首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Three pepsins were purified from the gastric mucosa of Atlantic cod (Gadus morhua). 2. The enzymes, called Pepsin I and Pepsin IIa and b, had isoelectric points 6.9, 4.0 and 4.1, respectively, and digested hemoglobin at a maximal rate at a pH of approximately 3. 3. They resembled bovine cathepsin D in being unable to digest the mammalian pepsin substrate N-acetyl-L-phenylalanyl-3,5-diiodo-L-tyrosine. 4. Specificity constants (kcat/Km) for the cod pepsins were lower than for porcine pepsin, and they expressed higher substrate affinity and physiological efficiency at pH 3.5 than at pH 2. 5. The cod pepsins are glycoproteins, and their amino acid composition resembles that of porcine cathepsin D more than that of porcine pepsin. 6. The N-terminal sequence of Atlantic cod pepsins is substantially different from that of porcine pepsin. This indicates a significant evolutionary gap between fish and mammalian pepsins.  相似文献   

2.
Human pepsins 1 and 2 attack the B-chain of oxidized insulin at pH 1.7 at the same bonds as does human pepsin 3. At pH 3.5, pepsins 1 and 2 attack insulin B-chain at essentially the same bonds as at pH 1.7, but more slowly. For all three enzymes, the first bond to be hydrolysed is Phe(25)-Tyr(26), followed simultaneously by Glu(13)-Ala(14), Leu(15)-Tyr(16) and Tyr(16)-Leu(17). Human pepsin 5, however, attacks Phe(24)-Phe(25) first of all, followed by Leu(15)-Tyr(16) and Tyr(16)-Leu(17). The results suggest that each pepsin has only one active site. Acid hydrolysis indicates that the sites of enzymic cleavage are not bonds with an inherent instability at low pH.  相似文献   

3.
The separation of pepsin isoenzymes 1, 2, 3 and 5 (gastricsin) in human gastric juice was effected by chromatography on Mono Q ion-exchanger, and slow-moving proteinase was purified to homogeneity by using a modified procedure incorporating a novel affinity-chromatography step. The pH-activity profiles of these enzymes with mucus glycoprotein and basement-membrane substrates were determined; the profiles for pepsin 2 were noticeably different, and, in general, the pH optima for the hydrolysis of basement membrane were more acidic. Pepsin 1 expressed larger specificity constants (kcat./Km) than pepsin 3 with a series of synthetic peptide substrates, reflecting greater binding (smaller Km) by pepsin 1. Inhibitor studies at pH 1.7 and 4.5 with a series of P2-substituted lactoyl-pepstatins implied that valine at position P2 was optimal for inhibiting pepsins 1, 2 and 3 but detrimental for pepsin 5, whereas lysine at position P2 was tolerated well by pepsin 5 but not by pepsins 1, 2 and 3. The potency of lactoyl-pepstatin with lysine at position P2 did not increase as a function of pH. P2-substituted lactoyl-pepstatins failed to show any inhibitory selectivity among pepsins 1, 2 and 3.  相似文献   

4.
Two pepsins (A and B) were purified from the stomach of pectoral rattail (Coryphaenoides pectoralis) by acidification, ammonium sulfate precipitation, gel filtration chromatography and anion exchange chromatography to obtain a single band on native-PAGE and SDS-PAGE. The purities of pepsin A and B were increased to 7.1- and 13.0-fold with approximately 5.7% and 2.2% yield, respectively. Pepsin A and B had the apparent molecular weights of 35 and 31 kDa, respectively, when analyzed using SDS-PAGE and Sephacryl S-200 gel filtration. Pepsin A and B showed maximal activity at pH 3.0 and 3.5, respectively, and had the same optimal temperature at 45 °C using hemoglobin as a substrate. Both pepsin A and B were stable in the pH range of 2.0–6.0 but were unstable at the temperatures greater than 40 °C. Activity of both pepsins was inhibited by pepstatin A and was activated by divalent cations, indicating pepsin characteristics. Activities of both pepsins continuously decreased as NaCl concentration increased (0–30%). The enzymes had high affinity and activity toward hemoglobin with Km and Kcat values of 98–152 μM and 32–50 S− 1, respectively. Purified pepsins generally showed the similar characteristics to other fish pepsins.  相似文献   

