首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Poly(sodium acrylate)-utilizing microorganisms, L7-A and L7-B, were first isolated from soil. When L7-A and L7-B were used in a mixture and cultured with a 0.2% poly(sodium acrylate) nutrient source, polymers having average Mw of 1000, 1500, and 4000 were degraded to extents of 73%, 49%, and 20%, respectively, in 2 weeks. The biodegradability of poly(sodium acrylate) of high molecular weight after uv irradiation was also examined.  相似文献   

2.
Poly(propylene succinate) (PPSu) polymers of average molecular weights from 2,800 to 13,100 g/mol were synthesized and characterized with regard to crystallinity, thermal properties, and cytocompatibility. Higher molecular weight samples exhibited lower degree of crystallinity and melted at lower temperatures. Melting of the polymer appeared to begin at 38°C. PPSu cytocompatibility was investigated based on human umbilical vein endothelial cells viability in the presence of increasing concentrations of polymer, and it was found that PPSu exhibited comparable cytocompatibility with poly(dl-lactide). The feasibility of applying PPSu as a drug carrier was shown for the first time, as solid dispersions and nanoparticles of sodium fluvastatin based in PPSu were prepared. Drug release rates decreased with increasing the molecular weight of PPSu in both solid dispersions and nanoparticles. For dispersions prepared from PPSu of the same molecular weight, drug release rates increased with drug loading. It appears that PPSu applicability as a drug carrier warrants further consideration.  相似文献   

3.
Streptomyces coelicolor 1A and Pseudomonas citronellolis were able to degrade synthetic high-molecular-weight poly(cis-1,4-isoprene) and vulcanized natural rubber. Growth on the polymers was poor but significantly greater than that of the nondegrading strain Streptomyces lividans 1326 (control). Measurement of the molecular weight distribution of the polymer before and after degradation showed a time-dependent increase in low-molecular-weight polymer molecules for S. coelicolor 1A and P. citronellolis, whereas the molecular weight distribution for the control (S. lividans 1326) remained almost constant. Three degradation products were isolated from the culture fluid of S. coelicolor 1A grown on vulcanized rubber and were identified as (6Z)-2,6-dimethyl-10-oxo-undec-6-enoic acid, (5Z)-6-methyl-undec-5-ene-2,9-dione, and (5Z,9Z)-6,10-dimethyl-pentadec-5,9-diene-2,13-dione. An oxidative pathway from poly(cis-1,4-isoprene) to methyl-branched diketones is proposed. It includes (i) oxidation of an aldehyde intermediate to a carboxylic acid, (ii) one cycle of β-oxidation, (iii) oxidation of the conjugated double bond resulting in a β-keto acid, and (iv) decarboxylation.  相似文献   

4.
Methanogenic Degradation of Poly(3-Hydroxyalkanoates)   总被引:5,自引:3,他引:2       下载免费PDF全文
Poly(3-hydroxybutyrate) and the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) were fermented to methane and carbon dioxide within 16 days by an anaerobic sewage sludge consortium. The cultures adapted quickly to metabolize these polymeric compounds, and between 83 and 96% of the substrate carbon was transformed to methane and carbon dioxide.  相似文献   

5.
During the last decade, lipase has gained interest as a biocatalyst for synthesis in organic solvent systems. The paper describes the lipase catalyzed oligocondensation of bis(2-chloroethyl) succinate and 1,4-butanediol to obtain poly (1,4-butanediol succinate). The reaction was carried out at 37°C in organic solvents without any addition of water. Various lipases and solvents were screened to obtain a maximum degree of polymerization. Based on gel permeation chromatography, the highest average molecular weight of the oligomer obtained was 1570 g/mol with a polydispersity of 1.2 when a mixture of 70% diisopropyl ether and 30% chloroform was used as a solvent. The degree of polymerization was 8 in this case. According to thin-layer chromatography, a trimer (HO(CH2)4OCO(CH2)2COO(CH2)4OH) was formed at an early stage, with a subsequent condensation with bis(2-chloroethyl) succinate to give higher oligomers. The structure of the oligomers was confirmed by 13C NMR and IR spectra.  相似文献   

