首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proprotein processing enzyme furin is the mammalian prototype of a novel family of subtilisin-like serine endoproteases which possess cleavage specificity for sites involving multiple basic amino acid residues and are involved in the processing of precursor proteins of a variety of regulatory peptides and proteins. One of the limiting steps in the engineering of mammalian cells designed for the overproduction of secreted proteins is the endoproteolytic cleavage of the precursor molecule to its mature biologically active form. The extremely low level of endogenous furin is likely the reason why cells are not able to fully mature overexpressed precursor proteins to their mature form. Here, we report a CHO-derived cell line genetically engineered for the production of high levels of recombinant proteins that need such endoproteolytic maturation. First, the human furin cDNA under the control of the cytomegalovirus early promoter and enhancer was introduced and overexpressed in a DHFR-deficient CHO cell line. A permanent cell line CHO-D3-FUR was established that expressed biologically active furin. Subsequently, to demonstrate the capacity of CHO-D3-FUR cells to produce recombinant proteins in a fully matured form, two derivative cell lines were established that overexpressed the von Willebrand factor (vWF) and transforming growth factor 1 (TGF1); CHO-D3-vWF and CHO-D3-TGF1, respectively. Both derivative cell lines were able to produce relatively high levels of recombinant protein in a fully matured and biologically active form. Our results illustrate the potential of the CHO-D3-FUR cell line in the production of recombinant secretory proteins that need endoproteolytic activation at the consensus furin cleavage sequence Arg-X-Lys/Arg-Arg.Abbreviations ATCC American Type Culture Collection - CHO Chinese hamster ovary - CMV cytomegalovirus - DHFR dihydrofolate reductase - DMEM Dulbecco's modified Eagle's medium - DT diphtheria toxin - EDTA ethylenediaminetetra-acetate - ECL enhanced chemiluminescence - ER endoplasmic reticulum - FITC fluorescein isothiocyanate - FUR FES upstream region - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - MEM minimal essential medium - MTX methotrexate - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate - TCA trichloroacetic acid - TFG transforming growth factor - vWF von Willebrand Factor  相似文献   

2.
Endothelial cells (ECs) secrete numerous bioactive peptides that are initially synthesized as inactive precursor proteins. One of these, proendothelin-1 (proET-1), undergoes proteolysis at specific pairs of basic amino acids. Here, we wished to examine the role of mammalian convertases in this event. Northern blot analysis shows that only furin and PC7 are expressed in ECs. In vitro cleavage of proET-1 by furin or PC7 demonstrated that both enzymes efficiently and specifically process proET-1. These data reveal that furin and PC7 have similar specificities towards proET-1 and suggest that both enzymes may participate in the maturation of proET-1 in ECs.  相似文献   

3.
The synthetic gene coding for the precursor of the cysteine protease papain (EC 3.4.22.2) has been expressed using the baculovirus/insect cell system. The prepropapain gene was cloned into the transfer vector IpDC125 behind the polyhedrin promoter. The recombinant construct was then incorporated by homologous recombination into the Autographa californiaca nuclear polyhedrosis virus genome. The host Spodoptera frugiperda Sf9 cells infected with the recombinant baculovirus secrete an enzymatically inactive N-glycosylated papain precursor. This zymogen could be activated in vitro to yield about 400 nmol of active papain per liter of culture. The recombinant active mature papain was enzymatically indistinguishable from natural papain but the precursor was not processed to the same amino acid residue. The insect cells also accumulated prepropapain and glycosylated propapain intracellularly. This accumulation was an indication that there are rate-limiting steps in the secretion of proteins from insect cells in this expression system. Characterization of mutants of the precursor has shown that entry into the secretory pathway and addition of carbohydrate are prerequisite conditions for the production and secretion of functional propapain.  相似文献   

