首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K+ channels are a most diverse class of ion channels in the plasma membrane and are distributed widely throughout a variety of cells including cancer cells. Evidence has been accumulating from fundamental studies indicating that tumour cells possess various types of K+ channels and that these K+ channels play important roles in regulating tumor cell proliferation, cell cycle progression and apoptosis. Moreover, a significant increase in K+ channel expression has been correlated with tumorigenesis, suggesting the possibility of using these proteins as transformation markers and perhaps reducing the tumor growth rate by selectively inhibiting their functional activity. Significant progress has been made in defining the properties of breast K+ channels, including their biophysical and pharmacological properties and distribution throughout different phases of the cell cycle in breast cell line MCF-7. This review aims to provide a comprehensive overview of the current state of research into K+ channels/currents in breast cancer cells. The possible mechanisms by which K+ channels affect tumor cell proliferation and cell cycle progression are discussed.  相似文献   

2.
Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K+ channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K+ channels in pancreatic duct cells, including KCNN4 (KCa3.1), KCNMA1 (KCa1.1), KCNQ1 (Kv7.1), KCNH2 (Kv11.1), KCNH5 (Kv10.2), KCNT1 (KCa4.1), KCNT2 (KCa4.2), and KCNK5 (K2P5.1). We will give an overview of K+ channels with respect to their electrophysiological and pharmacological characteristics and regulation, which we know from other cell types, preferably in epithelia, and, where known, their identification and functions in pancreatic ducts and in adenocarcinoma cells. We conclude by pointing out some outstanding questions and future directions in pancreatic K+ channel research with respect to the physiology of secretion and pancreatic pathologies, including pancreatitis, cystic fibrosis, and cancer, in which the dysregulation or altered expression of K+ channels may be of importance.  相似文献   

3.
4.
Voltage-dependent potassium (Kv) channels play a pivotal role in the modulation of macrophage physiology. Macrophages are professional antigen-presenting cells and produce inflammatory and immunoactive substances that modulate the immune response. Blockage of Kv channels by specific antagonists decreases macrophage cytokine production and inhibits proliferation. Numerous pharmacological agents exert their effects on specific target cells by modifying the activity of their plasma membrane ion channels. Investigation of the mechanisms involved in the regulation of potassium ion conduction is, therefore, essential to the understanding of potassium channel functions in the immune response to infection and inflammation. Here, we demonstrate that the biophysical properties of voltage-dependent K+ currents are modified upon activation or immunosuppression in macrophages. This regulation is in accordance with changes in the molecular characteristics of the heterotetrameric Kv1.3/Kv1.5 channels, which generate the main Kv in macrophages. An increase in K+ current amplitude in lipopolysaccharide-activated macrophages is characterized by a faster C-type inactivation, a greater percentage of cumulative inactivation, and a more effective margatoxin (MgTx) inhibition than control cells. These biophysical parameters are related to an increase in Kv1.3 subunits in the Kv1.3/Kv1.5 hybrid channel. In contrast, dexamethasone decreased the C-type inactivation, the cumulative inactivation, and the sensitivity to MgTx concomitantly with a decrease in Kv1.3 expression. Neither of these treatments apparently altered the expression of Kv1.5. Our results demonstrate that the immunomodulation of macrophages triggers molecular and biophysical consequences in Kv1.3/Kv1.5 hybrid channels by altering the subunit stoichiometry.  相似文献   

5.
Voltage-gated K+ (Kv) channels are well known to be involved in cell proliferation. However, even though cell proliferation is closely related to cell differentiation, the relationship between Kv channels and cell differentiation remains poorly investigated. This study demonstrates that Kv3.3 is involved in K562 cell erythroid differentiation. Down-regulation of Kv3.3 using siRNA-Kv3.3 increased hemin-induced K562 erythroid differentiation through decreased activation of signal molecules such as p38, cAMP response element-binding protein, and c-fos. Down-regulation of Kv3.3 also enhanced cell adhesion by increasing integrin β3 and this effect was amplified when the cells were cultured with fibronectin. The Kv channels, or at least Kv3.3, appear to be associated with cell differentiation; therefore, understanding the mechanisms of Kv channel regulation of cell differentiation would provide important information regarding vital cellular processes.  相似文献   

6.
Voltage-gated sodium (Nav) channels and their Na+/K+ selectivity are of great importance in the mammalian neuronal signaling. According to mutational analysis, the Na+/K+ selectivity in mammalian Nav channels is mainly determined by the Lys and Asp/Glu residues located at the constriction site within the selectivity filter. Despite successful molecular dynamics simulations conducted on the prokaryotic Nav channels, the lack of Lys at the constriction site of prokaryotic Nav channels limits how much can be learned about the Na+/K+ selectivity in mammalian Nav channels. In this work, we modeled the mammalian Nav channel by mutating the key residues at the constriction site in a prokaryotic Nav channel (NavRh) to its mammalian counterpart. By simulating the mutant structure, we found that the Na+ preference in mammalian Nav channels is collaboratively achieved by the deselection from Lys and the selection from Asp/Glu within the constriction site.  相似文献   

