首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS) can lead to the development of HIV-1-associated dementia (HAD). We examined the virological characteristics of HIV-1 in the cerebrospinal fluid (CSF) of HAD subjects to explore the association between independent viral replication in the CNS and the development of overt dementia. We found that genetically compartmentalized CCR5-tropic (R5) T cell-tropic and macrophage-tropic HIV-1 populations were independently detected in the CSF of subjects diagnosed with HIV-1-associated dementia. Macrophage-tropic HIV-1 populations were genetically diverse, representing established CNS infections, while R5 T cell-tropic HIV-1 populations were clonally amplified and associated with pleocytosis. R5 T cell-tropic viruses required high levels of surface CD4 to enter cells, and their presence was correlated with rapid decay of virus in the CSF with therapy initiation (similar to virus in the blood that is replicating in activated T cells). Macrophage-tropic viruses could enter cells with low levels of CD4, and their presence was correlated with slow decay of virus in the CSF, demonstrating a separate long-lived cell as the source of the virus. These studies demonstrate two distinct virological states inferred from the CSF virus in subjects diagnosed with HAD. Finally, macrophage-tropic viruses were largely restricted to the CNS/CSF compartment and not the blood, and in one case we were able to identify the macrophage-tropic lineage as a minor variant nearly two years before its expansion in the CNS. These results suggest that HIV-1 variants in CSF can provide information about viral replication and evolution in the CNS, events that are likely to play an important role in HIV-associated neurocognitive disorders.  相似文献   

2.
Compartmentalized HIV-1 replication within the central nervous system (CNS) likely provides a foundation for neurocognitive impairment and a potentially important tissue reservoir. The timing of emergence and character of this local CNS replication has not been defined in a population of subjects. We examined the frequency of elevated cerebrospinal fluid (CSF) HIV-1 RNA concentration, the nature of CSF viral populations compared to the blood, and the presence of a cellular inflammatory response (with the potential to bring infected cells into the CNS) using paired CSF and blood samples obtained over the first two years of infection from 72 ART-naïve subjects. Using single genome amplification (SGA) and phylodynamics analysis of full-length env sequences, we compared CSF and blood viral populations in 33 of the 72 subjects. Independent HIV-1 replication in the CNS (compartmentalization) was detected in 20% of sample pairs analyzed by SGA, or 7% of all sample pairs, and was exclusively observed after four months of infection. In subjects with longitudinal sampling, 30% showed evidence of CNS viral replication or pleocytosis/inflammation in at least one time point, and in approximately 16% of subjects we observed evolving CSF/CNS compartmentalized viral replication and/or a marked CSF inflammatory response at multiple time points suggesting an ongoing or recurrent impact of the infection in the CNS. Two subjects had one of two transmitted lineages (or their recombinant) largely sequestered within the CNS shortly after transmission, indicating an additional mechanism for establishing early CNS replication. Transmitted variants were R5 T cell-tropic. Overall, examination of the relationships between CSF viral populations, blood and CSF HIV-1 RNA concentrations, and inflammatory responses suggested four distinct states of viral population dynamics, with associated mechanisms of local viral replication and the early influx of virus into the CNS. This study considerably enhances the generalizability of our results and greatly expands our knowledge of the early interactions of HIV-1 in the CNS.  相似文献   