6.
Bioplastics are eco-friendly and derived from renewable biomass sources. Innovation in recycling methods will tackle some of the critical issues facing the acceptance of bioplastics. Polylactic acid (PLA) is the commonly used and well-studied bioplastic that is presumed to be biodegradable. Considering their demand and use in near future, exploration for microbes capable of bioplastic degradation has high potential. Four PLA degrading strains were isolated and identified as Penicillium chrysogenum, Cladosporium sphaerospermum, Serratia marcescens and Rhodotorula mucilaginosa. A consortium of above strains degraded 44 % (w/w) PLA in 30 days time in laboratory conditions. Subsequently, the microbial consortium employed effectively for PLA composting.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0559-z) contains supplementary material, which is available to authorized users.  相似文献   

7.
A strain of soil bacteria was isolated by elective culture with bergenia, a C-glucoside having dihydroisocoumarin structure, as a sole carbon source, and was identified as Erwinia herbicola. In growth or replacement medium, the bacterium degraded bergenin to yield at least two major degradation products, one of them being identified as 4-O-methylgallic acid (compound I), an aglycone of bergenin. The bacterium seemed to utilize the sugar moiety of bergenin preferentially as carbon and energy sources, since the rate of further transformation of compound I by the bacterium was slow. In replacement culture with compound I, gallic acid was detected as one of the metabolites. A possible pathway for microbial degradation of bergenin is proposed.  相似文献   

8.
Gordonia westfalica Kb1 and Gordonia polyisoprenivorans VH2 induce the formation of an extracellular superoxide dismutase (SOD) during poly(cis-1,4-isoprene) degradation. To investigate the function of this enzyme in G. polyisoprenivorans VH2, the sodA gene was disrupted. The mutants exhibited reduced growth in liquid mineral salt media containing poly(cis-1,4-isoprene) as the sole carbon and energy source, and no SOD activity was detectable in the supernatants of the cultures. Growth experiments revealed that SodA activity is required for optimal growth on poly(cis-1,4-isoprene), whereas this enzyme has no effect on aerobic growth in the presence of water-soluble substrates like succinate, acetate, and propionate. This was detected by activity staining, and proof of expression was by antibody detection of SOD. When SodA from G. westfalica Kb1 was heterologously expressed in the sodA sodB double mutant Escherichia coli QC779, the recombinant mutant exhibited increased resistance to paraquat, thereby indicating the functionality of the G. westfalica Kb1 SodA and indirectly protection of G. westfalica cells by SodA from oxidative damage. Both sodA from G. polyisoprenivorans VH2 and sodA from G. westfalica Kb1 coded for polypeptides comprising 209 amino acids and having approximately 90% and 70% identical amino acids, respectively, to the SodA from Mycobacterium smegmatis strain MC2 155 and Micrococcus luteus NCTC 2665. As revealed by activity staining experiments with the wild type and the disruption mutant of G. polyisoprenivorans, this bacterium harbors only one active SOD belonging to the manganese family. The N-terminal sequences of the extracellular SodA proteins of both Gordonia species showed no evidence of leader peptides for the mature proteins, like the intracellular SodA protein of G. polyisoprenivorans VH2, which was purified under native conditions from the cells. In G. westfalica Kb1 and G. polyisoprenivorans VH2, SodA probably provides protection against reactive oxygen intermediates which occur during degradation of poly(cis-1,4-isoprene).  相似文献   

9.
10.
11.
A poly(aspartic acid) degrading bacterium (strain KT-1 [JCM10459]) was isolated from river water and identified as a member of the genus Sphingomonas. The isolate degraded only poly(aspartic acid)s of low molecular masses (<5 kDa), while the cell extract hydrolyzed high-molecular-mass poly(aspartic acid)s of 5 to 150 kDa to yield aspartic acid monomer.  相似文献   

12.
微生物降解多环芳烃的研究进展   总被引:8,自引:0,他引:8  
多环芳烃(PAHs)是具有严重危害的环境污染物质。介绍PAHs的降解菌,降解机理和PAHs的生物修复方面的研究进展。土壤中PAHs的生物修复被认为是解决污染的有效方法,目前,菲的生物降解途径已经比较清楚,但对结构更为复杂的多环芳烃研究较少。文章还对消除环境中多环芳烃的相关生物技术提出展望。  相似文献   