5.
The sequence of 96 amino acid residues from the COOH-terminus of the active subunit of cholera toxin, A1, has been determined as PheAsnValAsnAspVal LeuGlyAlaTyrAlaProHisProAsxGluGlu GluValSerAlaLeuGlyGly IleProTyrSerGluIleTyrGlyTrpTyrArg ValHisPheGlyValLeuAsp GluGluLeuHisArgGlyTyrArgAspArgTyr TyrSerAsnLeuAspIleAla ProAlaAlaAspGlyTyrGlyLeuAlaGlyPhe ProProGluHisArgAlaTrp ArgGluGluProTrpIleHisHisAlaPro ProGlyCysGlyAsnAlaProArg(OH). This is the largest fragment obtained by BrCN cleavage of the subunit A1 (Mr 23,000), and has previously been indicated to contain the active site for the adenylate cyclase-stimulating activity. Unequivocal identification of the COOH-terminal structure was achieved by separation and analysis of the terminal peptide after the specific chemical cleavage at the only cysteine residue in A1 polypeptide. The site of self ADP-ribosylation in the A1 subunit [C. Y. Lai, Q.-C. Xia, and P. T. Salotra (1983) Biochem. Biophys. Res. Commun.116, 341–348] has now been identified as Arg-50 of this peptide, 46 residues removed from the COOH-terminus. The cysteine that forms disulfide bridge to A2 subunit in the holotoxin is at position 91.  相似文献   

6.
1. Two pepsins, designated Pepsin I and Pepsin II, were isolated and partially characterized from the stomach of the adult stage salmon Oncorhynchus keta. This stage is developed in a marine environment. 2. One pepsin, designated Pepsin II, was isolated from the stomach of the juvenile stage salmon Oncorhynchus keta. This stage is developed in an estuarine environment. 3. The enzymes were partially purified by ammonium sulfate precipitation, ion exchange chromatography and gel filtration. 4. Pepsins I and II from adults and Pepsin II from juvenile showed proteolytic activity on acid-denatured hemoglobin with a pH optimum of 3. 5. The mol. wt determined by gel filtration on Sephadex G-100 of Pepsin I from juvenile species was found to be 32,000 whereas a value of 27,000 was determined for Pepsin II from juvenile and adult fish. 6. In contrast with Pepsin II, Pepsin I was activated by NaCl. It is suggested that the appearance of NaCl-activated pepsin would represent and adaptive response of the organism to the change from a low to a high salinity environment.  相似文献   

7.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

8.
The amino acid sequence of a protease inhibitor isolated from the hemolymph of Sarcophaga bullata larvae was determined by tandem mass spectrometry. Homology considerations with respect to other protease inhibitors with known primary structures assisted in the choice of the procedure followed in the sequence determination and in the alignment of the various peptides obtained from specific chemical cleavage at cysteines and enzyme digests of the S. bullata protease inhibitor. The resulting sequence of 57 residues is as follows: Val Asp Lys Ser Ala Cys Leu Gln Pro Lys Glu Val Gly Pro Cys Arg Lys Ser Asp Phe Val Phe Phe Tyr Asn Ala Asp Thr Lys Ala Cys Glu Glu Phe Leu Tyr Gly Gly Cys Arg Gly Asn Asp Asn Arg Phe Asn Thr Lys Glu Glu Cys Glu Lys Leu Cys Leu.  相似文献   