4.
TGF-beta is a putative mediator of immunosuppression associated with malignant glioma and other types of cancer. Subtilisin-like proprotein convertases such as furin are thought to mediate TGF-beta processing. Here we report that human malignant glioma cell lines express furin mRNA and protein, exhibit furin-like protease (FLP) activity, and release active furin into the cell culture supernatant. FLP activity is not modulated by exogenous TGF-beta or neutralizing TGF-beta Abs. Exposure of LN-18 and T98G glioma cell lines to the furin inhibitor, decanoyl-Arg-Val-Lys-Arg-chloromethylketone, inhibits processing of the TGF-beta1 and TGF-beta2 precursor molecules and, consequently, the release of mature bioactive TGF-beta molecules. Ectopic expression of PDX, a synthetic antitrypsin analog with antifurin activity, in the glioma cells inhibits FLP activity, TGF-beta processing, and TGF-beta release. Thus, subtilisin-like proprotein convertases may represent a novel target for the immunotherapy of malignant glioma and other cancers or pathological conditions characterized by enhanced TGF-beta bioactivity.  相似文献   

5.
Conversion of pro-hormones and precursor proteins into biologically active peptides and proteins involves the concerted action of a number of convertases and post-translation modification enzymes. The identification of the yeast convertase kexin as a prototype processing enzyme led to the discovery of the mammalian convertase designated furin, PC1 and PC2. Whereas furin is ubiquitously expressed, PC1 and PC2 are found only in endocrine and neural tissues and cell lines. In man and mouse, the genes coding for furin, PC1 and PC2 reside on three different chromosomes. The analysis of the intracellular processing of PC1 and PC2 and the removal of their pro-segment is presented, together with a summary of the cleavage specificity of these enzymes for precursors such as pro-opiomelanocortin (POMC) and human pro-renin. The distinct tissue distribution of PC1 and PC2 and their coregulation with POMC in the pituitary neurointermediate lobe adds credence to their physiological role as convertases involved in the tissue-specific processing of precursor proteins.  相似文献   

6.
Transforming growth factor beta (TGF‐β) is a signalling molecule that plays a key role in developmental and immunological processes in mammals. Three TGF‐β isoforms exist in humans, and each isoform has unique therapeutic potential. Plants offer a platform for the production of recombinant proteins, which is cheap and easy to scale up and has a low risk of contamination with human pathogens. TGF‐β3 has been produced in plants before using a chloroplast expression system. However, this strategy requires chemical refolding to obtain a biologically active protein. In this study, we investigated the possibility to transiently express active human TGF‐β1 in Nicotiana benthamiana plants. We successfully expressed mature TGF‐β1 in the absence of the latency‐associated peptide (LAP) using different strategies, but the obtained proteins were inactive. Upon expression of LAP‐TGF‐β1, we were able to show that processing of the latent complex by a furin‐like protease does not occur in planta. The use of a chitinase signal peptide enhanced the expression and secretion of LAP‐TGF‐β1, and co‐expression of human furin enabled the proteolytic processing of latent TGF‐β1. Engineering the plant post‐translational machinery by co‐expressing human furin also enhanced the accumulation of biologically active TGF‐β1. This engineering step is quite remarkable, as furin requires multiple processing steps and correct localization within the secretory pathway to become active. Our data demonstrate that plants can be a suitable platform for the production of complex proteins that rely on specific proteolytic processing.  相似文献   

7.
Furin and related proprotein convertases cleave the multibasic motifs R-X-R/K/X-R in the precursor proteins and, as a result, transform the latent proproteins into biologically active proteins and peptides. Furin is present both in the intracellular secretory pathway and at the cell surface. Intracellular furin processes its multiple normal cellular targets in the Golgi and secretory vesicle compartments while cell-surface furin appears to be essential only for the processing of certain pathogenic proteins and, importantly, anthrax. To design potent, safe and selective inhibitors of furin, we evaluated the potency and selectivity of the derivatized peptidic inhibitors modeled from the extended furin cleavage sequence of avian influenza A H5N1. We determined that the N- and C-terminal modifications of the original RARRRKKRT inhibitory scaffold produced selective and potent, nanomolar range, inhibitors of furin. These inhibitors did not interfere with the normal cellular function of furin because of the likely functional redundancy existing between furin and other proprotein convertases. These furin inhibitors, however, were highly potent in blocking the furin-dependent cell-surface processing of anthrax protective antigen-83 both in vitro and cell-based assays and in vivo. We conclude that the inhibitors we have designed have a promising potential as selective anthrax inhibitors, without affecting major cell functions.  相似文献   

