首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Stripe rust (caused by Puccinia striiformis) occurs annually in most wheat-growing areas of the world. Thinopyrum ponticum has provided novel rust resistance genes to protect wheat from this fungal disease. Wheat – Th. ponticum partial amphiploid line 7430 and a substitution line X005 developed from crosses between wheat and 7430 were resistant to stripe rust isolates from China. Genomic in situ hybridization (GISH) analysis using Pseudoroegneria spicata genomic DNA as a probe demonstrated that the partial amphiploid line 7430 contained ten Js and six J genome chromosomes, and line X005 had a pair of Js-chromosomes. Giemsa-C banding further revealed that both lines 7430 and X005 were absent of wheat chromosomes 6B. The EST based PCR confirmed that the introduced Js chromosomes belonging to linkage group 6, indicating that line X005 was a 6Js/6B substitution line. Both resistance observation and sequence characterized amplified region (SCAR) markers displayed that the introduced chromosomes 6Js were responsible for the stripe rust resistances. Therefore, lines 7430 and X005 can be used as a donor in wheat breeding for stripe rust resistance.  相似文献   

2.
Leaf rust and stripe rust are important foliar diseases of wheat worldwide. Leaf rust and stripe rust resistant introgression lines were developed by induced homoeologous chromosome pairing between wheat chromosome 5D and 5Mg of Aegilops geniculata (UgMg). Characterization of rust resistant BC2F5 and BC3F6 homozygous progenies using genomic in situ hybridization with Aegilops comosa (M) DNA as probe identified three different types of introgressions; two cytologically visible and one invisible (termed cryptic alien introgression). All three types of introgression lines showed similar and complete resistance to the most prevalent pathotypes of leaf rust and stripe rust in Kansas (USA) and Punjab (India). Diagnostic polymorphisms between the alien segment and recipient parent were identified using physically mapped RFLP probes. Molecular mapping revealed that cryptic alien introgression conferring resistance to leaf rust and stripe rust comprised less than 5% of the 5DS arm and was designated T5DL·5DS-5MgS(0.95). Genetic mapping with an F2 population of Wichita × T5DL·5DS-5MgS(0.95) demonstrated the monogenic and dominant inheritance of resistance to both diseases. Two diagnostic RFLP markers, previously mapped on chromosome arm 5DS, co-segregated with the rust resistance in the F2 population. The unique map location of the resistant introgression on chromosome T5DL·5DS-5MgS(0.95) suggested that the leaf rust and stripe rust resistance genes were new and were designated Lr57 and Yr40. This is the first documentation of a successful transfer and characterization of cryptic alien introgression from Ae. geniculata conferring resistance to both leaf rust and stripe rust in wheat.  相似文献   

3.
Stripe rust is one of the most destructive diseases of wheat. Breeding for resistance is the most economical and environmentally acceptable means to control stripe rust. Genetic studies on resistance sources are very important. Previous inheritance studies on Triticum aestivum subsp. spelta cv. album and wheat cultivar Lee showed that each possessed a single dominant gene for stripe rust resistance, i.e., Yr5 and Yr7, respectively. Both were located on the long arm of chromosome 2B, but due to the complexities caused by genetic background effects there was no clear evidence on the allelism or linkage status of these genes. Our study, involving an intercross of Avocet S near-isogenic lines possessing the genes, provided clear evidence for allelism or extremely close linkage of Yr5 and Yr7 based on phenotypic and molecular studies.  相似文献   