3.
Human immunodeficiency virus type 1 (HIV-1)-associated dementia (HAD) is a severe neurological disease that affects a subset of HIV-1-infected individuals. Increased compartmentalization has been reported between blood and cerebrospinal fluid (CSF) HIV-1 populations in subjects with HAD, but it is still not known when compartmentalization arises during the course of infection. To assess HIV-1 genetic compartmentalization early during infection, we compared HIV-1 populations in the peripheral blood and CSF in 11 primary infection subjects, with analysis of longitudinal samples over the first 18 months for a subset of subjects. We used heteroduplex tracking assays targeting the variable regions of env and single-genome amplification and sequence analysis of the full-length env gene to identify CSF-compartmentalized variants and to examine viral genotypes within the compartmentalized populations. For most subjects, HIV-1 populations were equilibrated between the blood and CSF compartments. However, compartmentalized HIV-1 populations were detected in the CSF of three primary infection subjects, and longitudinal analysis of one subject revealed that compartmentalization during primary HIV-1 infection was resolved. Clonal amplification of specific HIV-1 variants was identified in the CSF population of one primary infection subject. Our data show that compartmentalization can occur in the central nervous system (CNS) of subjects in primary HIV-1 infection in part through persistence of the putative transmitted parental variant or via viral genetic adaptation to the CNS environment. The presence of distinct HIV-1 populations in the CSF indicates that independent HIV-1 replication can occur in the CNS, even early after HIV-1 transmission.Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS) can lead to neurological disease in a subset of HIV-infected individuals and may include the development of HIV-1-associated dementia (HAD) (2, 18). HAD is characterized by severe neurological dysfunction, and affected individuals generally have impaired cognitive and motor functions. HIV-1 enters the CNS during primary infection, most likely via the migration of infected monocytes and lymphocytes across the blood-brain barrier (33, 37, 42). The main cell types in the CNS that HIV-1 can productively infect are the perivascular macrophages and microglial cells, which express low receptor densities of CD4, CCR5, and CXCR4 (7, 18, 60, 63). Previous studies have also reported that neurotropic HIV-1 variants are generally macrophage tropic (19, 20, 32, 45, 52, 61). Although cells in the CNS may be infected with HIV-1 during the course of disease, it is still unclear whether productive HIV-1 replication occurs in the CNS early during infection.Genetically compartmentalized HIV-1 variants have been detected in the brains of HAD subjects at autopsy (13, 14, 43, 48, 52) and in the cerebrospinal fluid (CSF) of HAD subjects sampled over the course of infection (26, 46, 51, 59). Extensive compartmentalization between the periphery and the CNS has been reported in subjects with HAD; however, it is not yet known when compartmentalization occurs during the course of HIV-1 infection. Primary HIV-1 infection refers to the acute and early phases of infection, during which peak plasma viremia often occurs and a viral “set point” may be reached (8, 34), within the first year after HIV exposure (64). Studies examining compartmentalization between the blood plasma and CSF during primary infection have been limited, and extensive compartmentalization has not been detected in primary infection subjects (26, 50).In this study, we examined HIV-1 genetic compartmentalization between the peripheral blood and CSF during primary HIV-1 infection. Cross-sectional and longitudinal blood plasma and CSF samples were analyzed for viral compartmentalization using the heteroduplex tracking assay (HTA) and single genome amplification (SGA). We used the HTA to differentiate between HIV-1 variants in the CSF that were either compartmentalized to the CSF or equilibrated with the peripheral blood. Previous studies have used the HTA to separate HIV-1 genetic variants in different anatomical compartments (10, 24, 27, 51) and to follow HIV-1 evolutionary variants over the course of infection (9, 25, 31, 41, 49, 50). We also conducted SGA on a subset of subjects to further examine viral genetic compartmentalization during primary infection. Here we report the detection of compartmentalized and clonally amplified HIV-1 variants in the CSF of subjects in the primary stage of HIV-1 infection. Our results suggest that minor to extensive HIV-1 genetic compartmentalization can occur between the periphery and the CNS during primary HIV-1 infection and that viral compartmentalization, as measured in the CSF, is transient in some subjects.  相似文献   

4.
Patients with HIV-1 often present with a wide range of hematopoietic abnormalities, some of which may be due to the presence of opportunistic infections and to therapeutic drug treatments. However, many of these abnormalities are directly related to HIV-1 replication in the bone marrow (BM). Although the most primitive hematopoietic progenitor cells (HPCs) are resistant to HIV-1 infection, once these cells begin to differentiate and become committed HPCs they become increasingly susceptible to HIV-1 infection and permissive to viral gene expression and infectious virus production. Trafficking of BM-derived HIV-1-infected monocytes has been shown to be involved in the dissemination of HIV-1 into the central nervous system (CNS), and it is possible that HIV-1 replication in the BM and infection of BM HPCs may be involved in the early steps leading to the development of HIV-1-associated dementia (HAD) as an end result of this cellular trafficking process. In addition, the growth and development of HPCs in the BM of patients with HIV-1 has also been shown to be impaired due to the presence of HIV-1 proteins and changes in the cytokine milieu, potentially leading to an altered maturation process and to increased cell death within one or more BM cell lineages. Changes in the growth and differentiation process of HPCs may be involved in the generation of monocyte populations that are more susceptible and/or permissive to HIV-1, and have potentially altered trafficking profiles to several organs, including the CNS. A monocyte subpopulation with these features has been shown to expand during the course of HIV-1 disease, particularly in HAD patients, and is characterized by low CD14 expression and the presence of cell surface CD16.  相似文献   

