首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction time (RT) and the number of correct estimations of time microintervals (10 and 180 ms) between two visual stimuli were recorded in healthy subjects. It has been shown that 10 ms interval is better estimated when the stimuli are presented in the right visual field, i.e. when they are addressed directly to the left hemisphere. At the same time the number of correct estimations of 180 ms interval is greater and their RT is less when the stimuli are addressed directly to the right hemisphere. This points to different hemispheric mechanisms of time microintervals estimation. Study of the influence of different forms of verbal reinforcement on this learning has shown that after positive reinforcement (the word "good") the number of correct estimations is on average by 10% greater than after negative reinforcement (the word "error"). This may be connected with such processes as isolation and identification of erroneous reaction.  相似文献   

2.
Function of time microintervals estimation was studied in emotionally excitable subjects (23 persons) as well as learning of this function by means of positive and negative reinforcements--words "good" and "error"--and interhemispheric relations. In excitable subjects, discerning is disturbed of short pauses between the visual stimuli, especially of 10 ms pause, presented in the right visual field. Deficit of learning of the intervals discerning is noted by reaction time parameter. There is no advantage of the left hemisphere in discerning the 10 ms pause from 60 ms, which is observed in healthy people.  相似文献   

3.
The dynamics of the cortical evoked activity in the process of learning of time microintervals (10, 60 and 180 ms) discrimination was studied in healthy adults. Feedback stimulus visually informing of the real correlations of the differentiated pauses facilitates the discrimination. The factor of the visual field does not affect the estimation of brief time intervals. At correct identifications, the P300 wave is recorded with a higher amplitude, than at errors. In the trial following the "nonconfirming" feedback stimulus, the standard and test stimuli evoke in the left hemisphere a greater P300 wave, than in the trial after the "confirming" stimulus. Feedback influence is retained in the long-term memory.  相似文献   

4.
Free fatty acid (FFA) content was analyzed in mouse cerebral hemispheres and cerebellum under basal and postdecapitative ischemic conditions. Total FFA content immediately after decapitation (2 s) was about two-fold higher in the left hemisphere than in the right. Marked dissimilarities between hemispheres were also apparent when FFA levels were measured during short periods of ischemia. Whereas in the right side a significant FFA release took place as early as 10 s, no accumulation was detected in the left in the 2-20 s interval. The highest rates of total fatty acid release occurred in the 20-30 s interval in both hemispheres and decreased afterwards (3 min). Individual FFA, especially stearate and arachidonate, differed in their rates of production, the right cerebral hemisphere being more active in releasing arachidonic acid. In cerebellum, FFA levels were lower and accumulation was slower than in cerebrum in both intervals. When subjected to 3 min ischemia, the same difference in FFA levels between right and left hemispheres (50%) was observed in heads kept at 20 or 30 degrees C. The differences between hemispheres are interpreted as manifestations of an inherent lateralization in the regulation of acylation-deacylation reactions of complex lipids.  相似文献   

5.
Three oral doses (5, 10 and 20 mg) of an analog of ACTH 4-9 were compared with a vehicle control and d-amphetamine (10 mg). In a double-blind procedure, five men and five women were tested at weekly intervals with each treatment. In each session, four visual event-related potentials (ERPs) were recorded at hourly intervals. Visual ERPs were averaged from the electroencephalogram recorded from the left and right hemisphere. Dosage, time after administration, hemisphere of the brain and sex of the subject influenced the ERP. The ACTH 4-9 analog decreased amplitude of P100 but increased integrated activity of the ERP. This effect peaked at 60 minutes then "recovered." The effects of the peptide were more pronounced with doses of 5 and 10 mg, in the right hemisphere of men and in the left hemisphere of women. The findings indicated that the ACTH 4-9 analog influenced components of ERP commonly related to the perceptual/attentional state of the organism in a sexually dimorphic manner.  相似文献   