4.
Kang H  Wang Y  Fedak G  Cao W  Zhang H  Fan X  Sha L  Xu L  Zheng Y  Zhou Y 《PloS one》2011,6(7):e21802
Wheat stripe rust is a destructive disease in the cool and humid wheat-growing areas of the world. Finding diverse sources of stripe rust resistance is critical for increasing genetic diversity of resistance for wheat breeding programs. Stripe rust resistance was identified in the alien species Psathyrostachys huashanica, and a wheat-P. huashanica amphiploid line (PHW-SA) with stripe rust resistance was reported previously. In this study, a P. huashanica 3Ns monosomic addition line (PW11) with superior resistance to stripe rust was developed, which was derived from the cross between PHW-SA and wheat J-11. We evaluated the alien introgressions PW11-2, PW11-5 and PW11-8 which were derived from line PW11 for reaction to new Pst race CYR32, and used molecular and cytogenetic tools to characterize these lines. The introgressions were remarkably resistant to CYR32, suggesting that the resistance to stripe rust of the introgressions thus was controlled by gene(s) located on P. huashanica chromosome 3Ns. All derived lines were cytologically stable in term of meiotic chromosome behavior. Two 3Ns chromosomes of P. huashanica were detected in the disomic addition line PW11-2. Chromosomes 1B of substitution line PW11-5 had been replaced by a pair of P. huashanica 3Ns chromosomes. In PW11-8, a small terminal segment from P. huashanica chromosome arm 3NsS was translocated to the terminal region of wheat chromosomes 3BL. Thus, this translocated chromosome is designated T3BL-3NsS. These conclusions were further confirmed by SSR analyses. Two 3Ns-specific markers Xgwm181 and Xgwm161 will be useful to rapidly identify and trace the translocated fragments. These introgressions, which had significant characteristics of resistance to stripe rust, could be utilized as novel germplasms for wheat breeding.  相似文献   

5.

Key message

Genome-wide association analysis in tetraploid wheat revealed novel and diverse loci for seedling and field resistance to stripe rust in elite spring durum wheat accessions from worldwide.

Abstract

Improving resistance to stripe rust, caused by Puccinia striiformis f. sp. tritici, is a major objective for wheat breeding. To identify effective stripe rust resistance loci, a genome-wide association study (GWAS) was conducted using 232 elite durum wheat (Triticum turgidum ssp. durum) lines from worldwide breeding programs. Genotyping with the 90 K iSelect wheat single nucleotide polymorphism (SNP) array resulted in 11,635 markers distributed across the genome. Response to stripe rust infection at the seedling stage revealed resistant and susceptible accessions present in rather balanced frequencies for the six tested races, with a higher frequency of susceptible responses to United States races as compared to Italian races (61.1 vs. 43.1% of susceptible accessions). Resistance at the seedling stage only partially explained adult plant resistance, which was found to be more frequent with 67.7% of accessions resistant across six nurseries in the United States. GWAS identified 82 loci associated with seedling stripe rust resistance, five of which were significant at the false discovery rate adjusted P value <0.1 and 11 loci were detected for the field response at the adult plant stages in at least two environments. Notably, Yrdurum-1BS.1 showed the largest effect for both seedling and field resistance, and is therefore considered as a major locus for resistance in tetraploid wheat. Our GWAS study is the first of its kind for stripe rust resistance in tetraploid wheat and provides an overview of resistance in elite germplasm and reports new loci that can be used in breeding resistant cultivars.
  相似文献   

6.

Wild emmer wheat, Triticum dicoccoides, the progenitor of modern tetraploid and hexaploid wheats, is an important resource for new variability for disease resistance genes. T. dicoccoides accession pau4656 showed resistance against prevailing leaf rust and stripe rust races in India and was used for developing stable introgression lines (IL) in T. durum cv Bijaga yellow and named as IL pau16068. F5 Recombinant inbred lines (F5 RILs) were developed by crossing IL pau16068 with T. durum cultivar PBW114 and RIL population was screened against highly virulent Pt and Pst pathotypes at the seedling and adult plant stages. Inheritance analyses revealed that population segregated for two genes for all stage resistance (ASR) against leaf rust, one ASR gene against stripe rust and three adult plant resistance (APR) genes for stripe rust resistance. For mapping these genes a set of 483 SSR marker was used for bulked segregant analysis. The markers showing diagnostic polymorphism in the resistant and susceptible bulks were amplified on all RILs. Single marker analysis placed all stage leaf rust resistance genes on chromosome 6A and 2A linked to the SSR markers Xwmc256 and Wpaus268, respectively. Likewise one all stage stripe rust resistance gene were mapped on long arm of chromosome 6A linked to markers 6AL-5833645 and 6AL-5824654 and two APR genes mapped on chromosomes 2A and 2B close to the SSR marker Wpaus268 and Xbarc70, respectively. The current study identified valuable leaf rust and stripe rust resistance genes effective against multiple rust races for deployment in the wheat breeding programme.