5.
HIV-1 subtype B replication in the CNS can occur in CD4+ T cells or macrophages/microglia in adults. However, little is known about CNS infection in children or the ability of subtype C HIV-1 to evolve macrophage-tropic variants. In this study, we examined HIV-1 variants in ART-naïve children aged three years or younger to determine viral genotypes and phenotypes associated with HIV-1 subtype C pediatric CNS infection. We examined HIV-1 subtype C populations in blood and CSF of 43 Malawian children with neurodevelopmental delay or acute neurological symptoms. Using single genome amplification (SGA) and phylogenetic analysis of the full-length env gene, we defined four states: equilibrated virus in blood and CSF (n = 20, 47%), intermediate compartmentalization (n = 11, 25%), and two distinct types of compartmentalized CSF virus (n = 12, 28%). Older age and a higher CSF/blood viral load ratio were associated with compartmentalization, consistent with independent replication in the CNS. Cell tropism was assessed using pseudotyped reporter viruses to enter a cell line on which CD4 and CCR5 receptor expression can be differentially induced. In a subset of compartmentalized cases (n = 2, 17%), the CNS virus was able to infect cells with low CD4 surface expression, a hallmark of macrophage-tropic viruses, and intermediate compartmentalization early was associated with an intermediate CD4 entry phenotype. Transmission of multiple variants was observed for 5 children; in several cases, one variant was sequestered within the CNS, consistent with early stochastic colonization of the CNS by virus. Thus we hypothesize two pathways to compartmentalization: early stochastic sequestration in the CNS of one of multiple variants transmitted from mother to child, and emergence of compartmentalized variants later in infection, on average at age 13.5 months, and becoming fully apparent in the CSF by age 18 months. Overall, compartmentalized viral replication in the CNS occurred in half of children by year three.  相似文献   

6.
7.
Tat 蛋白是HIV-1 编码的反式转录激活因子,其主要功能是反式激活HIV-1病毒基因组转录的起始和延伸,启动病毒复制.近年来研究发现,Tat 蛋白在HIV-1感染所引起的严重中枢神经系统(CNS)并发症--艾滋病脑病中起重要作用,是艾滋病脑病发生与发展的重要致病因子.本文就HIV-1 Tat蛋白在艾滋病脑病中的研究进展作一综述.  相似文献   

8.
Advanced HIV-1 infection is commonly associated with progressive immune suppression and the development of cognitive, motor, and behavior disturbances. In its most severe form, it is diagnosed as HIV-1 associated dementia (HAD) and can progress to profound functional disability and death. Despite prodigious efforts to uncover biomarkers of HAD, none can adequately reflect disease onset or progression. Thus, we developed a proteomics platform for HAD biomarker discovery and used it to perform a pilot study on cerebrospinal fluid (CSF) from HIV-1-infected people with or without HAD. A 2-dimensional electrophoresis (2-DE) map of a HAD CSF proteome was focused on differentially expressed proteins. 2-DE difference gel electrophoresis (2-D DIGE) analysis showed >90 differences in protein spots of which 20 proteins were identified. Differential expression of 6 proteins was validated by Western blot tests and included vitamin D binding protein, clusterin, gelsolin, complement C3, procollagen C-endopeptidase enhancer 1, and cystatin C. We posit that these proteins, alone or together, are potential HAD biomarkers.  相似文献   

9.
Since identification of the human immunodeficiency virus-1 (HIV-1), numerous studies suggest a link between neurological impairments, in particular dementia, with acquired immunodeficiency syndrome (AIDS) with alarming occurrence worldwide. Approximately, 60% of HIV-infected people show some form of neurological impairment, and neuropathological changes are found in 90% of autopsied cases. Approximately 30% of untreated HIV-infected persons may develop dementia. The mechanisms behind these pathological changes are still not understood. Mounting data obtained byin vivo andin vitro experiments suggest that neuronal apoptosis is a major feature of HIV associated dementia (HAD), which can occur in the absence of direct infection of neurons. The major pathway of neuronal apoptosis occurs indirectly through release of neurotoxins by activated cells in the central nervous system (CNS) involving the induction of excitotoxicity and oxidative stress. In addition a direct mechanism induced by viral proteins in the pathogenesis of HAD may also play a role. This review focuses on the molecular mechanisms of HIV-associated dementia and possible therapeutic strategies.  相似文献   