13.
In situ poly(hydroxyalkanoate) (PHA) levels and repeating-unit compositions were examined in stratified photosynthetic microbial mats from Great Sippewissett Salt Marsh, Mass., and Ebro Delta, Spain. Unlike what has been observed in pure cultures of phototrophic bacteria, the prevalence of hydroxyvalerate (HV) repeating units relative to hydroxybutyrate (HB) repeating units was striking. In the cyanobacteria-dominated green material of Sippewissett mats, the mole percent ratio of repeating units was generally 1HB:1HV. In the purple sulfur bacteria-dominated pink material the relationship was typically 1HB:2HV. In Sippewissett mats, PHA contributed about 0.5 to 1% of the organic carbon in the green layer and up to 6% in the pink layer. In Ebro Delta mats, PHA of approximately 1HB:2HV-repeating-unit distribution contributed about 2% of the organic carbon of the composite photosynthetic layers (the green and pink layers were not separated). Great Sippewissett Salt Marsh mats were utilized for more extensive investigation of seasonal, diel, and exogenous carbon effects. When the total PHA content was normalized to organic carbon, there was little seasonal variation in PHA levels. However, routine daily variation was evident at all sites and seasons. In every case, PHA levels increased during the night and decreased during the day. This phenomenon was conspicuous in the pink layer, where PHA levels doubled overnight. The daytime declines could be inhibited by artificial shading. Addition of exogenous acetate, lactate, and propionate induced two- to fivefold increases in the total PHA levels when applied in the daylight but had no effect when applied at night. The distinct diel pattern of in situ PHA accumulation at night appears to be related, in some phototrophs, to routine dark energy metabolism and is not influenced by the availability of organic nutrients.  相似文献   

14.
Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme involved in a range of activities associated with DNA metabolism and plays a key role in maintaining the integrity of DNA and chromatin structure. As such, this enzyme is likely to provide a useful target when using a rational drug design approach to develop pharmaceutical reagents, including cancer therapeutics. However, there is still a great deal to learn about the mode of action of PARP-1 and therefore efforts are being directed at gaining a better understanding of the relationship between its structure and function. To this end we have developed a rapid and relatively simple approach to producing and purifying PARP-1. Unlike traditional PARP-1 purification protocols, the method described here requires only one chromatography step thus minimizing losses of the enzyme and also avoids the use of a competitive inhibitor-based affinity chromatography step, which is common to several other protocols in the literature. The product of the method described here is high-quality native PARP-1 with a high specific activity and K(m) and V(max) values similar to what is reported by other workers in the field. This protocol is particularly well suited to making PARP-1 in a quantity and of a quality suitable for structure-function studies.  相似文献   

15.
The relationship between extracellular poly(3-hydroxybutyrate) (PHB) depolymerase synthesis and the unusual properties of a succinate uptake system was investigated in Pseudomonas lemoignei. Growth on and uptake of succinate were highly pH dependent, with optima at pH 5.6. Above pH 7, growth on and uptake of succinate were strongly reduced with concomitant derepression of PHB depolymerase synthesis. The specific succinate uptake rates were saturable by high concentrations of succinate, and maximal transport rates of 110 nmol/mg of cell protein per min were determined between pH 5.6 and 6.8. The apparent KS0.5 values increased with increasing pH from 0.2 mM succinate at pH 5.6 to more than 10 mM succinate at pH 7.6. The uptake of [14C]succinate was strongly inhibited by several monocarboxylates. Dicarboxylates also inhibited the uptake of succinate but only at pH values near the dissociation constant of the second carboxylate function (pKa2). We conclude that the succinate carrier is specific for the monocarboxylate forms of various carboxylic acids and is not able to utilize the dicarboxylic forms. The inability to take up succinate2− accounts for the carbon starvation of P. lemoignei observed during growth on succinate at pH values above 7. As a consequence the bacteria produce high levels of extracellular PHB depolymerase activity in an effort to escape carbon starvation by utilization of PHB hydrolysis products.  相似文献   

16.
An esterase catalyzing the hydrolysis of acetyl ester moieties in poly(vinyl alcohol) was purified 400-fold to electrophoretic homogeneity from the cytoplasmic fraction of Pseudomonas vesicularis PD, which was capable of assimilating poly(vinyl alcohol) as the sole carbon and energy source. The purified enzyme was a homodimeric protein with a molecular mass of 80 kDa and the isoelectric point was 6.8. The pH and temperature optima of the enzyme were 8.0 and 45°C. The enzyme catalyzed the hydrolysis of side chains of poly(vinyl alcohol), short-chain p-nitrophenyl esters, 2-naphthyl acetate, and phenyl acetate, and was slightly active toward aliphatic esters. The enzyme was also active toward the enzymatic degradation products, acetoxy hydroxy fatty acids, of poly(vinyl alcohol). The K m and V max of poly(vinyl alcohol) (degree of polymerization, 500; saponification degree, 86.5-89.0 mol%) and p-nitrophenyl acetate were 0.381% (10.6 mM as acetyl content in the polymer) and 2.56 μM, and 6.52 and 12.6 μmol/min/mg, respectively. The enzyme was strongly inhibited by phenylmethylsulfonyl fluoride and diisopropyl fluorophosphate at a concentration of 5 mM, which indicated that the enzyme was a serine esterase. The pathway for the metabolism of poly(vinyl alcohol) is also discussed.  相似文献   