  相似文献   

7.
Stripe rust, caused by Puccinia striiformis West. f.sp. tritici, is one of the most damaging diseases of wheat worldwide. Forty genes for stripe rust resistance have been catalogued so far, but the majority of them are not effective against emerging pathotypes. Triticum monococcum and T. boeoticum have excellent levels of resistance to rusts, but so far, no stripe rust resistance gene has been identified or transferred from these species. A set of 121 RILs generated from a cross involving T. monococcum (acc. pau14087) and T. boeoticum (acc. pau5088) was screened for 3 years against a mixture of pathotypes under field conditions. The parental accessions were susceptible to all the prevalent pathotypes at the seedling stage, but resistant at the adult plant stage. Genetic analysis of the RIL population revealed the presence of two genes for stripe rust resistance, with one gene each being contributed by each of the parental lines. A linkage map with 169 SSR and RFLP loci generated from a set of 93 RILs was used for mapping these resistance genes. Based on phenotypic data for 3 years and the pooled data, two QTLs, one each in T. monococcum acc. pau14087 and T. boeoticum acc. pau5088, were detected for resistance in the RIL population. The QTL in T. monococcum mapped on chromosome 2A in a 3.6 cM interval between Xwmc407 and Xwmc170, whereas the QTL from T. boeoticum mapped on 5A in 8.9 cM interval between Xbarc151 and Xcfd12 and these were designated as QYrtm.pau-2A and QYrtb.pau-5A, respectively. Based on field data for 3 years, their R 2 values were 14 and 24%, respectively. T. monococcum acc. pau14087 and three resistant RILs were crossed to hexaploid wheat cvs WL711 and PBW343, using T. durum as a bridging species with the objective of transferring these genes into hexaploid wheat. The B genome of T. durum suppressed resistance in the F1 plants, but with subsequent backcrossing one resistance gene could be transferred from one of the RILs to the hexaploid wheat background. This gene was derived from T. boeoticum acc. pau5088 as indicated by co-introgression of T. boeoticum sequences linked to stripe rust resistance QTL, QYrtb.pau-5A. Homozygous resistant progenies with 40–42 chromosomes have been identified. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Alloplasmic lines of common wheat with disomic substitution of chromosome 7D for telocentric chromosome 7H1Lmar of barley H. marinum subsp. gussoneanum Hudson were isolated from the plants of generation BC3, produced as a result of backcrossing of barley-wheat hybrids H. marinum subsp. gussoneanum (2n = 28) × T. aestivum (2n = 42), Pyrotrix, cultivar, with 28 common wheat cultivars Pyrotrix 28 and Novosibirskaya 67. Chromosome substitution pattern was determined using SSR analysis and C-banding. In preliminary genomic in situ hybridization experiments, telocentric chromosomes were assigned to wild barley was established. In the BC3F8 generations of three alloplasmic lines with the 7H1Lmar(7D) substitution type the differences in fertility manifestation were observed: most of the L-32(1) plants were sterile, in line L-32(2) only sporadic plants were sterile, and line L-32(3) was fertile. Simultaneously with these experiments, using selfpollinated progeny of the hybrids obtained in crosses of common wheat cultivar Saratovskaya 29 (2n = 41), monosomic for chromosome 7D, with common wheat cultivar Pyrotrix 28 with addition of pair of telocentric chromosomes 7H1Lmar (7D) of barley H. marinum subsp. gussoneanum, euplasmic wheat-barley ditelosomic substitution 7H1Lmar (7D) lines were isolated. The lines obtained had normal fertility. PCR analysis of the 18S/5S mitochondrial repeat (hereafter, mtDNA sequence) in alloplasmic and euplasmic ditelosomic substitution lines 7H1Lmar(7D) was performed. In the plants from alloplasmic sterile line L-32(1), the sequences only of the barley (maternal) type were revealed, while the plants from alloplasmic fertile lines L-32(2) and L-32(3) demonstrated heteroplasmy (the presence of barley- and wheat-like sequences within one individual). In euplasmic ditelosomic substitution lines the presence of only wheat-like 18S/5S mitochondrial repeat sequences was observed. The results indicate that the presence of barley-like mtDNA sequences in alloplasmic substitution lines was not associated with the presence of barley chromosomes in their nuclear genomes.  相似文献   

