首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Activation of hepatic stellate cells (HSCs) is a pivotal event in the pathogenesis of liver fibrosis. Pharmacological induction of HSC apoptosis could be a promising strategy for fibrosis regression. Natural product tetramethylpyrazine (TMP) exhibits potent antifibrotic activities in vivo. However, the molecular mechanisms remain to be defined. The present study aimed at investigating the anti-proliferative and pro-apoptotic effects of TMP on HSCs and elucidating the underlying mechanisms. Our results demonstrated that TMP had no apparent cytotoxic effects on hepatocytes, but significantly inhibited HSC proliferation and induced cell cycle arrest at the G0/G1 checkpoint. These effects were associated with TMP regulation of cyclin D1, p21, p27 and p53. Furthermore, we found that TMP disrupted mitochondrial functions and led to activation of caspase cascades in HSCs. Mechanistic investigations revealed that TMP selectively blocked the extracellular signal-regulated kinase (ERK) signaling and activated p53, which was required for TMP induction of caspase-dependent mitochondrial apoptosis in HSCs. Autodock simulations predicted that TMP could directly bind to ERK2 with two hydrogen bonds and low energy score, indicating that ERK2 could be a direct target molecule for TMP within HSCs. Moreover, TMP altered expression of some marker proteins relevant to HSC activation. These data collectively revealed that TMP modulation of ERK/p53 signaling led to mitochondrial-mediated and caspase-dependent apoptosis in HSCs in vitro. These studies provided mechanistic insights into the antifibrotic properties of TMP that may be exploited as a potential option for hepatic fibrosis.  相似文献   

2.
Kim HR  Lee CH  Choi YH  Kang HS  Kim HD 《IUBMB life》1999,48(4):425-428
Geldanamycin (GA), a benzoquinone ansamycin, is one of the specific inhibitors of 90-kDa heat shock protein and induces growth inhibition and apoptosis in certain cancer cell lines. We have investigated the mechanism of GA-induced growth inhibition in K562 erythroleukemic cells. DNA flow-cytometric analysis indicated that GA-induced growth arrest was associated with G2/M phase arrest of the cell cycle. GA treatment down-regulated the expression of cyclin B1 and inhibited phosphorylation of Cdc2 protein, both key regulatory proteins at the G2/M boundary. GA also markedly inhibited the Cdc2 kinase activity, which may be in part a result of up-regulation of p27KIP1 by GA. The present results suggest a novel mechanism that p27KIP1 could be involved in the regulation of G2 to M phase transition.  相似文献   

3.
4.
Paeoniflorin (PF) exhibits tumor suppressive functions in a variety of human cancers. However, the function of PF and molecular mechanism in colorectal cancer are elusive. In the present study, we investigated whether PF could exert its antiproliferative activity, anti-migration, and anti-invasive function in colorectal cancer cells. We found that PF inhibited cell growth and induced apoptosis and blocked cell cycle progression in the G0/G1 phase in colorectal cancer cells. Moreover, we found that PF suppressed cell migration and invasion in colorectal cancer cells. FoxM1 has been reported to play an important oncogenic role in human cancers. We also determine whether PF inhibited the expression of FoxM1, leading to its anti-cancer activity. We found that PF treatment in colorectal cancer cells resulted in down-regulation of FoxM1. The rescue experiments showed that overexpression of FoxM1 abrogated the tumor suppressive function induced by PF treatment. Notably, depletion of FoxM1 promoted the anti-tumor activity of PF in colorectal cancer cells. Therefore, inhibition of FoxM1 could participate in the anti-tumor activity of PF in colorectal cancer cells.  相似文献   

5.
6.
Most squamous epithelial cells are strictly anchorage-dependent cell types. We observed that epidermal growth factor (EGF) promoted the growth of A431 squamous carcinoma cells in suspension cultures but suppressed cell growth and induced apoptosis in monolayer cultures, suggesting that loss of adhesion is responsible for the effects observed in monolayer culture, before cell death. Consistent with this finding, we demonstrated that EGF reduced cell attachment, cell-cell interaction, and cell spreading. Treatment with EGF increased cell adhesion-regulated expression of p21 but suppressed expressions of cyclin A, D1, cdk2, and retinoblastoma protein (pRb), leading to cell cycle arrest and adhesion-regulated programmed cell death. To test directly whether promoting cell adhesion could reduce the effects of EGF, we grew cultures on plates coated with type II collagen. On these plates, cell adhesion was enhanced and EGF treatment had little effect on cell adhesion and apoptosis when cells were attached to the collagen. The collagen effects were dose dependent, and cell cycle and cell cycle-associated proteins were altered accordingly. Finally, when cultures were plated on bacterial Petri dishes, which completely disrupted cell attachment to substratum, the level of apoptosis was greatly higher and cell cycle was arrested as compared with monolayer cultures. Taken together, our results strongly suggest that the EGF-induced cell cycle arrest and apoptosis in monolayer cultures was the result of a decline in cell adhesion.  相似文献   

