally characterized proteins include enzymes, chaperones, cellular structural proteins, cellular defense proteins, signaling molecules, and transport proteins. A number of proteins identified in this study (e.g., annexin A2, elongation factor 1-alpha 2, histone H2B.a/g/k, heat shock protein 90 beta, heat shock 27 kDa protein, cyclophilin B, peroxiredoxin 4, cytokeratins 7, 18, and 19) have not been previously described in the database of mouse pancreatic islets. In addition, altered expression of several proteins, like GRP78, GRP94, PDI, calreticulin, annexin, cytokeratins, profilin, heat shock proteins, and ORP150 have been associated with the development of diabetes. The data presented in this study provides a first-draft reference map of the human islet proteome, that will pave the way for further proteome analysis of pancreatic islets in both healthy and diabetic individuals, generating insights into the pathophysiology of this condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号