9.
A pair of stripe rust and leaf rust resistance genes was introgressed from Aegilops caudata, a nonprogenitor diploid species with the CC genome, to cultivated wheat. Inheritance and genetic mapping of stripe rust resistance gene in backcross-recombinant inbred line (BC-RIL) population derived from the cross of a wheat–Ae. caudata introgression line (IL) T291-2(pau16060) with wheat cv. PBW343 is reported here. Segregation of BC-RILs for stripe rust resistance depicted a single major gene conditioning adult plant resistance (APR) with stripe rust reaction varying from TR-20MS in resistant RILs signifying the presence of some minor genes as well. Genetic association with leaf rust resistance revealed that two genes are located at a recombination distance of 13%. IL T291-2 had earlier been reported to carry introgressions on wheat chromosomes 2D, 3D, 4D, 5D, 6D and 7D. Genetic mapping indicated the introgression of stripe rust resistance gene on wheat chromosome 5DS in the region carrying leaf rust resistance gene LrAc, but as an independent introgression. Simple sequence repeat (SSR) and sequence-tagged site (STS) markers designed from the survey sequence data of 5DS enriched the target region harbouring stripe and leaf rust resistance genes. Stripe rust resistance locus, temporarily designated as YrAc, mapped at the distal most end of 5DS linked with a group of four colocated SSRs and two resistance gene analogue (RGA)-STS markers at a distance of 5.3 cM. LrAc mapped at a distance of 9.0 cM from the YrAc and at 2.8 cM from RGA-STS marker Ta5DS_2737450, YrAc and LrAc appear to be the candidate genes for marker-assisted enrichment of the wheat gene pool for rust resistance.  相似文献   

10.
Stripe or yellow rust of wheat, caused by Puccinia striiformis f. sp. tritici, is an important disease in many wheat-growing regions of the world. A number of major genes providing resistance to stripe rust have been used in breeding, including one gene that is present in the differential tester Carstens V. The objective of this study was to locate and map a stripe rust resistance gene transferred from Carstens V to Avocet S and to use molecular tools to locate a number of genes segregating in the cross Savannah/Senat. One of the genes present in Senat was predicted to be a gene that is present in Carstens V. For this latter purpose, stripe rust response data from both seedling and field tests on a doubled haploid population consisting of 77 lines were compared to an available molecular map for the same lines using a non-parametric quantitative trait loci (QTL) analysis. Results obtained in Denmark suggested that a strong component of resistance with the specificity of Carstens V was located in chromosome arm 2AL, and this was consistent with chromosome location work undertaken in Australia. Since this gene segregated independently of Yr1, the only other stripe rust resistance gene known to be located in this chromosome arm, it was designated Yr32. Further QTLs originating from Senat were located in chromosomes 1BL, 4D, and 7DS and from Savannah on 5B, but it was not possible to characterize them as unique resistance genes in any definitive way. Yr32 was detected in several wheats, including the North American differential tester Tres.An erratum to this article can be found at Communicated by G. Wenzel  相似文献   

11.
Rice stripe disease, caused by rice stripe virus (RSV), is one of the most serious diseases in temperate rice-growing areas. In the present study, we performed quantitative trait locus (QTL) analysis for RSV resistance using 98 backcross inbred lines derived from the cross between the highly resistant variety, Kasalath, and the highly susceptible variety, Nipponbare. Under artificial inoculation in the greenhouse, two QTLs for RSV resistance, designated qSTV7 and qSTV11 KAS , were detected on chromosomes 7 and 11 respectively, whereas only one QTL was detected in the same location of chromosome 11 under natural inoculation in the field. The stability of qSTV11 KAS was validated using 39 established chromosome segment substitution lines. Fine mapping of qSTV11 KAS was carried out using 372 BC3F2:3 recombinants and 399 BC3F3:4 lines selected from 7,018 BC3F2 plants of the cross SL-234/Koshihikari. The qSTV11 KAS was localized to a 39.2 kb region containing seven annotated genes. The most likely candidate gene, LOC_Os11g30910, is predicted to encode a sulfotransferase domain-containing protein. The predicted protein encoded by the Kasalath allele differs from Nipponbare by a single amino acid substitution and the deletion of two amino acids within the sulfotransferase domain. Marker-resistance association analysis revealed that the markers L104-155 bp and R48-194 bp were highly correlated with RSV resistance in the 148 landrace varieties. These results provide a basis for the cloning of qSTV11 KAS , and the markers may be used for molecular breeding of RSV resistant rice varieties.  相似文献   