7.
BACKGROUND: Human colon cancers have a high frequency of p53 mutations, and cancer cells expressing mutant p53 tend to be resistant to current chemo- and radiation therapy. It is thus important to find therapeutic agents that can inhibit colon cancer cells with altered p53 status. beta-Lapachone, a novel topoisomerase inhibitor, has been shown to induce cell death in human promyelocytic leukemia and prostate cancer cells through a p53-independent pathway. Here we examined the effects of beta-lapachone on human colon cancer cells. MATERIALS AND METHODS: Several human colon cancer cell lines, SW480, SW620, and DLD1, with mutant or defective p53, were used. The antiproliferative effects of beta-lapachone were assessed by colony formation assays, cell cycle analysis, and apoptosis analysis, including annexin V staining and DNA laddering analysis. The effects on cell cycle and apoptosis regulatory proteins were examined by immunoblotting. RESULTS: All three cell lines, SW480, SW620, and DLD1, were sensitive to beta-lapachone, with an IC(50) of 2 to 3 microM in colony formation assays, a finding similar to that previously reported for prostate cancer cells. However, these cells were arrested in different stages of S phase. At 24 hr post-treatment, beta-lapachone induced S-, late S/G2-, and early S-phase arrest in SW480, SW620, and DLD1 cells, respectively. The cell cycle alterations induced by beta-lapachone were congruous with changes in cell cycle regulatory proteins such as cyclin A, cyclin B1, cdc2, and cyclin D1. Moreover, beta-lapachone induced apoptosis, as demonstrated by annexin V staining, flow cytometric analysis of DNA content, and DNA laddering analysis. Furthermore, down-regulation of mutant p53 and induction of p27 in SW480 cells, and induction of pro-apoptotic protein Bax in DLD1 cells may be pertinent to the anti-proliferative and apoptotic effects of beta-lapachone on these cells. CONCLUSIONS: beta-Lapachone induced cell cycle arrest and apoptosis in human colon cancer cells through a p53-independent pathway. For human colon cancers, which often contain p53 mutations, beta-lapachone may prove to be a promising anticancer agent that can target cancer cells, especially those with mutant p53.  相似文献   

8.
9.
Non-small-cell lung cancer (NSCLC) accounts for nearly 85% of lung cancer cases. LukS-PV, one of the two components of Panton-Valentine leucocidin (PVL), is produced by Staphylococcus aureus. The present study showed that LukS-PV can induce apoptosis in human acute myeloid leukemia (AML) lines (THP-1 and HL-60). However, the role of LukS-PV in NSCLC is unclear. In this study, we treated NSCLC cell lines A549 and H460 and a normal lung cell line, 16HBE, with LukS-PV and investigated the biological roles of LukS-PV in NSCLC. Cells were treated with varying concentrations of LukS-PV and cell viability was evaluated by CCK8 and EdU assay. Flow cytometry was used to detect cell apoptosis and analyze the cell cycle, and the expression of apoptosis and cell cycle-associated proteins and genes were identified by western blotting analysis and qRT-polymerase chain reaction, respectively. We found that LukS-PV inhibited the proliferation of NSCLC cells but had little cytotoxicity in normal lung cells. LukS-PV induced NSCLC cell apoptosis and increased the BAX/BCL-2 ratio, triggering S-phase arrest in A549 and H460 cells while increasing P21 expression and decreasing CDK2, cyclin D1, and cyclin A2 expression. We also observed increased P-p38 and P-ERK in NSCLC cells treated with LukS-PV. Treatment of NSCLC with LukS-PV combined with p38 and ERK inhibitors reversed the pro-apoptotic and pro-cell cycle arrest effects of LukS-PV. Overall, these findings indicate that LukS-PV has anti-tumor effects in NSCLC and may contribute to the development of anti-cancer agents.  相似文献   

