首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using direct R-banding fluorescence in situ hybridization, we assigned five functional genes-growth hormone receptor (GHR), prolactin receptor (PRLR), spleen tyrosine kinase (SYK), aldolase B (ALDOB), and muscle skeletal receptor tyrosine kinase (MUSK)-to the chicken Z chromosome. SYK and MUSK were newly localized to the chicken Z chromosome in this study. GHR and PRLR were situated close to each other on the short arm of the chicken Z chromosome, as are their counterparts on human chromosome 5. SYK, MUSK, and ALDOB, which have been mapped to human chromosome 9, were localized to the long arm of the chicken Z chromosome. Thus, the present results indicate the presence of conserved synteny between the chicken Z chromosome and human chromosomes 5 and 9. Using the same method, four of the genes (GHR, PRLR, ALDOB, and MUSK) were assigned to the Japanese quail Z chromosome. The locations of these four Z-linked genes were conserved between chicken and Japanese quail. The results support the notion that the avian Z chromosome and the mammalian X chromosome did not evolve from a common ancestral linkage group.  相似文献   

2.
3.
To localize chicken genes and microsatellites, we used heterologous two-color FISH and chicken chromosome specific BAC clones. All BAC clones were verified by PCR. An analysis of the results has shown that maf gene forms one linkage group with the mc1r gene (CJA11), aldh1a1 forms one linkage group with the igvps gene (CJA15), pno forms one linkage group with the acaca gene (CJA19), fzf forms one linkage group with the bmp7 gene (CJA20), and cw01 forms one linkage group with the ubap2w gene (CJAW). Microsatellite ADL0254 was localized jointly with the insr gene (CJA28), and LEI0342 and MCW0330 microsatellites were localized jointly with the hspa5 gene (CJA17). If we consider that the nomenclature of quail chromosomes is the same as in chickens, their localization will correspond to the following chromosomes: CJA11 (maf), 15 (aldh1a1), 19 (pno), 20 (fzf), and W (cw01). The microsatellite ADL0254 turned out to be located on the same microchromosome as the insr gene (CJA 28), while microsatellites LEI0342 and MCW0330 were found to be in the same linkage group with the hspa5 gene (CJA17). The same work was also carried out on the chicken genome. Different results were obtained. The localization of the BAC clones containing the cw01 and fzf genes and the MCW0330 microsatellite was confirmed completely; they are located on GGAW, 20, and 17 chromosomes, respectively. Microsatellites ADL0254 and LEI0342 were each revealed to have two sites, whereas the localization of the remaining genes (maf, aldh1a1, and pno) on the GGA11, GGA15, and GGA19 chromosomes turned out to be untrue and needs further study.  相似文献   

4.
Comparative mapping of chicken and human genomes is described, primarily of regions corresponding to human chromosomes 1, 4 and 9. Segments of chicken orthologues of selected human genes were amplified from parental DNA of the East Lansing backcross reference mapping population, and the two parental alleles were sequenced. In about 80% of the genes tested, sequence polymorphism was identified between reference population parental DNAs. The polymorphism was used to design allele-specific primers with which to genotype the backcross panel and place genes on the chicken linkage map. Thirty-seven genes were mapped which confirmed the surprisingly high level of conserved synteny between orthologous chicken and human genes. In several cases the order of genes in conserved syntenic groups differs between the two genomes, suggesting that there may have been more frequent intrachromosomal inversions as compared with interchromosomal translocations during the separate evolution of avian and mammalian genomes.  相似文献   

5.
Comparative genomic analysis of two avian (quail and chicken) MHC regions   总被引:11,自引:0,他引:11  
We mapped two different quail Mhc haplotypes and sequenced one of them (haplotype A) for comparative genomic analysis with a previously sequenced haplotype of the chicken Mhc. The quail haplotype A spans 180 kb of genomic sequence, encoding a total of 41 genes compared with only 19 genes within the 92-kb chicken Mhc. Except for two gene families (B30 and tRNA), both species have the same basic set of gene family members that were previously described in the chicken "minimal essential" Mhc. The two Mhc regions have a similar overall organization but differ markedly in that the quail has an expanded number of duplicated genes with 7 class I, 10 class IIB, 4 NK, 6 lectin, and 8 B-G genes. Comparisons between the quail and chicken Mhc class I and class II gene sequences by phylogenetic analysis showed that they were more closely related within species than between species, suggesting that the quail Mhc genes were duplicated after the separation of these two species from their common ancestor. The proteins encoded by the NK and class I genes are known to interact as ligands and receptors, but unlike in the quail and the chicken, the genes encoding these proteins in mammals are found on different chromosomes. The finding of NK-like genes in the quail Mhc strongly suggests an evolutionary connection between the NK C-type lectin-like superfamily and the Mhc, providing support for future studies on the NK, lectin, class I, and class II interaction in birds.  相似文献   