12.
Septoria tritici blotch, caused by Mycosphaerella graminicola (anamorph Septoria tritici), is one of the most important foliar diseases of wheat in much of the world. Susceptibility of host plants to septoria was investigated by cytogenetic analysis. A line of Hobbit sib (Dwarf A) in which translocated chromosome 5BS–7BS was nominally substituted by chromosome arms 5BS and 7BS from Bezostaya 1 had a much lower mean level of septoria than Hobbit sib itself. By the use of microsatellite markers, it was shown that the 5BS arm of this line had in fact been substituted by the homologous arm of Chinese Spring. Further investigation of substitution and nullitetrasomic lines demonstrated that chromosome arm 5BS of Hobbit sib possesses genes, which either promote susceptibility to septoria or suppress resistance. This chromosome arm has previously been shown to carry genes for resistance to yellow (stripe) rust and powdery mildew, implying a trade-off between resistances to these two diseases and to septoria in wheat breeding. Bezostaya 1 was found to have specific resistance to M. graminicola isolate IPO323, probably controlled by the gene Stb6 on chromosome arm 3AS, present in numerous wheat cultivars. It also had partial resistance to septoria distributed over several chromosomes, which may explain the value of this cultivar as a source of septoria resistance.  相似文献   

13.
Li  Jianbo  Lang  Tao  Li  Bin  Yu  Zhihui  Wang  Hongjin  Li  Guangrong  Yang  Ennian  Yang  Zujun 《Planta》2017,245(6):1121-1135
Main conclusion

Fluorescence in situ hybridization and molecular markers have confirmed that several chromosomes from Thinopyrum intermedium ssp. trichophorum have been added to a wheat background, which originated from a cross between a wheat– Thinopyrum partial amphiploid and triticale. The lines displayed blue grains and resistance to wheat stripe rust.

Thinopyrum intermedium has been used as a valuable resource for improving the disease resistance and yield potential of wheat. With the aim to transfer novel genetic variation from Th. intermedium species for sustainable wheat breeding, a new trigeneric hybrid was produced by crossing an octoploid wheat–Th. intermedium ssp. trichophorum partial amphiploid with hexaploid triticale. Fluorescence in situ hybridization (FISH) revealed that Thinopyrum chromosomes were transmitted preferably and the number of rye chromosomes tended to decrease gradually in the selfed derivatives of the trigeneric hybrids. Four stable wheat–Th. intermedium chromosome substitution, addition and translocation lines were selected, and a 2JS addition line, two substitution lines of 4JS(4B) and 4J(4B), and a small 4J.4B translocation line were identified by FISH and molecular markers. It was revealed that the gene(s) responsible for blue grains may located on the FL0.60–1.00 of long arm of Th. intermedium-derived 4J chromosome. Disease resistance screenings indicated that chromosomes 4JS and 2JS appear to enhance the resistance to stripe rust in the adult plant stage. The new germplasm with Th. intermedium introgression shows promise for utilization of Thinopyrum chromosome segments in future wheat improvement.