10.
The anti-cancer activities of antibiotic anisomycin have been demonstrated in kidney, colon and ovarian cancers whereas its underlying mechanisms are not well elucidated. In this work, we investigated whether anisomycin is effective in sensitizes osteosarcoma cell response to chemotherapy. We show that anisomycin inhibits proliferation via inducing osteosarcoma cell arrest at G2/M phase, accompanied by the increased levels of mitotic marker cyclin B and the decreased levels of Rb and E2F-1. Anisomycin also induces apoptosis in a caspase-dependent manner in osteosarcoma cells. Importantly, anisomycin is less effective in normal control NIH3T3 cells compared to osteosarcoma cells. In addition, anisomycin inhibits osteosarcoma growth in xenograft mouse model and enhances the inhibitory effects of doxorubicin in osteosarcoma in vitro and in vivo. Mechanistically, anisomycin targets mitochondrial biogenesis in osteosarcoma as shown by the decreased mitochondrial membrane potential, suppressed mitochondrial respiration via decreasing complex I activity, reduced ATP production. Furthermore, mitochondrial biogenesis stimulator acetyl-L-Carnitine (ALCAR) significantly rescues the inhibitory effects of anisomycin in osteosarcoma cells. Our work demonstrates that anisomycin is active against osteosarcoma cells and the molecular mechanism of its action is the inhibition of mitochondrial biogenesis.  相似文献   

11.
Several genes/gene products are known to act in a concert to regulate the process of spermatogenesis. One such gene is c-kit, a transmembrane tyrosine kinase receptor which plays an indispensable role in the maturation and differentiation of spermatogonial germ cells (SGCs). In the present study, siRNA approach was used to assess the role of c-kit in survival and proliferation of murine primary SGCs. The effect of different concentrations of anti-c-kit siRNA-1 and siRNA-2 (0.15, 0.315, 0.625, 1.25, 2.50, 5, and 10 nM) on c-kit protein and mRNA expression at post-transfection time (0, 6, 12, 24, 48, and 72 hours) was assessed using an array of techniques such as flow cytometry, ELISA, Western blot, and RT-PCR. Transfection of cells with anti-c-kit siRNAs (0.15-10 nM) at various time points after (0-72 hours) showed significant knockdown c-kit mRNA and protein expression. MTT, Alamar blue assays, and RT-PCR were used to investigate the effects of c-kit silencing on survival, proliferation, distribution, and apoptosis of cells. Experiments were also conducted to determine the effects of c-kit knockdown on cell cycle distribution, DNA laddering, and apoptosis. The results indicated that the transfection with anti-c-kit siRNA induces DNA fragmentation and cell cycle arrest at G(2)/M phase leading to significant reduction in cell viability and proliferation. In addition, enhanced suppression of c-kit protein in P815 cells was observed after transfection as compared to ES-E14TG2alpha cells, suggesting early onset of c-kit protein repression in P815 cells leading to prolongation in cell doubling time. In conclusion, our data provide the first evidence of specific knockdown of c-kit expression in mouse primary SGCs, which emphasizes the critical role played by c-kit in germ cell survival, proliferation, and apoptosis.  相似文献   

12.
EGF induces cell cycle arrest of A431 human epidermoid carcinoma cells   总被引:4,自引:0,他引:4  
The human carcinoma cell line A431 is unusual in that physiologic concentrations of epidermal growth factor (EGF) inhibit proliferation. In the presence of 5-10 nM EGF proliferation of A431 cells is abruptly and markedly decreased compared to the untreated control cultures, with little loss of cell viability over a 4-day period. This study was initiated to examine how EGF affects the progression of A431 cells through the cell cycle. Flow cytometric analysis of DNA in EGF-treated cells reveals a marked change in the cell cycle distribution. The percentage of cells in late S/G2 increases and early S phase is nearly depleted. Since addition of the mitotic inhibitor vinblastine causes accumulation of cells in mitosis and prevents reentry of cells into G1, it is possible to distinguish between slow progression through G1 and G2 and blocks in those phases. When control cells, not treated with EGF, are exposed to vinblastine, the cells accumulate mitotic figures, as expected, and show progression into S, thus diminishing the number of cells in G1. In contrast, no mitotic figures are found among the EGF-treated cells in the presence or absence of vinblastine, and progression from G1 into S is not observed, as the number of cells in G1 remains constant. These results suggest that there are two EGF-induced blocks in cell cycle transversal; one is in late S and/or G2, blocking entry into mitosis, and the other is in G1, blocking entry into S phase. After 24 hours of EGF treatment, DNA synthesis is reduced to less than 10% compared to untreated controls as measured by the incorporation of [3H]thymidine or BrdU. In contrast, protein synthesis is inhibited by about twofold. Although inhibition of protein synthesis is less extensive, it occurs 6 hours prior to an equivalent inhibition of DNA synthesis. The rapid decrease in protein synthesis may result in the subsequent cell cycle arrest which occurs several hours later.  相似文献   