9.
17beta-Hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17beta-HSDcl) is an NADPH-dependent member of the short-chain dehydrogenase/ reductase superfamily. To study the catalytic properties of this enzyme, we prepared several specific mutations of 17beta-HSDcl (Tyr167Phe, His164Trp/Gly, Tyr212Ala). Wild-type 17beta-HSDcl and the 17beta-HSDcl mutants were evaluated by chromatographic, kinetic and thermodynamic means. The Tyr167Phe mutation resulted in a complete loss of enzyme activity, while substitution of His164 with Trp and Gly both resulted in higher specificity number (V/K) for the steroid substrates, which are mainly a consequence of easier accessibility of steroid substrates to the active-site hollow under optimized conditions. The Tyr212Ala mutant showed increased activity in the oxidative direction, which appears to be a consequence of increased NADPH dissociation. The kinetic characterizations and thermodynamic analyses also suggest that His164 and Tyr212 in 17beta-HSDcl have a role in the opening and closing of the active site of this enzyme and in the discrimination between oxidized and reduced coenzyme.  相似文献   

10.
A single stained band containing approximately 5 micrograms of protein was cut out of a polyacrylamide gel and subjected to hydrolysis together with the gel. The hydrolysate was subsequently analyzed for its amino acid content by high-performance liquid chromatography and postlabeling with o-phthalaldehyde. Bovine serum albumin, ribonuclease B, ovalbumin, pepsin, and chymotrypsinogen A were analyzed by this method, and their amino acid compositions were found to be in good agreement with the reported values. By this method, it is possible to quantitate 16 amino acids: Asx, Thr, Ser, Glx, Pro, Cys, Gly, Ala, Val, Ile, Leu, Tyr, Phe, His, Lys, and Arg. Thioglycolic acid is effective protection against the decomposition of Tyr, Cys, and Met; however, the recovery of Met is inconsistent. This method might be very helpful for the amino acid analysis of proteins of multicomponent systems, especially, those which can be resolved only by polyacrylamide gel electrophoresis.  相似文献   

11.
Replacement of Tyr52 with Val or Ala in Lactobacillus pentosus d-lactate dehydrogenase induced high activity and preference for large aliphatic 2-ketoacids and phenylpyruvate. On the other hand, replacements with Arg, Thr or Asp severely reduced the enzyme activity, and the Tyr52Arg enzyme, the only one that exhibited significant enzyme activity, showed a similar substrate preference to the Tyr52Val and Tyr52Ala enzymes. Replacement of Phe299 with Gly or Ser greatly reduced the enzyme activity with less marked change in the substrate preference. Except for the Phe299Ser enzyme, these mutant enzymes with low catalytic activity consistently stimulated NADH oxidation in the absence of 2-ketoacid substrates. However, the double mutant enzymes, Tyr52Arg/Phe299Gly and Tyr52Thr/Phe299Ser, did not exhibit synergically decreased enzyme activity or the substrate-independent NADH oxidation, but rather increased activities toward certain 2-ketoacid substrates. These results indicate that the coordinative combination of amino acid residues at two positions is pivotal in both the functional recognition of the 2-ketoacid side chain and the protection of the bound NADH molecule from the solvent. Multiplicity in such combinations appears to provide d-LDH-related 2-hydroxyacid dehydrogenases with a great variety of catalytic and physiological functions.  相似文献   

12.
本文用手动逐步法,以Boc-Ala-OCH_2-Pam树脂为载体,Boc保护的α-氨基酸为原料合成了十一个hTGF-α(人体转化生长因子-α)类似物。经过HF裂解、透析、二硫键配对合环及HPLC纯化,得到平均收率为2.9%的纯品,其氨基酸组成分析及质谱数据均符合要求。在构效关系研究中,将合成的hTGF-α类似物进行与A431细胞膜上的EGF受体竞争性结合的试验。以半抑制浓度(IC-50)为指标,发现Tyr~(38)及Arg~(42)二个残基对hTGF-α竞争性与EGF受体结合的活性具有突出的作用。  相似文献   