6.
Reaction time, number of correct evaluations of time microintervals, and P300 wave were studied in healthy adult subjects. The role is shown of feedback stimuli in training of a subject to discriminate short intervals and in changes of interhemispheric functional relations. These relations change in the course of training as a result of lateralized activation of the left hemisphere. Training with informative feedback is more efficient in the left hemisphere. The right hemisphere in lesser extent than the left one is subject to correcting influence of the feedback. In this sense the former is more autonomous.  相似文献   

7.
The latent periods (LP) of normal saccades and antisaccades were studied in 10 right-handed healthy subjects in two series of experiments. Peripheral visual stimuli were located at an angle of 10 degrees with respect to the central fixation stimulus in the left and right visual semifields. Two standard schemes of visual stimulation: 1) SS (single step), i.e., switching the peripheral stimulus on immediately after switching the central stimulus of; 2) GAP, i.e., the same with the interstimulus interval in 200 ms. It was shown that in the GAP stimulation condition, the LP of both saccades and antisaccades was 30-50 shorter than in the SS condition. The LP of antisaccades was longer than that of saccades by 145-300 ms. The LP of the leftward antisaccades was by 10-100 ms shorter than that of the rightward ones. Probably, this phenomenon reflects the dominance of the right hemisphere in spatial attention.  相似文献   

8.
On 42 subject three experimental series were carried out: in the first (12 persons) and second (24 persons) series the presented interval was limited by two short clicks, in the third series (6 persons)--by electrocutaneous stimuli. Duration of the stimuli was 1 ms. There were three regimes of work in the first and third series: the intervals successively increased from 100 to 500 ms with a step of 100 ms (1), decreased from 5000 to 100 ms (2) or varied in a random order (3). In the second series only the regime 3 was applied. In all series the method of temporal intervals reproduction was used. The means of the reproduction varied: in the second and third series the interval was reproduced by button pressing according to the presented duration: in the first series the end of the interval was marked by a short button push, and the beginning was the moment of the second stimulus presentation. With the first means a considerable overreproduction was observed of the presented duration at all intervals and all regimes. At the second and third series a phasic character of the reproduction duration was noted: up to 1000 ms the interval mostly was overestimated, over 2000 ms--it was significantly underestimated. It is suggested that as the estimation of the temporal interval implies some motor reaction, the afferent flow of signals from the active muscles can change the value of the reproduced duration. In the first series, the subjects probably do not take into account the time necessary for the realized signal perception.  相似文献   

9.
Experiments were conducted to see whether the cellular response to electromagnetic (EM) fields occurs through a detection process involving temporal sensing. L929 cells were exposed to 60 Hz magnetic fields and the enhancement of ornithine decarboxylase (ODC) activity was measured to determine cellular response to the field. In one set of experiments, the field was turned alternately off and on at intervals of 0.1 to 50 s. For these experiments, field coherence was maintained by eliminating the insertion of random time intervals upon switching. Intervals ≥ 1 s produced no enhancement of ODC activity, but fields switched at intervals ≥ 10 s showed ODC activities that were enhanced by a factor of approximately 1.7. These data indicate that it is the interval over which field parameters (e.g., amplitude or frequency) remain constant, rather than the interval over which the field is coherent, that is critical to cellular response to an EMF. In a second set of experiments, designed to determine how long it would take for cells to detect a change in field parameters, the field was interrupted for brief intervals (25–200 ms) once each second throughout exposure. In this situation, the extent of EMF-induced ODC activity depended upon the duration of the interruption. Interruptions ≥ 100 ms were detected by the cell as shown by elimination of field-induced enhancement of ODC. That two time constants (0.1 and 10 s) are involved in cellular EMF detection is consistent with the temporal sensing process associated with bacterial chemotaxis. By analogy with bacterial temporal sensing, cells would continuously sample and average an EM field over intervals of about 0.1 s (the “averaging” time), storing the averaged value in memory. The cell would compare the stored value with the current average, and respond to the EM field only when field parameters remain constant over intervals of approximately 10 s (the “memory” time). Bioelectromagnetics 18:388–395, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
The reflex cardiac response to activation (CBA) and inactivation (CBI) of the left and right carotid baroreceptors was studied in 30 healthy subjects, aged between 24 and 38 years. The CBA was evoked by applying negative pressure (from -20 to -60 mmHg) for 10 s to the left and right carotid sinus regions separately or both together, using two small neck capsules. The CBI was produced by applying left and right positive neck pressure (from 20 to 60 mmHg) for 10 s. The blood flow velocity was measured non-invasively with a Doppler scanner placed in the suprasternal notch. Blood flow acceleration was calculated and used as an indication of left cardiac contractility. Heart rate was measured continuously. Differences were found between right and left carotid sinus responses to CBA and CBI. The maximal response of the R-R interval was significantly greater during right CBA than during left CBA (the average gain: R-R.mmHg-1 2.69 ms.mmHg-1 and 1.75 ms.mmHg-1, respectively). Also, the reflex CBI response was significantly greater for the right (3.16 ms.mmHg-1) than for the left (2.22 ms.mmHg-1). The reflex decrease/increase in blood-flow acceleration in response to CBA/CBI was significantly greater during left than during right-sided activation/inactivation. It is suggested that the functional asymmetry was related to differences in right/left-sided cardiac innervation as well as to central ipsilateral projection of the carotid baroreceptor afferents to the nuclei tractus solitarii.  相似文献   