6.
Using direct R-banding fluorescence in situ hybridization, we determined the location of 31 functional genes on chicken chromosomes. Replication R-banded chromosomes were obtained by synchronizing splenocyte cultures with excessive thymidine, followed by BrdU treatment. Thirty-one functional genes were directly localized to banded chicken chromosomes using genomic DNA and cDNA fragments as probes. The possibility of conserved linkage homology between chicken and human chromosomes was demonstrated for seven chicken chromosome regions (1p, 1q, 2q, 4p, 4q, and 5q).  相似文献   

7.
Identification of predictive markers in QTL regions that impact production traits in commercial populations of swine is dependent on construction of dense comparative maps with human and mouse genomes. Chromosomal painting in swine suggests that large genomic blocks are conserved between pig and human, while mapping of individual genes reveals that gene order can be quite divergent. High-resolution comparative maps in regions affecting traits of interest are necessary for selection of positional candidate genes to evaluate nucleotide variation causing phenotypic differences. The objective of this study was to construct an ordered comparative map of human chromosome 10 and pig chromosomes 10 and 14. As a large portion of both pig chromosomes are represented by HSA10, genes at regularly spaced intervals along this chromosome were targeted for placement in the porcine genome. A total of 29 genes from human chromosome 10 were mapped to porcine chromosomes 10 (SSC10) and 14 (SSC14) averaging about 5 Mb distance of human DNA per marker. Eighteen genes were assigned by linkage in the MARC mapping population, five genes were physically assigned with the IMpRH mapping panel and seven genes were assigned on both maps. Seventeen genes from human 10p mapped to SSC10, and 12 genes from human 10q mapped to SSC14. Comparative maps of mammalian species indicate that chromosomal segments are conserved across several species and represent syntenic blocks with distinct breakpoints. Development of comparative maps containing several species should reveal conserved syntenic blocks that will allow us to better define QTL regions in livestock.  相似文献   

8.
Comparative fluorescence in situ hybridization mapping using DNA libraries from flow-sorted mouse chromosomes and region-specific mouse BAC clones on rat chromosomes reveals chromosomal homologies between mouse (Mus musculus, MMU) and rat (Rattus norvegicus, RNO). Each of the MMU 2, 3, 4, 6, 7, 9, 12, 14, 15, 16, 18, 19, and X chromosomes paints only a single rat chromosome or chromosome segment and, thus, the chromosomes are largely conserved between the two species. In contrast, the painting probes for MMU chromosomes 1, 5, 8, 10, 11, 13, and 17 produce split hybridization signals in the rat, disclosing evolutionary chromosome rearrangements. Comparative mapping data delineate several large linkage groups on RNO 1, 2, 4, 7, and 14 that are conserved in human but diverged in the mouse. On the other hand, there are linkage groups in the mouse, i.e., on MMU 1, 8, 10, and 11, that are disrupted in both rat and human. In addition, we have hybridized probes for Nap2, p57, Igf2, H19, and Sh3d2c from MMU 7 to RNO 1q and found the orientation of the imprinting gene cluster and Sh3d2c to be the same in mouse and rat. Hybridization of rat genomic DNA shows blocks of (rat-specific) repetitive sequences in the pericentromeric region of RNO chromosomes 3-5, 7-13, and 20; on the short arms of RNO chromosomes 3, 12, and 13; and on the entire Y chromosome.  相似文献   