17.
Biophysics - Abstract—The effects of acetylating and deacetylating compounds on the activity of succinate dehydrogenase, as well as on the membrane potential and calcium retention capacity of...  相似文献   

18.
Poly(ADP-ribose) makes a date with death   总被引:2,自引:0,他引:2  
Poly(ADP-ribose) polymerase (PARP) enzymes catalyze the conversion of NAD(+) to polymers of poly(ADP-ribose) (PAR). Although its role in the DNA-damage response has long been recognized, recent work indicates that PAR itself acts at the mitochondria to directly induce cell death through stimulation of apoptosis-inducing factor (AIF) release. This review discusses PAR synthesis and degradation, and the role of PAR misregulation in various disease states. Attention is given to opportunities for therapeutic intervention with small molecules that are involved in PAR signaling, with specific focus on poly(ADP-ribose) glycohydrolase (PARG) and AIF.  相似文献   

19.
This study integrated metagenomic and nuclear magnetic resonance (NMR) spectroscopic approaches to investigate microbial metabolic potential for organic matter decomposition and nitrogen (N) and phosphorus (P) acquisition in soils of an ombrotrophic peatland in the Marcell Experimental Forest (MEF), Minnesota, USA. This analysis revealed vertical stratification in key enzymatic pathways and taxa containing these pathways. Metagenomic analyses revealed that genes encoding laccases and dioxygenases, involved in aromatic compound degradation, declined in relative abundance with depth, while the relative abundance of genes encoding metabolism of amino sugars and all four saccharide groups increased with depth in parallel with a 50% reduction in carbohydrate content. Most Cu-oxidases were closely related to genes from Proteobacteria and Acidobacteria, and type 4 laccase-like Cu-oxidase genes were >8 times more abundant than type 3 genes, suggesting an important and overlooked role for type 4 Cu-oxidase in phenolic compound degradation. Genes associated with sulfate reduction and methanogenesis were the most abundant anaerobic respiration genes in these systems, with low levels of detection observed for genes of denitrification and Fe(III) reduction. Fermentation genes increased in relative abundance with depth and were largely affiliated with Syntrophobacter. Methylocystaceae-like small-subunit (SSU) rRNA genes, pmoA, and mmoX genes were more abundant among methanotrophs. Genes encoding N2 fixation, P uptake, and P regulons were significantly enriched in the surface peat and in comparison to other ecosystems, indicating N and P limitation. Persistence of inorganic orthophosphate throughout the peat profile in this P-limiting environment indicates that P may be bound to recalcitrant organic compounds, thus limiting P bioavailability in the subsurface. Comparative metagenomic analysis revealed a high metabolic potential for P transport and starvation, N2 fixation, and oligosaccharide degradation at MEF relative to other wetland and soil environments, consistent with the nutrient-poor and carbohydrate-rich conditions found in this Sphagnum-dominated boreal peatland.  相似文献   

20.
以苯并(a)芘(50 mg/L)为唯一碳源,对新疆芦草沟煤矿开采区土壤微生物进行3代胁迫培养(每代60 d);采用PCR-DGGE方法了解不同污染程度土样中降解苯并(a)芘的微生物类群和多样性特点;利用高效液相色谱(HPLC)测定胁迫培养每代培养物混合菌群对苯并(a)芘的降解能力。PCR-DGGE结果显示:不同污染程度原始样品与苯并(a)芘胁迫培养第3代培养物的微生物香浓指数(H)、丰度(S)和均匀度(E)有所不同,其中重度污染培养物降解苯并(a)芘的微生物类群最丰富。对优势条带进行克隆,其主要归属于变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)和放线菌门(Actinobacteria)。经HPLC检测发现重度污染样品中的群体微生物对苯并(a)芘的降解率明显高于轻度和中度污染样品,达到78.4%。研究表明新疆芦草沟煤矿开采区污染的土壤中可能蕴藏着降解苯并(a)芘的微生物资源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号