7.
Melanoma cells are transformed melanocytes of neural crest origin. K+ channel blockers have been reported to inhibit melanoma cell proliferation. We used whole-cell recording to characterize ion channels in four different human melanoma cell lines (C8161, C832C, C8146, and SK28). Protocols were used to identify voltage-gated (KV), Ca2+-activated (KCa), and inwardly rectifying (KIR) K+ channels; swelling-sensitive Cl channels (Clswell); voltage-gated Ca2+ channels (CaV) and Ca2+ channels activated by depletion of intracellular Ca2+ stores (CRAC); and voltage-gated Na+ channels (NaV). The presence of Ca2+ channels activated by intracellular store depletion was further tested using thapsigargin to elicit a rise in [Ca2+] i . The expression of K+ channels varied widely between different cell lines and was also influenced by culture conditions. KIR channels were found in all cell lines, but with varying abundance. Whole-cell conductance levels for KIR differed between C8161 (100 pS/pF) and SK28 (360 pS/pF). KCa channels in C8161 cells were blocked by 10 nm apamin, but were unaffected by charybdotoxin (CTX). KCa channels in C8146 and SK28 cells were sensitive to CTX (K d = 4 nm), but were unaffected by apamin. KV channels, found only in C8146 cells, activated at ∼−20 mV and showed use dependence. All melanoma lines tested expressed CRAC channels and a novel Clswell channel. Clswell current developed at 30 pS/sec when the cells were bathed in 80% Ringer solution, and was strongly outwardly rectifying (4:1 in symmetrical Cl). We conclude that different melanoma cell lines express a diversity of ion channel types. Received: 2 April 1996/Revised: 22 August 1996  相似文献   

8.
Epithelial cell migration plays an important role in gastrointestinal mucosal repair. We previously reported that multiple functional ion channels, including a Ba2+-sensitive K+ inward rectifier Kir1.2, 4-aminopyridine (4-AP)-sensitive voltage-gated K+ channels Kv1.1, Kv1.6 and Kv2.1, and a nifedipine-sensitive, tetrodotoxin (TTX)-insensitive voltage-gated Na+ channel Nav1.5 were expressed in a non-transformed rat gastric epithelial cell line (RGM-1). In the present study, we further investigated whether these ion channels are involved in the modulation of gastric epithelial cell migration. Cell migration was determined by monolayer wound healing assay. Results showed that blockade of Kv with 4-AP or Nav1.5 with nifedipine inhibited RGM-1 cell migration in the absence or presence of epidermal growth factor (EGF), which effectively stimulated RGM-1 cell migration. Moreover, high concentration of TTX mimicked the action of nifedipine, suggesting that the action of nifedipine was mediated through specific blockade of Nav1.5. In contrast, inhibition of Kir1.2 with Ba2+, either in basal or EGF-stimulated condition, had no effect on RGM-1 cell migration. In conclusion, the present study demonstrates for the first time that voltage-gated K+ and Na+ channels are involved in the modulation of gastric epithelial cell migration.  相似文献   

9.
Kv7.1 voltage-gated K+ (Kv) channels are present in the apical membranes of marginal cells of the stria vascularis of the inner ear, where they mediate K+ efflux into the scala media (cochlear duct) of the cochlea. As such, they are exposed to the K+-rich (∼150 mM of external K+ (K+e)) environment of the endolymph. Previous studies have shown that Kv7.1 currents are substantially suppressed by high K+e (independent of the effects of altering the electrochemical gradient). However, the molecular basis for this inhibition, which is believed to involve stabilization of an inactivated state, remains unclear. Using sequence alignment of S5-pore linkers of several Kv channels, we identified a key residue, E290, found in only a few Kv channels including Kv7.1. We used substituted cysteine accessibility methods and patch-clamp analysis to provide evidence that the ability of Kv7.1 to sense K+e depends on E290, and that the charge at this position is essential for Kv7.1’s K+e sensitivity. We propose that Kv7.1 may use this feedback mechanism to maintain the magnitude of the endocochlear potential, which boosts the driving force to generate the receptor potential of hair cells. The implications of our findings transcend the auditory system; mutations at this position also result in long QT syndrome in the heart.  相似文献   

