首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wu ZZ  Zhang G  Long M  Wang HB  Song GB  Cai SX 《Biorheology》2000,37(4):279-290
The viscoelastic properties of both hepatocytes and hepatocellular carcinoma (HCC) cells were measured by means of a micropipette aspiration technique. Experimental results were analyzed with a three-element standard linear solid model, in which an elastic element, K1, is in parallel with a Maxwell element composed of another elastic element, K2, in series with a viscous element, mu. Further, we investigated the relevance of viscoelastic properties of these two types of cells to the cytoskeleton structures by treating cells with three cytoskeletal perturbing agents, namely cytochalasin D (CD), colchicine (Col) and vinblastine (VBL). The results showed that the elastic coefficients, but not viscous coefficient of HCC cells (K1 = 103.6 +/- 12.6 N m-2, K2 = 42.5 +/- 10.4 N m-2, mu = 4.5 +/- 1.9 Pa s, n = 30), were significantly higher than the corresponding values for hepatocytes (K1 = 87.5 +/- 12.1 N m-2, K2 = 33.3 +/- 10.3 N m-2, mu = 5.9 +/- 3.0 Pa s, n = 24). Upon treatment with CD, the viscoelastic coefficients of both hepatocytes and HCC cells decreased uniformly, with magnitudes for the decrease in elastic coefficients of HCC cells (K1: 68.7 to 81.7 N m-2, 66.3 to 78.9%; K2: 34.5 to 37.1 N m-2, 81.2 to 87.3%) larger than those for normal hepatocytes (K1: 42.6 to 49.8 N m-2, 48.7 to 56.9%; K2: 17.2 to 20.4 N m-2, 51.7 to 61.3%). There was a smaller decrease in the viscous coefficient of HCC cells (2.0 to 3.4 Pa s, 44.4 to 75.6%) than that for hepatocytes (3.0 to 3.9 Pa s, 50.8 to 66.1%). Upon treatment with Col and VBL, the elastic coefficients of hepatocytes generally increased or tended to increase while those of HCC cells decreased. The differences in either the pattern or the magnitude of the effect of cytoskeletal perturbing agent on the viscoelastic properties between HCC cells and hepatocytes might possibly reflect differences in the state of the cytoskeleton structure and function, or in the cells' sensitivity to perturbing agent treatment between these two types of cells. Changes in the viscoelastic properties of cancer cells might well affect tumor cell invasion and metastasis as well as interactions between tumor cells and their micro-mechanical environments.  相似文献   

2.
Internal viscoelastic loading in cat papillary muscle.   总被引:4,自引:0,他引:4       下载免费PDF全文
The passive mechanical properties of myocardium were defined by measuring force responses to rapid length ramps applied to unstimulated cat papillary muscles. The immediate force changes following these ramps recovered partially to their initial value, suggesting a series combination of viscous element and spring. Because the stretched muscle can bear force at rest, the viscous element must be in parallel with an additional spring. The instantaneous extension-force curves measured at different lengths were nonlinear, and could be made to superimpose by a simple horizontal shift. This finding suggests that the same spring was being measured at each length, and that this spring was in series with both the viscous element and its parallel spring (Voigt configuration), so that the parallel spring is held nearly rigid by the viscous element during rapid steps. The series spring in the passive muscle could account for most of the series elastic recoil in the active muscle, suggesting that the same spring is in series with both the contractile elements and the viscous element. It is postulated that the viscous element might be coupled to the contractile elements by a compliance, so that the load imposed on the contractile elements by the passive structures is viscoelastic rather than purely viscous. Such a viscoelastic load would give the muscle a length-independent, early diastolic restoring force. The possibility is discussed that the length-independent restoring force would allow some of the energy liberated during active shortening to be stored and released during relaxation.  相似文献   