  相似文献   

14.
The emergence of a new highly virulent race of stem rust (Puccinia graminis tritici), Ug99, rapid evolution of new Ug99 derivative races overcoming resistance of widely deployed genes, and spread towards important wheat growing areas now potentially threaten world food security. Exploiting novel genes effective against Ug99 from wild relatives of wheat is one of the most promising strategies for the protection of the wheat crop. A new source of resistance to Ug99 was identified in the short arm of the Aegilops searsii chromosome 3Ss by screening wheat- Ae. searsii introgression libraries available as individual chromosome and chromosome arm additions to the wheat genome. For transferring this resistance gene into common wheat, we produced three double-monosomic chromosome populations (3A/3Ss, 3B/3Ss and 3D/3Ss) and then applied integrated stem rust screening, molecular maker analysis, and cytogenetic analysis to identify resistant wheat-Ae. searsii Robertsonian translocation. Three Robertsonian translocations (T3AL·3SsS, T3BL·3SsS and T3DL·3SsS) and one recombinant (T3DS-3SsS·3SsL) with stem rust resistance were identified and confirmed to be genetically compensating on the basis of genomic in situ hybridization, analysis of 3A, 3B, 3D and 3SsS-specific SSR/STS-PCR markers, and C-banding. In addition, nine SSR/STS-PCR markers of 3SsS-specific were developed for marker-assisted selection of the resistant gene. Efforts to reduce potential linkage drag associated with 3SsS of Ae. searsii are currently under way.  相似文献   

15.
Wheat line CSP44, a selection from an Australian bread wheat cultivar Condor, has shown resistance to stripe rust in India since the last twenty years. Seedlings and adult plants of CSP44 showed susceptible infection types against stripe rust race 46S119 but displayed average terminal disease severity of 2.67 on adult plants against this race as compared to 70.33 of susceptible Indian cultivar, WL711. This suggests the presence of nonhypersensitive adult plant stripe rust resistance in the line CSP44. The evaluation of F1, F2 and F3 generations and F6 SSD families from the cross of CSP44 with susceptible wheat cultivar WL711 for stripe rust severity indicated that the resistance in CSP44 is based on two genes showing additive effect. One of these two genes isYr18 and the second gene is not yet described.  相似文献   

16.
The gene Yr26 confers resistance to all races of Puccinia striiformis f. sp. tritici (PST), the casual pathogen of wheat stripe rust in China. Here, we report development of a molecular marker closely linked to Yr26 using a resistance gene-analog polymorphism (RGAP) technique. A total of 787 F2 plants and 165 F3 lines derived from the cross Chuanmai 42/Taichung 29 were used for linkage analysis. Eighteen near-isogenic lines (NILs) and 18 Chinese wheat cultivars and advanced lines with different genes for stripe rust resistance were employed for the validation of STS markers. A total of 1,711 RGAP primer combinations were used to test the parents and resistant and susceptible bulks. Five polymorphic RGAP markers were used for genotyping all F2 plants. Linkage analysis showed that the five RGAP markers were closely linked to Yr26 with genetic distances ranging from 0.5 to 2.9 cM. These markers were then converted into STS markers, one, CYS-5, of which was located 0.5 cM to Yr26 and was closely associated with the resistance gene when validated over 18 NILs and 18 Chinese wheat cultivars and lines. The results indicated that CYS-5 can be used in marker-assisted selection targeted at pyramiding Yr26 and other genes for stripe rust resistance.  相似文献   

17.
The common wheat genotype ‘RL6077’ was believed to carry the gene Lr34/Yr18 that confers slow-rusting adult plant resistance (APR) to leaf rust and stripe rust but located to a different chromosome through inter-chromosomal reciprocal translocation. However, haplotyping using the cloned Lr34/Yr18 diagnostic marker and the complete sequencing of the gene indicated Lr34/Yr18 is absent in RL6077. We crossed RL6077 with the susceptible parent ‘Avocet’ and developed F3, F4 and F6 populations from photoperiod-insensitive F3 lines that were segregating for resistance to leaf rust and stripe rust. The populations were characterized for leaf rust resistance at two Mexican sites, Cd. Obregon during the 2008–2009 and 2009–2010 crop seasons, and El Batan during 2009, and for stripe rust resistance at Toluca, a third Mexican site, during 2009. The F3 population was also evaluated for stripe rust resistance at Cobbitty, Australia, during 2009. Most lines had correlated responses to leaf rust and stripe rust, indicating that either the same gene, or closely linked genes, confers resistance to both diseases. Molecular mapping using microsatellites led to the identification of five markers (Xgwm165, Xgwm192, Xcfd71, Xbarc98 and Xcfd23) on chromosome 4DL that are associated with this gene(s), with the closest markers being located at 0.4 cM. In a parallel study in Canada using a Thatcher × RL6077 F3 population, the same leaf rust resistance gene was designated as Lr67 and mapped to the same chromosomal region. The pleiotropic, or closely linked, gene derived from RL6077 that conferred stripe rust resistance in this study was designated as Yr46. The slow-rusting gene(s) Lr67/Yr46 can be utilized in combination with other slow-rusting genes to develop high levels of durable APR to leaf rust and stripe rust in wheat.  相似文献   