11.
The images of two fragments of simple geometrical figures (square, triangle, etc.) were successively presented to healthy adult subjects in the left and right visual fields with the interval of 20, 80 and 380 ms; the subjects had to compare them mentally and decide whether they formed a geometrical figure. The correctness of reaction was controlled by a computer which lightened on the screen the word "correct" or "error". The number of correct decisions was significantly greater in response to the stimuli, forming a regular figure and increased with the increase of interstimuli interval. At the interval of 120 ms, when no regular figure could be formed from two fragments, the number of correct decisions was greater if the stimuli were presented in the left visual field. The reaction time did not depend on the hemisphere to which information was addressed; it was less in response to the stimuli forming a regular figure, and became shorter with the increase of the interstimuli interval.  相似文献   

12.
In conditions of tachistoscopic presentation of visual stimuli, healthy (male and female) right-handed subjects carried out a paired comparison of the stimuli presented unilaterally and in the center of the visual field. In case of recognition of images of words and objects, the number of correct answers and motor reaction time usually did not significantly differ at two interstimuli intervals (1 and 10 s). In comparing images of faces, there also were no differences by the number of reactions, and the reaction time was less at the intervals of 1 s. The left hemisphere dominated at the identification of words and female faces, the right one--at the recognition of male faces. When the right visual field was stimulated images of various classes were recognized more differentially than at the stimulation of the left visual field. The male subjects had more prominent interhemispheric differences than the females. The increase of the interstimuli interval from 1 to 10 s brought to a weakening of the functional interhemispheric asymmetry and decreasing of the differences between the male and female subjects. The obtained data show that in the processes connected with short-time memory, functional interhemispheric asymmetry is basically formed at the initial stages of the information processing.  相似文献   

13.
We have measured the lateral mobility of individual alpha5 integrin molecules in ventral plasma membranes of fibroblasts, which were prepared by removal of apical surfaces and nuclei followed by elimination of actin filaments with gelsolin, an actin-severing protein. The cytoplasmic domain of individual integrin molecules was tagged with 100 nm fluorescent polystyrene bead, and motion of the bead was observed and video-recorded. Position of the bead in each frame was determined from the centroid of the fluorescence image, from which plots of the mean-square displacement against time intervals were derived. Within short intervals of time (<100 ms) the mean-square displacement was proportional to the time interval, and the averaged translational diffusion coefficient of (5.3+/-4.4) x 10(-10) cm2/s was obtained with a broad distribution of (1.3-20) x 10(-10) cm2/s. The broad distribution might reflect the oligomerized state of integrin. The largest diffusion coefficient was comparable to that of lipid molecules previously measured in cells and probably represented the diffusion of a single integrin molecule in the presence of little interference of actin cytoskeleton or extracellular matrix. In longer time intervals (>100 ms) the motion of the bead was confined in an area, the average diameter of which was 410+/-160 nm. This was similar to the values described in previous reports, in which the motion of other membrane receptors labeled on their extracellular domain was measured in living cells.  相似文献   