3.
Embryonic and adult fibroblasts can be returned to pluripotency by the expression of reprogramming genes. Multiple lines of evidence suggest that these human induced pluripotent stem (hiPS) cells and human embryonic stem (hES) cells are behaviorally, karyotypically, and morphologically similar. Here we sought to determine whether the physical properties of hiPS cells, including their micromechanical properties, are different from those of hES cells. To this end, we use the method of particle tracking microrheology to compare the viscoelastic properties of the cytoplasm of hES cells, hiPS cells, and the terminally differentiated parental human fibroblasts from which our hiPS cells are derived. Our results indicate that although the cytoplasm of parental fibroblasts is both viscous and elastic, the cytoplasm of hiPS cells does not exhibit any measurable elasticity and is purely viscous over a wide range of timescales. The viscous phenotype of hiPS cells is recapitulated in parental cells with disassembled actin filament network. The cytoplasm of hES cells is predominantly viscous but contains subcellular regions that are also elastic. This study supports the hypothesis that intracellular elasticity correlates with the degree of cellular differentiation and reveals significant differences in the mechanical properties of hiPS cells and hES cells. Because mechanical stimuli have been shown to mediate the precise fate of differentiating stem cells, our results support the concept that stem cell “softness” is a key feature of force-mediated differentiation of stem cells and suggest there may be subtle functional differences between force-mediated differentiation of hiPS cells and hES cells.  相似文献   

4.
Transforming growth factor (TGF)-β1 is a multifunctional cytokine that plays important roles in health and disease. Previous studies have revealed that TGFβ1 activation, signaling, and downstream cell responses including epithelial-mesenchymal transition (EMT) and apoptosis are regulated by the elasticity or stiffness of the extracellular matrix. However, tissues within the body are not purely elastic, rather they are viscoelastic. How matrix viscoelasticity impacts cell fate decisions downstream of TGFβ1 remains unknown. Here, we synthesized polyacrylamide hydrogels that mimic the viscoelastic properties of breast tumor tissue. We found that increasing matrix viscous dissipation reduces TGFβ1-induced cell spreading, F-actin stress fiber formation, and EMT-associated gene expression changes, and promotes TGFβ1-induced apoptosis in mammary epithelial cells. Furthermore, TGFβ1-induced expression of integrin linked kinase (ILK) and colocalization of ILK with vinculin at cell adhesions is attenuated in mammary epithelial cells cultured on viscoelastic substrata in comparison to cells cultured on nearly elastic substrata. Overexpression of ILK promotes TGFβ1-induced EMT and reduces apoptosis in cells cultured on viscoelastic substrata, suggesting that ILK plays an important role in regulating cell fate downstream of TGFβ1 in response to matrix viscoelasticity.  相似文献   

5.
Effect of colchicine on viscoelastic properties of neutrophils   总被引:5,自引:3,他引:2  
The effect of colchicine (15-60 micrograms/ml) on the viscoelastic properties of human neutrophils was studied by the micropipette technique. The small deformation of the neutrophil in response to a step aspiration pressure was analyzed by using a three-element model in which an elastic element, K1, is in parallel with a Maxwell element composed of another elastic element, K2, in series with a viscous element, mu. Colchicine treatment of neutrophils caused decreases in K2 and mu without affecting K1. The results indicate that the integrity of the microtubules plays a significant role in providing the viscoelastic resistance (as represented by the Maxwell element in the model) of neutrophils to deforming stress.  相似文献   

6.
The effects of variations in temperature, pH, and osmolality on the rheological properties of human neutrophils were determined by studying the cell deformation in response to aspirational pressure applied via a micropipette. The time history of the deformation was analyzed by the use of a standard solid viscoelastic model consisting of an elastic element K1 in parallel with a Maxwell element (an elastic element K2 in series with a viscous element mu). With changes in temperature over a range of 9-40 degrees C, only mu varied inversely with temperature, while K1 and K2 did not show significant alterations. Variations in pH over the range of 5.4-7.8 did not significantly affect the viscoelastic coefficients, but K1 and mu rose at pH 8.4. An increase in osmolality caused all three coefficients to rise, but a decrease in osmolality had relatively little effect on the coefficients. These changes in response to physicochemical variations serve to provide insights into the viscoelastic properties of neutrophils and their possible roles in health and disease.  相似文献   

7.
A new viscoelastic model was developed for the mathematical characterisation of mechanically induced and intrinsic contractional responses of the vascular smooth muscle. To this end, the elastic and viscous analogue elements were supplemented with a new active element generating stress proportional to its momentary elongation. The four-element model consisting of an active element, a parallel viscous element and both series and parallel elastic elements predicted biphasic or damped oscillatory stress relaxation and creep responses which were similar to that found experimentally earlier. Above a certain exciting frequency the model exhibited dissipative and below energy producing behaviour, as indicated by the sign change of the hysteresis loop area. In the case of sinusoidal modulation of the stress generation parameter the model showed parametric resonance, which was regarded as a simulation of intrinsic oscillation of the smooth muscle.  相似文献   