10.
The aim of this work was to study the effect of antimicrobial peptides: divergicin M35 and nisin A on Listeria monocytogenes LSD 530 potassium (K+) channels: ATP-sensitive (KATP), calcium-activated (BKCa), and depolarization-activated (Kv) types. Increase on K+ efflux and inhibition of cellular growth were observed after adding K+ channel activators pinacidil, NS1619, and cromakalim to divergicin M35. Increase in K+ efflux from log-phase cells was about 18 ± 1.1, 11 ± 0.63, and nmol mg−1 of cell dry weight (CDW) for pinacidil and NS1619, respectively, over the efflux obtained with divergicin M35 alone. Increases in K+ efflux obtained by adding the same K+ channel activators to nisin A fit a completely different profile. Divergicin M35 activates K+ channels, particularly of the Kv and BKCa types and to a lesser extent the KATP type, causing K+ efflux and consequently cell death.  相似文献   

11.
Crystal structures of several bacterial Nav channels have been recently published and molecular dynamics simulations of ion permeation through these channels are consistent with many electrophysiological properties of eukaryotic channels. Bacterial Nav channels have been characterized as functionally asymmetric, and the mechanism of this asymmetry has not been clearly understood. To address this question, we combined non-equilibrium simulation data with two-dimensional equilibrium unperturbed landscapes generated by umbrella sampling and Weighted Histogram Analysis Methods for multiple ions traversing the selectivity filter of bacterial NavAb channel. This approach provided new insight into the mechanism of selective ion permeation in bacterial Nav channels. The non-equilibrium simulations indicate that two or three extracellular K+ ions can block the entrance to the selectivity filter of NavAb in the presence of applied forces in the inward direction, but not in the outward direction. The block state occurs in an unstable local minimum of the equilibrium unperturbed free-energy landscape of two K+ ions that can be ‘locked’ in place by modest applied forces. In contrast to K+, three Na+ ions move favorably through the selectivity filter together as a unit in a loose “knock-on” mechanism of permeation in both inward and outward directions, and there is no similar local minimum in the two-dimensional free-energy landscape of two Na+ ions for a block state. The useful work predicted by the non-equilibrium simulations that is required to break the K+ block is equivalent to large applied potentials experimentally measured for two bacterial Nav channels to induce inward currents of K+ ions. These results illustrate how inclusion of non-equilibrium factors in the simulations can provide detailed information about mechanisms of ion selectivity that is missing from mechanisms derived from either crystal structures or equilibrium unperturbed free-energy landscapes.  相似文献   

12.
We used MCF-7 human breast cancer cells that endogenously express Cav3.1 and Cav3.2 T-type Ca2+ channels toward a mechanistic study on the effect of EGCG on [Ca2+]i. Confocal Ca2+ imaging showed that EGCG induces a [Ca2+]i spike which is due to extracellular Ca2+ entry and is sensitive to catalase and to low-specificity (mibefradil) and high-specificity (Z944) T-type Ca2+channel blockers. siRNA knockdown of T-type Ca2+ channels indicated the involvement of Cav3.2 but not Cav3.1. Application of EGCG to HEK cells expressing either Cav3.2 or Cav3.1 induced enhancement of Cav3.2 and inhibition of Cav3.1 channel activity. Measurements of K+ currents in MCF-7 cells showed a reversible, catalase-sensitive inhibitory effect of EGCG, while siRNA for the Kv1.1 K+ channel induced a reduction of the EGCG [Ca2+]i spike. siRNA for Cav3.2 reduced EGCG cytotoxicity to MCF-7 cells, as measured by calcein viability assay. Together, data suggest that EGCG promotes the activation of Cav3.2 channels through K+ current inhibition leading to membrane depolarization, and in addition increases Cav3.2 currents. Cav3.2 channels are in part responsible for EGCG inhibition of MCF-7 viability, suggesting that deregulation of [Ca2+]i by EGCG may be relevant in breast cancer treatment.  相似文献   

13.
Stomata are the major gates in plant leaf that allow water and gas exchange, which is essential for plant transpiration and photosynthesis. Stomatal movement is mainly controlled by the ion channels and transporters in guard cells. In Arabidopsis, the inward Shaker K+ channels, such as KAT1 and KAT2, are responsible for stomatal opening. However, the characterization of inward K+ channels in maize guard cells is limited. In the present study, we identified two KAT1‐like Shaker K+ channels, KZM2 and KZM3, which were highly expressed in maize guard cells. Subcellular analysis indicated that KZM2 and KZM3 can localize at the plasma membrane. Electrophysiological characterization in HEK293 cells revealed that both KZM2 and KZM3 were inward K+ (Kin) channels, but showing distinct channel kinetics. When expressed in Xenopus oocytes, only KZM3, but not KZM2, can mediate inward K+ currents. However, KZM2 can interact with KZM3 forming heteromeric Kin channel. In oocytes, KZM2 inhibited KZM3 channel conductance and negatively shifted the voltage dependence of KZM3. The activation of KZM2–KZM3 heteromeric channel became slower than the KZM3 channel. Patch‐clamping results showed that the inward K+ currents of maize guard cells were significantly increased in the KZM2 RNAi lines. In addition, the RNAi lines exhibited faster stomatal opening after light exposure. In conclusion, the presented results demonstrate that KZM2 functions as a negative regulator to modulate the Kin channels in maize guard cells. KZM2 and KZM3 may form heteromeric Kin channel and control stomatal opening in maize.  相似文献   