9.
10.
Dermatofibrosarcoma protuberans (DFSP) is a tumor of low or intermediate malignant potential with a tendency for recurrence, but low rate of metastasis. The tumorigenesis of DFSP has recently been shown to be associated with the fusion of the collagen type I alpha 1 (COL1A1) and platelet-derived growth factor B-chain (PDGFB) genes, often as a consequence of translocation t(17;22)(q22;q13). Cytogenetically, DFSP is often characterized by supernumerary ring chromosomes containing material from chromosomes 17 and 22. A subset of DFSPs undergo fibrosarcomatous transformation de novo or upon recurrence, and contain components indistinguishable from fibrosarcoma (FS-DFSP). The fibrosarcomatous transformation appears to carry an increased risk for recurrence and metastasis, and is considered to represent tumor progression. The molecular cytogenetic events contributing to tumor progression are unknown. We used comparative genomic hybridization to analyze DNA copy number changes in 11 cases of typical DFSP and 10 cases of FS-DFSP. All cases in both groups were found to exhibit a gain or high-level amplification on chromosome 17q and the majority also on 22q. This finding is in line with previous studies, and suggests further that not only the COL1A1/PDGFB fusion gene formation but also the role of DNA copy number gains in the 17q and 22q regions is crucial per se in the pathogenesis of DFSP. Even though FS-DFSPs displayed a trend toward increase in the number of DNA copy number changes, the difference was not statistically significant, which indicates that mechanisms other than copy number changes are important in the transformation process of DFSP.  相似文献   

11.
Recent progress of chicken genome projects has revealed that bird ZW and mammalian XY sex chromosomes were derived from different autosomal pairs of the common ancestor; however, the evolutionary relationship between bird and reptilian sex chromosomes is still unclear. The Chinese soft-shelled turtle (Pelodiscus sinensis) exhibits genetic sex determination, but no distinguishable (heteromorphic) sex chromosomes have been identified. In order to investigate this further, we performed molecular cytogenetic analyses of this species, and thereby identified ZZ/ZW-type micro-sex chromosomes. In addition, we cloned reptile homologues of chicken Z-linked genes from three reptilian species, the Chinese soft-shelled turtle and the Japanese four-striped rat snake (Elaphe quadrivirgata), which have heteromorphic sex chromosomes, and the Siam crocodile (Crocodylus siamensis), which exhibits temperature-dependent sex determination and lacks sex chromosomes. We then mapped them to chromosomes of each species using FISH. The linkage of the genes has been highly conserved in all species: the chicken Z chromosome corresponded to the turtle chromosome 6q, snake chromosome 2p and crocodile chromosome 3. The order of the genes was identical among the three species. The absence of homology between the bird Z chromosome and the snake and turtle Z sex chromosomes suggests that the origin of the sex chromosomes and the causative genes of sex determination are different between birds and reptiles.  相似文献   

12.
13.
Pepsinogens of quail and chick, specific to adult proventriculus, were purified and their properties were compared. These two pepsinogens are similar in regard to enzymological characters, amino acid compositions, and immunological characters.  相似文献   

14.
Molecular mapping of rice chromosomes   总被引:108,自引:0,他引:108  
Summary We report the construction of an RFLP genetic map of rice (Oryza sativa) chromosomes. The map is comprised of 135 loci corresponding to clones selected from a PstI genomic library. This molecular map covers 1,389 cM of the rice genome and exceeds the current classical maps by more than 20%. The map was generated from F2 segregation data (50 individuals) from a cross between an indica and javanica rice cultivar. Primary trisomics were used to assign linkage groups to each of the 12 rice chromosomes. Seventy-eight percent of the clones assayed revealed RFLPs between the two parental cultivars, indicating that rice contains a significant amount of RFLP variation. Strong correlations between size of hybridizing restriction fragments and level of polymorphism indicate that a significant proportion of the RFLPs in rice are generated by insertions/delections. This conclusion is supported by the occurrence of null alleles for some clones (presumably created by insertion or deletion events). One clone, RG229, hybridized to sequences in both the indica and javanica genomes, which have apparently transposed since the divergence of the two cultivars from their last common ancestor, providing evidence for sequence movement in rice. As a by product of this mapping project, we have discovered that rice DNA is less C-methylated than tomato or maize DNA. Our results also suggest the notion that a large fraction of the rice genome (approximately 50%) is single copy.  相似文献   

15.
We have isolated an alpha satellite DNA clone, pG3.9, from gorilla DNA. Fluorescence in situ hybridization on banded chromosomes under high stringency conditions revealed that pG3.9 identifies homologous sequences at the centromeric region of ten gorilla chromosomes, and, with few exceptions, also recognizes the homologous chromosomes in human. A pG3.9-like alphoid DNA is present on a larger number of orangutan chromosomes, but, in contrast, is present on only tow chromosomes in the chimpanzee. These results show that the chromosomal subsets of related alpha satellite DNA sequences may undergo different patterns of evolution.by J.B. Rattner  相似文献   