8.
Electrical cell-substrate impedance sensing (ECIS) was used to measure the time-dependence and frequency-dependence of impedance for current flowing underneath and between cells. Osteosarcoma cells with a topology similar to a short cylinder (coin-like) surmounted by a dome were used in this study. Application of a small step increase in net vertical stress to the cells (4 and 7 dyn/cm2), via magnetic beads bound to the dorsal (upper) surface, causes an increase in cell body height and an increase in cell-cell separation, as well as stretching of the cell-substrate adhesion bonds. This results in a fast drop in measured resistance (less than 2 s), followed by a slower change with a time constant of 60–150 s. This time constant is about 1.5 times longer at 22 °C than that at 37 °C; it also increases with applied stress. Our frequency scan data, as well as our data for the time course of resistance and capacitance, show that the fast change is associated with both the under-the-cells and between-the-cells resistance. The slower change in resistance mainly reflects the between-the-cells resistance. To obtain viscoelastic parameters from our data we use a simple viscoelastic model comprising viscous and elastic elements (i.e., a dashpot and two springs) for the cell body, and an elastic element (a spring) for the cell-substrate adhesion system. Our results show that the spring constants and the viscosity of the cell body components of this viscoelastic model decrease as the temperature increases, whereas the elastic modulus of cell-substrate adhesion increases with temperature. At 37 °C, for the cell body we obtain a value of about 105 P for the viscous element of the viscoelastic model, and a spring constant expressed in units of an elastic modulus of about 104 dyn/cm2 for the spring in series with the viscous element, with another spring with a modulus of about 2×103 dyn/cm2 in parallel with these. In comparable units, we have a modulus for the cell-substrate adhesion system of about 3×103 dyn/cm2. Received: 23 March 1998 / Revised version: 23 June 1998 / Accepted: 1 July 1998  相似文献   

9.
An experimental study is performed to measure the terminal settling velocities of spherical particles in surfactant based shear thinning viscoelastic (VES) fluids. The measurements are made for particles settling in unbounded fluids and fluids between parallel walls. VES fluids over a wide range of rheological properties are prepared and rheologically characterized. The rheological characterization involves steady shear-viscosity and dynamic oscillatory-shear measurements to quantify the viscous and elastic properties respectively. The settling velocities under unbounded conditions are measured in beakers having diameters at least 25x the diameter of particles. For measuring settling velocities between parallel walls, two experimental cells with different wall spacing are constructed. Spherical particles of varying sizes are gently dropped in the fluids and allowed to settle. The process is recorded with a high resolution video camera and the trajectory of the particle is recorded using image analysis software. Terminal settling velocities are calculated from the data.The impact of elasticity on settling velocity in unbounded fluids is quantified by comparing the experimental settling velocity to the settling velocity calculated by the inelastic drag predictions of Renaud et al.1 Results show that elasticity of fluids can increase or decrease the settling velocity. The magnitude of reduction/increase is a function of the rheological properties of the fluids and properties of particles. Confining walls are observed to cause a retardation effect on settling and the retardation is measured in terms of wall factors.  相似文献   

10.
This contribution presents a novel constitutive model in order to simulate an orthotropic rate-dependent behaviour of the passive myocardium at finite strains. The motivation for the consideration of orthotropic viscous effects in a constitutive level lies in the disagreement between theoretical predictions and experimentally observed results. In view of experimental observations, the material is deemed as nearly incompressible, hyperelastic, orthotropic and viscous. The viscoelastic response is formulated by means of a rheological model consisting of a spring coupled with a Maxwell element in parallel. In this context, the isochoric free energy function is decomposed into elastic equilibrium and viscous non-equilibrium parts. The baseline elastic response is modelled by the orthotropic model of Holzapfel and Ogden [Holzapfel GA, Ogden RW. 2009. Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans Roy Soc A Math Phys Eng Sci. 367:3445–3475]. The essential aspect of the proposed model is the account of distinct relaxation mechanisms for each orientation direction. To this end, the non-equilibrium response of the free energy function is constructed in the logarithmic strain space and additively decomposed into three anisotropic parts, denoting fibre, sheet and normal directions each accompanied by a distinct dissipation potential governing the evolution of viscous strains associated with each orientation direction. The evolution equations governing the viscous flow have an energy-activated nonlinear form. The energy storage in the Maxwell branches has a quadratic form leading to a linear stress–strain response in the logarithmic strain space. On the numerical side, the algorithmic aspects suitable for the implicit finite element method are discussed in a Lagrangian setting. The model shows excellent agreement compared to experimental data obtained from the literature. Furthermore, the finite element simulations of a heart cycle carried out with the proposed model show significant deviations in the strain field relative to the elastic solution.  相似文献   