13.
Cyclooxygenases (COXs) are key enzymes in the conversion of arachidonic acid into prostanoids which are involved in apoptosis and inflammation. Two distinct COXs have been identified: COX-1 which is constitutively expressed and COX-2 which is induced by different products such as tumor promoters or growth factors. Previously, we demonstrated that a plant steroid, diosgenin, was a new megakaryocytic differentiation inducer of human erythroleukemia cells. In our study, we investigated the effect of diosgenin on the proliferation rate, cell cycle distribution and apoptosis in the human osteosarcoma 1547 cell line. The effects of this compound were also tested on COX expression and COX activities. Diosgenin treatment caused an inhibition of 1547 cell growth with a cycle arrest in G1 phase and apoptosis induction. Moreover, we found a correlation between p53, p21 mRNA expression and nuclear factor-kappaB activation and we observed a time-dependent increase in PGE2 synthesis after diosgenin treatment.  相似文献   

14.

Aims

Proliferation is a ‘multiplier’ for extracellular matrix production and contraction of activated hepatic stellate cells (HSC) in fibrotic liver. Transient receptor potential melastatin-like 7 channels (TRPM7) are implicated in the survival and proliferation of several kinds of cells. This study was aimed to investigate the effect of TRPM7 blocker 2-APB on survival and proliferation of HSC and the underlying mechanisms.

Main methods

Rat HSC were stimulated by 2-APB for 24 h and then collected for further use. Cell viability was detected by MTT, and apoptosis was determined by AnnexinV/PI staining and TUNEL assay. Gene expressions of TRPM7, α-SMA, bcl-2, bax, and endoplasmic reticulum (ER) stress key members CHOP, caspase-12, ATF4, ATF6, Xbp1, GRP78 and calnexin were evaluated with quantitative RT-PCR. Quantifications of α-SMA, TRPM7, CHOP and GRP78 proteins were carried out by Western blot. Transmission electron microscopy and Xbp1 mRNA splicing analysis were also used for detection of ER stress.

Key findings

2-APB decreased TRPM7 and α-SMA expressions in primary HSC, and inhibited proliferation of activated HSC in a dose-dependent manner. 2-APB also decreased total count of activated HSC and increased the number of apoptotic cells. 2-APB increased expressions of bax and ER stress key factors CHOP, caspase-12, ATF4, ATF6, Xbp1, GRP78 and calnexin. Meanwhile, ultra-structural ER changes and spliced Xbp1 mRNA were also observed in 2-APB treated HSC.

Significance

Blockage of TRPM7 could inhibit activation and proliferation of primary HSC and induce apoptotic death of activated cells, in which ER stress was identified as one of possible underlying molecular bases.  相似文献   

15.
Shi YF  Fong CC  Zhang Q  Cheung PY  Tzang CH  Wu RS  Yang M 《FEBS letters》2007,581(2):203-210
Hypoxia is a common environmental stress factor and is also associated with various physiological and pathological conditions such as fibrogenesis. The activation of hepatic stellate cells (HSCs) is the key event in the liver fibrogenesis. In this study, the behavior of human HSCs LX-2 in low oxygen tension (1% O2) was analyzed. Upon hypoxia, the expression of HIF-1alpha and VEGF gene was induced. The result of Western blotting showed that the expression of alpha-SMA was increased by hypoxic stimulation. Furthermore, the expression of MMP-2 and TIMP-1 genes was increased. Hypoxia also elevated the protein expression of the collagen type I in LX-2 cells. The analysis of TGF-beta/Smad signaling pathway showed that hypoxia potentiated the expression of TGF-beta1 and the phosphorylation status of Smad2. Gene expression profiles of LX-2 cells induced by hypoxia were obtained by using cDNA microarray technique.  相似文献   