10.
Human immunodeficiency virus (HIV) infection of the central nervous system (CNS) is a significant cause of morbidity. The requirements for HIV adaptation to the CNS for neuropathogenesis and the value of CSF virus as a surrogate for virus activity in brain parenchyma are not well established. We studied 18 HIV-infected subjects, most with advanced immunodeficiency and some neurocognitive impairment but none with evidence of opportunistic infection or malignancy of the CNS. Clonal sequences of C2-V3 env and population sequences of pol from HIV RNA in cerebrospinal fluid (CSF) and plasma were correlated with clinical and virologic variables. Most (14 of 18) subjects had partitioning of C2-V3 sequences according to compartment, and 9 of 13 subjects with drug resistance exhibited discordant resistance patterns between the two compartments. Regression analyses identified three to seven positions in C2-V3 that discriminated CSF from plasma HIV. The presence of compartmental differences at one or more of the identified positions in C2-V3 was highly associated with the presence of discordant resistance (P = 0.007), reflecting the autonomous replication of HIV and the independent evolution of drug resistance in the CNS. Discordance of resistance was associated with severity of neurocognitive deficits (P = 0.07), while low nadir CD4 counts were linked both to the severity of neurocognitive deficits and to discordant resistance patterns (P = 0.05 and 0.09, respectively). These observations support the study of CSF HIV as an accessible surrogate for HIV virions in the brain, confirm the high frequency of discordant resistance in subjects with advanced disease in the absence of opportunistic infection or malignancy of the CNS, and begin to identify genetic patterns in HIV env associated with adaptation to the CNS.  相似文献   

11.
12.
13.
HIV-1, macrophages, glial cells, and cytokines in AIDS nervous system disease   总被引:25,自引:0,他引:25  
J E Merrill  I S Chen 《FASEB journal》1991,5(10):2391-2397
Hallmarks of central nervous system (CNS) disease in AIDS patients are headaches, fever, subtle cognitive changes, abnormal reflexes, and ataxia. Dementia and severe sensory and motor dysfunction characterize more severe disease. Autoimmune-like peripheral neuropathies, cerebrovascular disease, and brain tumors are also observed. Histological changes include inflammation, astrocytosis, microglial nodule formation, and diffuse de- or dysmyelination. Focal demyelination can also be seen. It is clear that AIDS-associated neurological diseases are correlated with greater levels of HIV-1 antigen or genome in tissues. In AIDS dementia, macrophages and microglial cells of the CNS are the predominant cell types infected and producing HIV-1. However, manifestations of the disease make it unlikely that direct infection by HIV-1 is responsible. It seems more likely that the effects are mediated through secretion of viral proteins or viral induction of cytokines that bind to glial cells and neurons. HIV-1 induction of such cytokines as interleukin 1 (IL 1) and tumor necrosis factor-alpha (TNF alpha) may lead to an autocrine feedback loop involving further productive virus replication and induction of other cytokines such as interleukin 6 (IL 6) and granulocyte-macrophage colony-stimulating factor (GMCSF). Interleukin 1 and TNF alpha in combination with IL 6 and GMCSF could account for many clinical and histopathological findings in AIDS nervous system diseases. As HIV-1 infected patients produce elevated levels of IL 1, TNF alpha, and IL 6, it will be important to make a formal connection between the presence of these factors in the CNS, which are all products of activated macrophages, astroglia, and microglia, their in vivo induction directly by virus or indirectly by virus-induced intermediates, and the clinical and pathological conditions seen in the nervous system in this disease.  相似文献   