18.
Two Iranian common wheat landraces AUS28183 and AUS28187 from the Watkins collection showed high levels of seedling resistance against Australian pathotypes of leaf rust and stripe rust pathogens. Chi-squared analyses of rust response segregation among F3 populations derived from crosses of AUS28183 and AUS28187 with a susceptible genotype AUS27229 revealed monogenic inheritance of leaf rust and stripe rust resistance. As both genotypes produced similar leaf rust and stripe rust infection types, they were assumed to carry the same genes. The genes were temporarily named as LrW1 and YrW1. Molecular mapping placed LrW1 and YrW1 in the short arm of chromosome 5B, about 10 and 15 cM proximal to the SSR marker gwm234, respectively, and the marker cfb309 mapped 8–12 cM proximal to YrW1. LrW1 mapped 3–6 cM distal to YrW1 in two F3 populations. AUS28183 corresponded to the accession V336 of the Watkins collection which was the original source of Lr52. Based on the genomic location and accession records, LrW1 was concluded to be Lr52. Because no other seedling stripe rust resistance gene has previously been mapped in chromosome 5BS, YrW1 was permanently named as Yr47. A combination of flanking markers gwm234 and cfb309 with phenotypic assays could be used to ascertain the presence of Lr52 and Yr47 in segregating populations. This investigation characterised a valuable source of dual leaf rust and stripe rust resistance for deployment in new wheat cultivars. Transfer of Lr52 and Yr47 into current Australian wheat backgrounds is in progress.  相似文献   

19.
The indica rice cultivar, Teqing, shows a high level of resistance to rice stripe virus (RSV). It is believed that this resistance is controlled by the gene, qSTV11 TQ . For positional cloning of the resistance gene, a set of chromosome single segment substitution lines (CSSSLs) was constructed, all of which had the genetic background of the susceptible japonica cultivar, Lemont, with different single substituted segments of Teqing on chromosome 11. By identifying the resistance of the CSSSLs-2006 in a field within a heavily diseased area, the resistance gene qSTV11 TQ was mapped between the markers Indel7 and RM229. Furthermore, in that region, six new markers were developed and 52 subregion CSSSLs (CSSSLs-2007) were constructed. The natural infection experiment was conducted again at different sites, with two replicates used in each site in order to identify the resistance phenotypes of the CSSSLs-2007 and resistant/susceptible controls in 2007. Through the results of 2007, qSTV11 TQ was localized in a region defined by the markers, CAPs1 and Indel4. In order to further confirm the position of qSTV11 TQ , another set of subregion CSSSLs (CSSSLs-2009) was constructed. Finally, qSTV11 TQ was localized to a 55.7 kb region containing nine annotated genes according to the genome sequence of japonica Nipponbare. The relationship between qSTV11 TQ and Stvb-i (Hayano-Saito et al. in Theor Appl Genet 101:59–63, 2000) and the reliability of the markers used on both sides of qSTV11 TQ for marker-assisted breeding of resistance to rice stripe disease are discussed.  相似文献   

20.
A repetitive sequence of 411 bp, named pSaO5411, was identified in theSecale africanum genome (Ra) by random amplified polymorphic DNA (RAPD) analysis of wheat and wheat—S. africanum amphiploids. GenBank BLAST search revealed that the sequence of pSaO5411 was highly homologous to a part of a Ty1-copia retrotransposon. Fluorescence in situ hybridization (FISH) analyses indicated that pSaO5411 was significantly hybridized toS. africanum chromosomes of a wheat—S. africanum amphiploid, and it was dispersed along theSecale chromosome arms except the terminal regions. Basing on the sequence of pSaO5411, a pair of sequence-characterized amplified region (SCAR) primers were designed, and the resultant SCAR marker was able to target both cultivated rye and the wildSecale species, which also enabled to identify effectively theS. africanum chromatin introduced into the wheat genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号