16.
17.
Polyamines are important for cell growth and proliferation and they are formed from arginine and ornithine via arginase and ornithine decarboxylase (ODC). Arginine may alternatively be metabolised to NO via NO synthase. Here we study if vascular smooth muscle cell proliferation can be reversed by polyamine synthesis inhibitors and investigate their mechanism of action. Cell proliferation was assessed in cultured vascular smooth muscle A7r5 cells and in endothelium-denuded rat arterial rings by measuring [3H]-thymidine incorporation and by cell counting. Cell cycle phase distribution was determined by flow cytometry and polyamines by HPLC. Protein expression was determined by Western blotting. The ODC inhibitor DFMO (1–10 mM) reduced polyamine concentration and attenuated proliferation in A7r5 cells and rat tail artery. DFMO accumulated cells in S phase of the cell cycle and reduced cyclin A expression. DFMO had no effect on cell viability and apoptosis as assessed by fluorescence microscopy. Polyamine concentration and cellular proliferation were not affected by the arginase inhibitor NOHA (100–200 μM) and the NO synthase inhibitor l-NAME (100 μM). Lack of effect of NOHA was reflected by absence of arginase expression. Polyamine synthesis inhibition attenuates vascular smooth muscle cell proliferation by reducing DNA synthesis and accumulation of cells in S phase, and may be a useful approach to prevent vascular smooth muscle cell proliferation in cardiovascular diseases.  相似文献   

18.
Antifolates have a crucial role in the treatment of various cancers by inhibiting key enzymes in purine and thymidylate biosynthesis. However, the frequent emergence of inherent and acquired antifolate resistance in solid tumors calls for the development of novel therapeutic strategies to overcome this chemoresistance. The core of solid tumors is highly hypoxic due to poor blood circulation, and this hypoxia is considered to be a major contributor to drug resistance. However, the cytotoxic activity of antifolates under hypoxia is poorly characterized. Here we show that under severe hypoxia, gene expression of ubiquitously expressed key enzymes and transporters in folate metabolism and nucleoside homeostasis is downregulated. We further demonstrate that carcinoma cells become completely refractory, even at sub-millimolar concentrations, to all hydrophilic and lipophilic antifolates tested. Moreover, tumor cells retained sensitivity to the proteasome inhibitor bortezomib and the topoisomerase II inhibitor doxorubicin, which are independent of cell cycle. We provide evidence that this antifolate resistance, associated with repression of folate metabolism, is a result of the inability of antifolates to induce DNA damage under hypoxia, and is attributable to a hypoxia-induced cell cycle arrest, rather than a general anti-apoptotic mechanism. Our findings suggest that solid tumors harboring a hypoxic core of cell cycle-arrested cells may display antifolate resistance while retaining sensitivity to the chemotherapeutics bortezomib and doxorubicin. This study bears important implications for the molecular basis underlying antifolate resistance under hypoxia and its rational overcoming in solid tumors.  相似文献   

19.
Dynamic cell interaction with ECM components has profound influence in cancer progression. SPARC is a component of the ECM, impairs the proliferation of different cell types and modulates tumor cell aggressive features. We previously reported that SPARC expression significantly impairs medulloblastoma tumor growth in vivo. In this study, we demonstrate that expression of SPARC inhibits medulloblastoma cell proliferation. MTT assay indicated a dose-dependent reduction in tumor cell proliferation in adenoviral mediated expression of SPARC full length cDNA (Ad-DsRed-SP) in D425 and UW228 cells. Flow cytometric analysis showed that Ad-DsRed-SP-infected cells accumulate in the G2/M phase of cell cycle. Further, immunoblot and immunoprecipitation analyses revealed that SPARC induced G2/M cell cycle arrest was mediated through inhibition of the Cyclin-B-regulated signaling pathway involving p21 and Cdc2 expression. Additionally, expression of SPARC decreased STAT3 phosphorylation at Tyr-705; constitutively active STAT3 expression reversed SPARC induced G2/M arrest. Ad-DsRed-SP significantly inhibited the pre-established orthotopic tumor growth and tumor volume in nude-mice. Immunohistochemical analysis of tumor sections from mice treated with Ad-DsRed-SP showed decreased immunoreactivity for pSTAT3 and increased immunoreactivity for p21 compared to tumor section from mice treated with mock and Ad-DsRed. Taken together our studies further reveal that STAT3 plays a key role in SPARC induced G2/M arrest in medulloblastoma cells. These new findings provide a molecular basis for the mechanistic understanding of the effects of SPARC on medulloblastoma tumor cell proliferation.  相似文献   

20.
Liu Q  Fu H  Sun F  Zhang H  Tie Y  Zhu J  Xing R  Sun Z  Zheng X 《Nucleic acids research》2008,36(16):5391-5404
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号