14.
HIV-1 infection of human PBMC has been shown to elicit secretion of several different cytokines. TNF-alpha secretion induced by this virus has been of particular interest because it has been associated with the development of HIV-1 dementia and because TNF-alpha increases viral replication by enhancing NF-kappaB interaction with the viral promoter, the HIV-1 long terminal repeat. Thus, an autocrine pathway is potentially created in which HIV-1 stimulates its own replication. Conflicting reports exist, however, on the ability of HIV-1 to induce TNF-alpha secretion in vitro or in vivo. Using experimental protocols that controlled for potential bacterial endotoxin-induced TNF-alpha secretion, the current study demonstrates significant differences in TNF-alpha-eliciting properties among primary and laboratory obtained HIV-1. The relative TNF-alpha-inducing ability of different variants is conserved when tested using PBMC from different individuals. Elicitation of TNF-alpha secretion was not blocked by exposure of cells to zidovudine, indicating that viral integration was not required to induce secretion. Rather, the interaction between the virus and cell surface is critical for TNF-alpha induction, as Abs against CD4 or CCR5 blocked the induction of TNF-alpha synthesis by PBMC when added before virus exposure. Furthermore, the ability to induce TNF-alpha secretion mapped to a region of the HIV-1 env gene that includes the third hypervariable domain. Differences in the ability of different HIV-1 variants to elicit TNF-alpha may account for individual differences in HIV-1 disease course.  相似文献   

15.
Human immunodeficiency virus type 1 (HIV-1) invades the central nervous system (CNS) during primary infection and persists in this compartment by unknown mechanisms over the course of infection. In this study, we examined viral population dynamics in four asymptomatic subjects commencing antiretroviral therapy to characterize cellular sources of HIV-1 in the CNS. The inability to monitor viruses directly in the brain poses a major challenge in studying HIV-1 dynamics in the CNS. Studies of HIV-1 in cerebrospinal fluid (CSF) provide a useful surrogate for the sampling of virus in the CNS, but they are complicated by the fact that infected cells in local CNS tissues and in the periphery contribute to the population pool of HIV-1 in CSF. We utilized heteroduplex tracking assays to differentiate CSF HIV-1 variants that were shared with peripheral blood plasma from those that were compartmentalized in CSF and therefore presumably derived from local CNS tissues. We then tracked the relative decline of individual viral variants during the initial days of antiretroviral therapy. We found that HIV-1 variants compartmentalized in CSF declined rapidly during therapy, with maximum half-lives of approximately 1 to 3 days. These kinetics emulate the decline in HIV-1 produced from short-lived CD4+ T cells in the periphery, suggesting that a similarly short-lived, HIV-infected cell population exists within the CNS. We propose that short-lived CD4+ T cells trafficking between the CNS and the periphery play an important role in amplifying and maintaining HIV-1 populations in the CNS during the asymptomatic phase of infection.  相似文献   

16.
Neutralizing antibody responses against heterologous isolates in human immunodeficiency virus type 1 (HIV-1) and HIV-2 infections were compared, and their relationships with established clinical markers of progression were examined. Neutralizing responses against 7 heterologous primary isolates and 1 laboratory strain were compared between 32 untreated HIV-1-infected subjects and 35 untreated HIV-2-infected subjects using a pseudotyped reporter virus assay. The breadth of the neutralizing response, defined as the proportion of panel viruses positively neutralized by patient plasma, was significantly greater among HIV-2-infected subjects than among HIV-1-infected subjects. Notably, for fully one-third of HIV-2 subjects, all viruses were effectively neutralized in our panel. Magnitudes of responses, defined as reciprocal 50% inhibitory concentration (IC(50)) titers for positive reactions, were significantly greater among HIV-1-infected subjects than among HIV-2-infected subjects. When plasma samples from HIV-1 patients were tested for cross-neutralization of HIV-2 and vice versa, we found that these intertype responses are very rare and their prevalences comparable in both HIV-1 and HIV-2 infection. The significantly higher magnitude of heterologous responses for HIV-1 compared to HIV-2 prompted us to examine associations with viremia, which is known to be significantly higher in HIV-1 infection. Importantly, there was a significant positive correlation between the IC(50) titer and viral load within both the HIV-1 and HIV-2 groups, suggesting heterologous antibodies may be driven by viral replication. We conclude that HIV-2 infection is characterized by a broad, low-magnitude intratype neutralization response, while HIV-1 is characterized by a narrower but higher-magnitude intratype response and that a significant positive association between the IC(50) titer and viremia is common to both HIV-1 and HIV-2 infections.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号