11.
Nonlinear mechanical properties play an important role in numerous biological functions, for instance the locomotion strategy used by terrestrial gastropods. We discuss the progress made toward bioinspired snail-like locomotion and the pursuit of an engineered fluid that imitates the nonlinear viscoelastic properties of native gastropod pedal mucus. The rheological behavior of native pedal mucus is characterized using an oscillatory deformation protocol known as large amplitude oscillatory shear, and we review recently developed techniques for appropriately describing nonlinear viscoelastic behavior. Although materials that exhibit purely elastic and purely viscous nonlinearities are amenable to standard techniques for characterization, pedal mucus samples (and biomaterials in general) are viscoelastic, exhibiting both elastic and viscous nonlinear responses simultaneously and requiring advanced techniques for characterization. We reveal the utility of these new methods by examining trail mucus from the terrestrial slug Limax maximus using oscillatory shear rheology. Material responses which previously could only be described mathematically, with little physical insight, can now be interpreted with familiar language such as strain-stiffening/softening and shear-thickening/thinning. The new methodology is applicable to any complex material that can be tested using imposed oscillatory deformations. We have developed data-analysis software to enable wider use of this framework within and beyond the biomaterials community. The functionality of this software is outlined here.  相似文献   

12.
Viscoelastic behaviour of isolated tomato fruit cuticle (CM) is well known and extensively described. Temperature and hydration conditions modify the mechanical properties of CM. Mechanical data from previous transient‐creep analysis developed in tomato fruit cuticle under different temperature and hydration conditions have been used to propose a rheological model that describes the viscoelastic nature of CM. As a composite material, the biomechanical behaviour of the plant cuticle will depend not only on the mechanical characteristics of the individual components by themselves but also on the sum of them. Based on this previous information, we proposed a two‐element model to describe the experimental behaviour: an elastic hookean element connected in parallel to a viscous element or Voigt element that will describe the mechanical behaviour of the isolated CM and cutin under the studied conditions. The main parameters of the model, E1 and E2 will reflect the elastic and viscoelastic behaviour of the cuticle. Relationship between these physical parameters and the change in CM properties were discussed in order to elucidate the rheological processes taking place in CM. This model describes both the influence of temperature and hydration and the behaviour of the isolated cutin and the inferred contribution of the cuticle fraction of polysaccharides when the whole cuticle is tested.  相似文献   

13.
Cytoplasmic extracts prepared from Xenopus laevis eggs are used for the reconstitution of a wide range of processes in cell biology, and offer a unique environment in which to investigate the role of cytoplasmic mechanics without the complication of preorganized cellular structures. As a step toward understanding the mechanical properties of this system, we have characterized the rheology of crude interphase extracts. At macroscopic length scales, the extract forms a soft viscoelastic solid. Using a conventional mechanical rheometer, we measure the elastic modulus to be in the range of 2-10 Pa, and loss modulus in the range of 0.5-5 Pa. Using pharmacological and immunological disruption methods, we establish that actin filaments and microtubules cooperate to give mechanical strength, whereas the intermediate filament cytokeratin does not contribute to viscoelasticity. At microscopic length scales smaller than the average network mesh size, the response is predominantly viscous. We use multiple particle tracking methods to measure the thermal fluctuations of 1 microm embedded tracer particles, and measure the viscosity to be approximately 20 mPa-s. We explore the impact of rheology on actin-dependent cytoplasmic contraction, and find that although microtubules modulate contractile forces in vitro, their interactions are not purely mechanical.  相似文献   