14.
Store-operated calcium (Ca2+) entry (SOCE) mediated by STIM/Orai proteins is a ubiquitous pathway that controls many important cell functions including proliferation and migration. STIM proteins are Ca2+ sensors in the endoplasmic reticulum and Orai proteins are channels expressed at the plasma membrane. The fall in endoplasmic reticulum Ca2+ causes translocation of STIM1 to subplasmalemmal puncta where they activate Orai1 channels that mediate the highly Ca2+-selective Ca2+ release-activated Ca2+ current (ICRAC). Whereas Orai1 has been clearly shown to encode SOCE channels in many cell types, the role of Orai2 and Orai3 in native SOCE pathways remains elusive. Here we analyzed SOCE in ten breast cell lines picked in an unbiased way. We used a combination of Ca2+ imaging, pharmacology, patch clamp electrophysiology, and molecular knockdown to show that native SOCE and ICRAC in estrogen receptor-positive (ER+) breast cancer cell lines are mediated by STIM1/2 and Orai3 while estrogen receptor-negative (ER) breast cancer cells use the canonical STIM1/Orai1 pathway. The ER+ breast cancer cells represent the first example where the native SOCE pathway and ICRAC are mediated by Orai3. Future studies implicating Orai3 in ER+ breast cancer progression might establish Orai3 as a selective target in therapy of ER+ breast tumors.  相似文献   

15.
Diverse types of voltage-gated potassium (K+) channels have been shown to be involved in regulation of cell proliferation. The maxi-conductance Ca2+-activated K+ channels (BK channels) may play an important role in the progression of human cancer. To explore the role of BK channels in regulation of apoptosis in human ovarian cancer cells, the effects of the specific BK channel activator NS1619 on induction of apoptosis in A2780 cells were observed. Following treatment with NS1619, cell proliferation was measured by MTT assay. Apoptosis of A2780 cells pretreated with NS1619 was detected by agarose gel electrophoresis of cellular DNA and flow cytometry. Our data demonstrate that NS1619 inhibits the proliferation of A2780 cells in a dosage and time dependent manner IC50 = 31.1 μM, for 48 h pretreatment and induces apoptosis. Western blot analyses showed that the anti-proliferation effect of NS1619 was associated with increased expression of p53, p21, and Bax. These results indicate that BK channels play an important role in regulating proliferation of human ovarian cancer cells and may induce apoptosis through induction of p21Cip1 expression in a p53-dependent manner.  相似文献   

16.
Kv12.1 K+ channels are expressed in several brain areas, but no physiological function could be attributed to these subunits so far. As genetically-modified animal models are not available, identification of native Kv12.1 currents must rely on characterization of distinct channel properties. Recently, it was shown in Xenopus laevis oocytes that Kv12.1 channels were modulated by membrane PI(4,5)P2. However, it is not known whether these channels are also sensitive to physiologically-relevant PI(4,5)P2 dynamics. We thus studied whether Kv12.1 channels were modulated by activation of phospholipase C β (PLCβ) and found that they were insensitive to receptor-triggered depletion of PI(4,5)P2. Thus, Kv12.1 channels add to the growing list of K+ channels that are insensitive to PLCβ signaling, although modulated by PI(4,5)P2 in Xenopus laevis oocytes.  相似文献   

17.
Several studies suggested that potassium channels are involved in the proliferation of cancer cells but the involvement of the large conductance Ca2+-activated K+ channels (BKCa) in the cancerous phenomenon is still controversial. In the present study, we used iberiotoxin, a specific blocker of BKCa, and report the activity of an iberiotoxin-sensitive current in various human breast cancer cell lines (MCF-7, MDA-MB-231, MDA-MB-468 and MDA-MB-435s) as well as in normal mammary epithelial cells (HME).Iberiotoxin and NS1619, an activator of BKCa, did not interfere with either cell proliferation or with the invasive properties of the cells, under normal culture conditions. However, extracellular pulses of ATP, which induced transient increases in intracellular Ca2+ concentration, revealed a significant reduction effect of iberiotoxin on cell proliferation.We conclude that the iberiotoxin-sensitive current is not involved in cell proliferation in basal conditions but participates when the intracellular Ca2+ concentration is increased. These experiments also suggest that BKCa channels are not involved in the cancerous transformation and are probably a relic from normal cells.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号