13.
The substrate specificity of cucumisin [EC 3.4.21.25] was identified by the use of the synthetic peptide substrates Leu(m)-Pro-Glu-Ala-Leu(n) (m = 0-4, n = 0-3). Neither Pro-Glu-Ala-Leu (m = 0) nor Leu-Pro-Glu-Ala (n = 0) was cleaved by cucumisin, however other analogus peptides were cleaved between Glu-Ala. The hydrolysis rates of Leu(m)-Pro-Glu-Ala-Leu increased with the increase of m = 1 to 2 and 3, but was however, essentially same with the increase of m = 3 to 4. Similarly, the hydrolysis rates of Leu-Leu-Pro-Glu-Ala-Leu(n) increased with the increase of n = 0 to 1 and 2, but was essentially same with the increase of n = 2 to 3. Then, it was concluded that cucumisin has a S5-S3' subsite length. In order to identify the substrate specificity at P1 position, Leu-Leu-Pro-X-Ala-Leu (X; Gly, Ala, Val, Leu, Ile, Pro, Asp, Glu, Lys, Arg, Asn, Gln, Phe, Tyr, Ser, Thr, Met, Trp, His) were synthesized and digested by cucumisin. Cucumisin showed broad specificity at the P1 position. However, cucumisin did not cleave the C-terminal side of Gly, Ile, Pro, and preferred Leu, Asn, Gln, Thr, and Met, especially Met. Moreover, the substrates, Leu-Leu-Pro-Glu-Y-Leu (Y; Gly, Ala, Ser, Leu, Val, Glu, Lys, Phe) were synthesized and digested by cucumisin. Cucumisin did not cleave the N-terminal side of Val but preferred Gly, Ser, Ala, and Lys especially Ser. The specificity of cucumisin for naturally occurring peptides does not agree strictly with the specificity obtained by synthetic peptides at the P1 or P1' position alone, but it becomes clear that the most of the cleavage sites on naturally occurring peptides by cucumisin contain suitable amino acid residues at P1 and (or) P1' positions. Moreover, cucumisin prefers Pro than Leu at P2 position, indicating that the specificity at P2 position differs from that of papain.  相似文献   

14.
Three type-A and two type-C pepsinogens, namely, pepsinogens A-1, A-2, A-3, C-1, and C-2, were purified from adult goat abomasum. Their relative levels in abomasal mucosa were 27, 19, 14, 25, and 15%, respectively. Amino acid compositions were quite similar between isozymogens of respective types, but different between the two types especially in the Glx/Asx and Leu/Ile ratios. NH2-terminal amino acid sequences of pepsinogens A-3 and C-2 were SFFKIPLVKKKSLRQNLIEN- and LVKIPLKKFKSIRETM-, respectively. Pepsins A and C showed maximal hemoglobin-digestive activity at around pH 2 and 3, respectively, and specific activities of pepsins C were higher than those of pepsins A. Two subtypes of pepsin A were obvious, namely pepsin A-2/3 which maintains its activity in the weakly acidic pH region over pH 3 and pepsin A-1, which does not. Hydrolysis of oxidized insulin B chain by goat pepsins A occurred primarily at Ala14-Leu15 and Leu15-Tyr16 bonds.  相似文献   

15.
The flowers of cardoon (genus Cynara) are traditionally used in Portugal for cheese making. In this work the vegetable rennet of the species Cynara cardunculus L. was characterized in terms of enzymic composition and proteolytic specificity of its proteinases (cardosin A and cardosin B). Cardosin A was found to cleave insulin B chain at the bonds Leu15-Tyr16, Leu17-Val18 and Phe25-Tyr26. In addition to the bonds mentioned cardosin B cleaves also Glu13-Ala14, Ala14-Leu15 and Phe24-Phe25 indicating that it has a broader specificity. The kinetic parameters for the hydrolysis of the synthetic peptide Leu-Ser-Phe(NO2)-Nle-Ala-Leu-oMe were also determined and compared to those of chymosin and pepsin. The results obtained indicate that in terms of specificity and kinetic parameters cardosin A is similar to chymosin whereas cardosin B is similar to pepsin. It appears therefore that the enzyme composition of cardoon rennet closely resembles that of calf rennet.  相似文献   