16.
17.
Observations were made of the C-banding patterns in several cells from 182 Japanese quail embryos to detect presence of stable variants. Each of the eight largest autosomes contains a C-band at the centromeric region. The short arm of autosome 8 is C-band positive, as is the entire W chromosome. The Z chromosome consistently contains an interstitial C-band in the long arm and a less prominent one in the short arm. Distinct variants of chromosome 4 and the Z chromosome were observed. In the Z chromosome a C-band at the terminal region of the short arm was markedly elongated in some embryos. Likewise, the short arm of chromosome 4 was much more prominent in one or both of the homologues in some embryos. Most of the microchromosomes contain a prominent C-band. The heteromorphisms are useful chromosome markers to detect the origins of heteroploidy in early embryos.  相似文献   

18.
Summary Using antibodies against the fetal and adult forms of - and -globin, it has been shown that erythropoiesis in the para-aortic foci (PAF) constitutes a major species-specific difference between chicken and quail embryos. In quail embryos, para-aortic foci are rare, small and rather heterogeneous with regard to their erythropoietic and haemopoietic cell composition. In contrast, the PAFs in chicken embryos are abundant and consist of large numbers of erythropoietic cells.In both species a time difference (approximately 1 day) is observed between the first expression of the fetal - and -globin and the adult - and -globin in erythropoietic cells. Adult erythropoiesis in both species can be detected first in the stalk of the yolk sac; this is similar to the situation in mammalian and amphibian species. From this time onward the number of circulating adult erythrocytes increases steadily. Whereas in chicken, large intraembryonic foci that can serve as sources for these adult cells arise concomitantly, no such foci can be detected in quail embryos, suggesting that the quail yolk sac is a major source for these adult red blood cells.  相似文献   

19.
Comparative anchor tagged sequence (CATS) consensus primers from loci mapped to human chromosomes 9, 10, 20, and 22 have been used to amplify homologous loci in pigs. Of 53, CATS primers tested in pigs, only 23 yielded products homologous to the human locus (42% success). Ten loci were physically mapped (43% success rate for verified products, but only 19% for primers tested). Due to lack of polymorphism, linkage mapping was possible only for AMBP. Map locations were consistent with human/pig ZOO-FISH, except for ADRA1A, whose position is still equivocal in humans. These CATS primers have made very limited contributions to pig/human comparative gene mapping because of low efficiency of amplification of orthologous porcine product, frequent amplification from rodent template in a somatic hybrid panel and low level of polymorphism.  相似文献   

20.
Interleukin 1 isoforms (IL-1) are major regulators of vertebrate immune responses. In the mammalian CNS, this function is reflected in physiological and anatomical evidence implicating IL-1 in a suite of behaviors associated with sickness. Although birds show sickness behavior, a parallel role of IL-1 in birds has not been investigated. As proinflammatory effects of IL-1 are mediated via the IL-1 type I receptor (IL-1RI), we investigated the distribution of IL-1RI protein and mRNA after lipopolysaccharide challenge in brains of two avian species, the chicken and Japanese quail. In some respects, the neuroanatomic distribution of IL-1R mRNA and protein in chicken and Japanese quail resembled that reported in mammals and was consistent with its putative role in the physiology and behavior of sickness. For example, we found IL-1RI mRNA or IL-1RI immunoreactivity in lemnothalamic visual projection areas of the pallium, surrounding blood vessels in pallial areas, in the dorsomedial nucleus of the hypothalamus, in the nucleus taenia, in cerebeller Purkinje cells and the motor components of the trigeminal and vagus nuclei. However, in contrast to mammals, we did not find evidence of IL1-RI receptors in medial or lateral pallial structures, paraventricular nucleus, areas homologous to the arcuate nucleus, the choroid plexus, organum vasculosum of the lamina terminalis or the reticular activating system. The distribution of IL-1RI suggests that a role for IL-1 in sickness behavior is conserved in birds, but that roles in other putative mammalian functions (e.g. hypothalamic-pituitary-adrenal and gonadal axes regulation, transport through barrier-related tissues, arousal) may differ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号