14.
A number of properties of certain living embryonic tissues can be explained by considering them as liquids. Tissue fragments left in a shaker bath round up to form spherical aggregates, as do liquid drops. When cells comprising two distinct embryonic tissues are mixed, typically a nucleation-like process takes place, and one tissue sorts out from the other. The equilibrium configurations at the end of such sorting out phenomena have been interpreted in terms of tissue surface tensions arising from the adhesive interactions between individual cells. In the present study we go beyond these equilibrium properties and study the viscoelastic behavior of a number of living embryonic tissues. Using a specifically designed apparatus, spherical cell aggregates are mechanically compressed and their viscoelastic response is followed. A generalized Kelvin model of viscoelasticity accurately describes the measured relaxation curves for each of the four tissues studied. Quantitative results are obtained for the characteristic relaxation times and elastic and viscous parameters. Our analysis demonstrates that the cell aggregates studied here, when subjected to mechanical deformations, relax as elastic materials on short time scales and as viscous liquids on long time scales.  相似文献   

15.
Previous computational and experimental analyses revealed that cranial sutures, fibrous joints between the bones, can reduce the strain experienced by the surrounding skull bones during mastication. This damping effect reflects the importance of including sutures in finite element (FE) analyses of the skull. Using the FE method, the behaviour of three suture morphologies of increasing complexity (butt-ended, moderate interdigitated, and complex interdigitated) during static loading was recently investigated, and the sutures were assumed to have linear elastic properties. In the current study, viscoelastic properties, derived from published experimental results of the nasofrontal suture of young pigs (Sus scrofa), are applied to the three idealised bone-suture models. The effects of suture viscoelasticity on the stress, strain, and strain energy in the models were computed for three different frequencies (corresponding to periods of 1, 10, and 100s) and compared to the results of a static, linear elastic analysis. The range of applied frequencies broadly represents different physiological activities, with the highest frequency simulating mastication and the lowest frequency simulating growth and pressure of the surrounding tissues. Comparing across all three suture morphologies, strain energy and strain in the suture decreased with the increase in suture complexity. For each suture model, the magnitude of strain decreased with an increase in frequency, and the magnitudes were similar for both the elastic and 1s frequency analyses. In addition, a viscous response is less apparent in the higher frequency analyses, indicating that viscous properties are less important to the behaviour of the suture during those analyses. The FE results suggest that implementation of viscoelastic properties may not be necessary for computational studies of skull behaviour during masticatory loading but instead might be more relevant for studies examining lower frequency physiological activities.  相似文献   

16.

The stiffness of the cellular environment controls malignant cell phenotype and proliferation. However, the effect of viscous dissipation on these parameters has not yet been investigated, in part due to the lack of in vitro cell substrates reproducing the mechanical properties of normal tissues and tumors. In this article, we use a newly reported viscoelastic polyacrylamide gel cell substrate, and we characterize the impact of viscous dissipation on three malignant cell lines: DU145 and PC3 derived from prostate and LN229 from brain. The spreading, motility and proliferation rates of these cells were analyzed on 1 kPa and 5 kPa elastic and viscoelastic gels. Surprisingly, the effect of substrate viscous dissipation on cell behavior depended on substrate stiffness for the three cell types tested. We conclude that viscoelasticity controls the spreading, proliferation and migration of malignant cells in vitro. These results highlight the critical role of viscous dissipation in the phenotype and proliferation of malignant cells, especially in stiff tumor environments.

  相似文献   

17.
Data on viscous (eta') and elastic (eta') components of the complex viscosity versus oscillatory angular frequency (0.01 to 4.0 rad/s) with increasing strains were obtained for hybridoma cell (62'D3) and HeLa cell (S3) suspensions in PBS at 0.9 (mL/mL) cell volume fraction using a Weissenberg rheogoniometer equipped with two parallel plate geometry at ambient temperature. Both cell suspensions exhibited shear thinning behavior. From the measured viscoelastic properties, the yield stress was calculated. Hybridoma cell suspension (15 mum as the mean diameter of cells) showed the yield stress at 550 dyne/cm(2) that was 1.8 times higher than the value of HeLa cell suspension (22 mum mean diameter) as measured at the oscillatory angular frequency, 4.0 rad/s. The apparent viscosities of HeLa cell suspension at four concentrations and varying steady shear rate were also determined using the Brookfield rotational viscometer. The yield stress to steady shear test was about 130 dyne/cm(2) for HeLa cell suspension at 0.9 (mL/mL) cell volume fraction. The apparent viscosity was in the range about 1 approximately 1000 Poise depending on the cell concentration and shear rate applied. A modified semiempirical Mooney equation, \documentclass{article}\pagestyle{empty}\begin{document}$ \eta = \eta _0 \exp [K\dot \gamma ;{ - \beta } \phi /(1 - K'\sigma \phi _c /D)] $\end{document} was derived based on the cell concentration, the cell morphology, and the steady shear rate. The beta, shear rate index, was estimated as 0.159 in the range of shear rate, 0.16 to 22.1 s(-1), for the cell volume fractions from 0.6 to 0.9 (mL/mL). In this study, the methods of determining the shear sensitivity and the viscous and the elastic components of mammalian cell suspensions are described under the steady shear field. (c) 1993 John Wiley & Sons, Inc.  相似文献   