16.
Selective cleavage of peptide bonds by cathepsins L and B from rat liver   总被引:1,自引:0,他引:1  
The selective cleavage of peptide bonds by cathepsin L from rat liver was examined with a hexapeptide, luteinizing hormone releasing hormone, neurotensin and oxidized insulin A chain as model substrates. The specificity of cathepsin L was compared with that of cathepsin B. Cathepsin L cleaved peptide bonds that have a hydrophobic amino acid, such as Phe, Leu, Val, and Trp or Tyr, in position P2. A polar amino acid, such as Tyr, Ser, Gly, Glu, Asp, Gln, or Asn, in position P1. enhanced the susceptibility of the peptide bond to cathepsin L, though the importance of the amino acid residue in position P1' was not as great as that of the amino acid in position P2 for the action of cathepsin L. These results suggest that, in contrast to cathepsin B, cathepsin L shows very clear specificity.  相似文献   

17.
Using synthetic octapeptides, we examined the amino-terminal sequence requirements for substrate recognition by myristoyl-CoA:protein N-myristoyl transferase (NMT). NMT is absolutely specific for peptides with amino-terminal Gly residues. Peptides with Asn, Gln, Ser, Val, or Leu penultimate to the amino-terminal Gly were substrates, whereas peptides with Asp, D-Asn, Phe, or Tyr at this position were not myristoylated. Peptides with aromatic residues at this position competitively inhibited myristoylation of substrates, introducing the possibility of developing specific in vivo inhibitors of NMT. Peptides having sequences which correspond to those of known N-myristoyl proteins, including p60src, appear to be recognized by a single enzyme, and yeast and murine NMT have identical substrate specificities. The catalytic selectivity of NMT for myristoyl transfer accounts for the remarkable acyl chain specificity of this enzyme.  相似文献   

18.
1. Alkali (pH 7.6)-denatured pepsins from swine, cattle, and guinea pigs precipitate in swine pepsin antiserum. Similarly treated pepsins from the rabbit, chicken, and shark do not. 2. Pepsin antisera react with both pepsin and pepsinogen, but do not react with the serum proteins from the homologous species. 3. Pepsinogen antisera react with pepsinogen, but not with twice crystallized pepsin, nor with the serum proteins from the homologous species. Positive reactions between activated pepsinogen and pepsinogen antiserum have been observed. It was possible to remove the reacting material from either the pepsinogen or the activated pepsinogen mixture. 4. Antisera made with serum proteins do not react with the homologous pepsin or pepsinogen.  相似文献   

19.
为了研究胰岛素受体结合部位的结构和功能,设计并用固相方法合成了3个六肽.在浓度大于1×103nmol/L时,cyclo(Phe-Phe-Val-Leu-Tyr-Gly)具有明显的胰岛素受体结合活力;H-Phe-Phe-Val-Leu-Tyr-Gly-OH的这一活力则不明显;而H-Gly-Glu-Arg-Gly-Phe-Phe-OH则增强胰岛素和其受体的亲和性.然而,它们都没有体内生物活性.这表明:环六肽部分模拟了胰岛素受体结合部位的空间构象;胰岛素受体结合部位的疏水性和其中的B23Gly-B24Phe-B25Phe对胰岛素和其受体的结合起重要作用.  相似文献   

20.
We investigated the inhibitory mechanisms of daphnodorins for human chymase using three-dimensional molecular modeling. In daphnodorin A-human chymase complex, daphnodorin A was fixed to the active site via hydrogen bonds with Ala177, Phe29, and Gly199 in human chymase, and it formed hydrogen bonds with Ser182 and Gly180, and this complex was formed stably. In daphnodorin B-human chymase complex, daphnodorin B formed hydrogen bonds with Lys28 and Phe29 in human chymase, but it could not form hydrogen bonds with Gly199, Ala177, and Lys179. The phenyl group of daphnodorin B shifted from the P1 hole in human chymase in comparison with that of daphnodorin A. For the inhibition of human chymase by daphnodorins, we indicated that it was significant whether daphnodorins formed hydrogen bonds with Ala177 located in the P1 hole, Ser182 located in the active site, Gly180 located in the anion hole, and with Gly199, Phe29, and Lys28 in human chymase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号