14.
To examine the effects of different rest intervals between sets on serum creatine kinase (CK) and lactate dehydrogenase (LDH) activity, 10 men (age = 25.6 ± 2.2 years, height = 173.1 ± 7.1 cm, and body mass = 75.9 ± 10.0 kg) participated in a randomized within-subject design that involved 4 resistance exercise sessions. Each session consisted of 4 sets of 10 repetitions with 10 repetition maximum loads for the chest press, pullover, biceps curl, triceps extension, leg extension, and prone leg curl. The sessions differed only in the length of the rest interval between sets and exercises, specifically: 60, 90, 120, 180 seconds. Serum CK and LDH were significantly (p < 0.05) elevated 24-72 hours after each session, with no significant differences between rest intervals (p = 0.94 and p = 0.99, respectively). The mechanical stress imposed by the 4 resistance exercise sessions invoked similar damage to the muscle fibers independent of the rest interval between sets. These data indicate that the accumulated volume of work is the primary determinant of muscle damage in trained subjects who are accustomed to resistance exercise with short rest intervals.  相似文献   

15.
We examined the effects of monochromatic light on the time sense and the central nervous system. Nine young adult volunteers participated in this study. They were exposed to red-light and blue-light environments (illuminance was kept at 310 lx). We evaluated the time sense by time-production tests of 90 s and 180 s and measured the P300 event-related potentials during an auditory oddball task. The 90-s time intervals produced by subjects in the two monochromatic light conditions were not significantly different. However, the 180-s time interval produced in the red-light condition (163.2+/-50.4 s) was significantly (p<0.05) shorter than that in the blue-light condition (199.0+/-54.4 s). The peak latency of P300 in the red light (322.2+/-26.6 ms) was found to be significantly (p<0.05) shorter also than that in the blue light (332.6+/-20.2 ms). The feelings measured by the visual analogue scales in the two light conditions were not significantly different. These results indicate that the time sense ran faster in the red-light than in the blue-light condition. We suggest that the higher activity in the central nervous system that is accounted for by the shorter latency of P300 is related to the acceleration of the time sense.  相似文献   

16.
The use- or rate-dependent effects of a continuous infusion of lidocaine (n = 6, serum level 3.1 +/- 0.34 micrograms/mL), mexiletine (n = 8, serum level 7.08 +/- 0.90 micrograms/mL), and quinidine (n = 6, serum level 6.8 +/- 1.22 micrograms/mL) were studied in an open chest canine preparation. A use-dependent effect on conduction was assessed by measuring the change in the His to surface ventricular activation (HV) time at differing atrial paced rates during drug infusion. Global sympathetic activation was achieved by nondecentralized left stellate ganglion stimulation (4-10 Hz, 6-12 V, 2 ms) and use dependence at the same cycle lengths was compared. Repolarization times were measured from epicardial monophasic action potentials recorded from the anterior left ventricle throughout the study. There was no significant change in the HV time during control studies with or without left stellate stimulation. Use-dependent slowing of conduction was seen in all studies during drug infusion. This was evident at cycle lengths of 300-190 ms for quinidine and at cycle lengths less than 250 ms for lidocaine and mexiletine. Stellate stimulation attenuated use dependence in all studies. This effect was significant from cycle lengths of 300-190 ms for lidocaine and quinidine and at cycle lengths shorter than 230 ms for mexiletine (p less than 0.05). Stellate stimulation significantly reduced use-dependent prolongation of the HV interval by an average of 60%. During stellate stimulation there was a nonsignificant trend towards cycle length independent shortening of action potential duration both at baseline and in the presence of drugs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.