18.
The viscoelastic properties of single, attached C2C12 myoblasts were measured using a recently developed cell loading device. The device allows global compression of an attached cell, while simultaneously measuring the associated forces. The viscoelastic properties were examined by performing a series of dynamic experiments over two frequency decades (0.1-10 Hz) and at a range of axial strains (approximately 10-40%). Confocal laser scanning microscopy was used to visualize the cell during these experiments. To analyze the experimentally obtained force-deformation curves, a nonlinear viscoelastic model was developed. The nonlinear viscoelastic model was able to describe the complete series of dynamic experiments using only a single set of parameters, yielding an elastic modulus of 2120 +/- 900 Pa for the elastic spring, an elastic modulus of 1960 +/- 1350 for the nonlinear spring, and a relaxation time constant of 0.3 +/- 0.12 s. To our knowledge, it is the first time that the global viscoelastic properties of attached cells have been quantified over such a wide range of strains. Furthermore, the experiments were performed under optimal environmental conditions and the results are, therefore, believed to reflect the viscoelastic mechanical behavior of cells, such as would be present in vivo.  相似文献   

19.
This study deals with the viscoelastic constitutive modeling and the respective computational analysis of the human passive myocardium. We start by recapitulating the locally orthotropic inner structure of the human myocardial tissue and model the mechanical response through invariants and structure tensors associated with three orthonormal basis vectors. In accordance with recent experimental findings the ventricular myocardial tissue is assumed to be incompressible, thick-walled, orthotropic and viscoelastic. In particular, one spring element coupled with Maxwell elements in parallel endows the model with viscoelastic features such that four dashpots describe the viscous response due to matrix, fiber, sheet and fiber-sheet fragments. In order to alleviate the numerical obstacles, the strictly incompressible model is altered by decomposing the free-energy function into volumetric-isochoric elastic and isochoric-viscoelastic parts along with the multiplicative split of the deformation gradient which enables the three-field mixed finite element method. The crucial aspect of the viscoelastic formulation is linked to the rate equations of the viscous overstresses resulting from a 3-D analogy of a generalized 1-D Maxwell model. We provide algorithmic updates for second Piola–Kirchhoff stress and elasticity tensors. In the sequel, we address some numerical aspects of the constitutive model by applying it to elastic, cyclic and relaxation test data obtained from biaxial extension and triaxial shear tests whereby we assess the fitting capacity of the model. With the tissue parameters identified, we conduct (elastic and viscoelastic) finite element simulations for an ellipsoidal geometry retrieved from a human specimen.  相似文献   

20.
The ability of mucus to function as a protective barrier at mucosal surfaces rests on its viscous and elastic properties, which are not well understood at length scales relevant to pathogens and ultrafine environmental particles. Here we report that fresh, undiluted human cervicovaginal mucus (CVM) transitions from an impermeable elastic barrier to non-adhesive objects sized 1 µm and larger to a highly permeable viscoelastic liquid to non-adhesive objects smaller than 500 nm in diameter. Addition of a nonionic detergent, present in vaginal gels, lubricants and condoms, caused CVM to behave as an impermeable elastic barrier to 200 and 500 nm particles, suggesting that the dissociation of hydrophobically-bundled mucin fibers created a finer elastic mucin mesh. Surprisingly, the macroscopic viscoelasticity, which is critical to proper mucus function, was unchanged. These findings provide important insight into the nanoscale structural and barrier properties of mucus, and how the penetration of foreign particles across mucus might be inhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号