Background

R-wave synchronised atrial pacing is an effective temporary pacing therapy in infants with postoperative junctional ectopic tachycardia. In the technique currently used, adverse short or long intervals between atrial pacing and ventricular sensing (AP–VS) may be observed during routine clinical practice.

Objectives

The aim of the study was to analyse outcomes of R-wave synchronised atrial pacing and the relationship between maximum tracking rates and AP–VS intervals.

Methods

Calculated AP–VS intervals were compared with those predicted by experienced pediatric cardiologist.

Results

A maximum tracking rate (MTR) set 10 bpm higher than the heart rate (HR) may result in undesirable short AP–VS intervals (minimum 83 ms). A MTR set 20 bpm above the HR is the hemodynamically better choice (minimum 96 ms). Effects of either setting on the AP–VS interval could not be predicted by experienced observers. In our newly proposed technique the AP–VS interval approaches 95 ms for HR > 210 bpm and 130 ms for HR < 130 bpm. The progression is linear and decreases strictly (? 0.4 ms/bpm) between the two extreme levels.

Conclusions

Adjusting the AP–VS interval in the currently used technique is complex and may imply unfavorable pacemaker settings. A new pacemaker design is advisable to allow direct control of the AP–VS interval.
  相似文献   

18.
The dependence of reaction time (RT) of reproduction of presented standard intervals on their duration (100-5000 ms) was studied on 30 subjects. The intervals were limited by two electrocutaneous stimuli or two clicks and were presented both at random and at a gradual increase or decrease, with a step of 100 ms. They were reproduced by pressing a button. The RTs duration depended on the presented interval within the range from 100 to 2000 ms. Such scatter of the upper limit is due to differences in the methods of presentation of the material and to individual features of the subjects. A presence of two mechanisms of time intervals reproduction is suggested for such experimental conditions: the image of the standard interval might be created either after its presentation or in the process of its presentation. Correspondingly, the RT dependence on the interval duration is manifest in the first case and is absent in the second.  相似文献   

19.
Study was carried out on 232 white rats, male and female, fixed in a hammock and subjected to painful stimulation of the tail. The first impulse of pain vocalization was analyzed. The rats were divided into three groups--with intact brain, with inactivated left or right hemisphere. The first impulses of rats pain vocalizations may be divided into short screams with 40-140 ms duration and long squeals of 140-420 ms duration. Unilateral cortex inactivation led to a reduction of the latency, increase of the peak amplitude and change of the per cent both of the pain screams and pain squeals. After elimination of the left hemisphere as compared with that of the right one, a shorter latency and a greater per cent of the pain screams was observed and a smaller per cent of pain squeals. The obtained data testify to the dominance of the left hemisphere in the control of pain vocalizations in rats.  相似文献   

20.
The present study proposed procedure for predicting an optimal left and right ventricular pacing interval delay (V-V interval). In 16 patients (heart failure, left bundle branch block, biventricular pacing) two methods (A and B) identifying optimal V-V interval were tested. Method A: predicted optimal V-V interval A (POVV-A) = electromechanical delay of the segment paced by left ventricle lead minus electromechanical delay of the segment paced by right ventricle lead. Method B: predicted optimal V-V interval B (POVV-B) = difference in the onset of aortic and pulmonary flows. Both methods were validated using echocardiography and right-sided heart catheterization. Cardiac output during POVV-A (4.6 l.min(-1)) was significantly better than that during POVV-A minus 20 ms (4.3 l.min(-1), p<0.01) and POVV-A plus 20 ms (4.3 l.min(-1), p<0.01), and than that during POVV-B (4.4 l.min(-1), p<0.05). LV dP/dt during POVV-A (818 mm Hg.s(-1), exceeded that during POVV-A plus 20 ms (717 mm Hg.s(-1),, p<0.05) and POVV-A minus 20 ms (681 mm Hg.s(-1), p<0.05), and that during POVV-B (727 mm Hg.s(-1), p<0.01). The time difference in onsets of myocardial deformation of left ventricle segment paced by the left ventricle and right ventricle lead allows identifying the optimal V-V interval and improves left ventricle performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号