8.
Secretoneurin is a recently characterized neuropeptidepresent in the primary amino acid sequence of secretogranin II. We investigated the proteolytic processing of secretogranin II by prohormone convertases in vivo in a cellular system using the vaccinia virus system. Both PC1 and PC2 can cleave the secretogranin II precursor at sites of pairs of basic amino acids to yield intermediate-sized fragments. Other convertases like PACE4, PC5 and furin were not active. For the formation of the free neuropeptide secretoneurin a different pattern was found. Only PC1 but none of the other convertases tested including PC2 were capable of generating secretoneurin. Our results demonstrate that the prohormone convertases PC1 and PC2 are involved in proteolytic processing of secretogranin II. The neuropeptide secretoneurin can only be generated by PC1 suggesting tissue-specific processing of secretogranin II in neurons expressing different subsets of the prohormone convertases.  相似文献   

9.
Thrombostasin (TS) is a thrombin inhibitor found in the salivary glands of horn flies (Haematobia irritans). It is produced as an inactive form with a 76-amino acid propeptide in the N-terminus preceding the mature TS. A minimal recognition sequence by subtilisin-like proprotein convertases, Arg-Xaa-Xaa-Arg, is localized C-terminal to the propeptide. This study demonstrated that a gene cloned from the salivary glands of the horn fly encodes a new convertase, subsequently named horn fly proprotein convertase (HFPC), and that the recombinant HFPC expressed in insect HighFive cell culture specifically cleaves recombinant pro-thrombostasin, produced in E. coli, at the expected site. The relative cleavage efficiency of rHFPC was compared with that of recombinant human furin, a commercially available proprotein convertase. The result indicated that this newly identified proprotein convertase is of importance for the proteolytic maturation of thrombostasin, a protein secreted in horn fly saliva and used by the insect to counteract its host's haemostatic response.  相似文献   

10.
XPACE4 is a member of the subtilisin/kexin family of pro-protein convertases. It cleaves many pro-proteins to release their active proteins, including members of the TGFbeta family of signaling molecules. Studies in mouse suggest it may have important roles in regulating embryonic tissue specification. Here, we examine the role of XPACE4 in Xenopus development and make three novel observations: first, XPACE4 is stored as maternal mRNA localized to the mitochondrial cloud and vegetal hemisphere of the oocyte; second, it is required for the endogenous mesoderm inducing activity of vegetal cells before gastrulation; and third, it has substrate-specific activity, cleaving Xnr1, Xnr2, Xnr3 and Vg1, but not Xnr5, Derriere or ActivinB pro-proteins. We conclude that maternal XPACE4 plays an important role in embryonic patterning by regulating the production of a subset of active mature TGFbeta proteins in specific sites.  相似文献   

11.
We have identified the major cellular endoprotease that activates the fusion (F) glycoprotein of measles virus (MV) and have engineered a serine protease inhibitor (serpin) to target the endoprotease and inhibit the production of infectious MV. The F-protein precursor of MV was not cleaved efficiently into the mature F protein in human colon carcinoma cells lacking functional furin, indicating that furin is the major enzyme responsible for activation of the MV F protein. A human serpin alpha 1-antitrypsin variant was engineered to specifically inhibit furin. When expressed from a recombinant vaccinia virus in primate cells infected by MV, the engineered serpin (alpha 1-PDX) specifically inhibited furin-catalyzed cleavage of the F-protein precursor without affecting synthesis of other MV proteins. We generated human glioma cells stably expressing alpha 1-PDX. MV infection in these cells did not result in syncytia. The infected cells produced all the MV proteins, but the F-protein precursor remained largely uncleaved. This did not prevent virus assembly. However, the released virions contained inactive F-protein precursor rather than mature F protein, and infectious-virus titers were reduced by 3 to 4 orders of magnitude. These results show that a mature F protein is not required for the assembly of MV but is crucial for virus infectivity. The engineered serpin may offer a novel molecular antiviral approach against MV.  相似文献   

12.
The anti-inflammatory cytokine, transforming growth factor beta (TGFbeta), plays an important role in Chagas disease, which is caused by the protozoan parasite Trypanosoma cruzi. In the current study, we show that the addition of an anti-TGFbeta antibody inhibited T. cruzi infection of cardiomyocytes, demonstrating the requirement for active endogenous TGFbeta. As TGFbeta is synthesized as a biologically inactive precursor, which is proteolytically processed to yield a mature, active homodimer, we hypothesized that T. cruzi could activate latent TGFbeta. To test this, we added recombinant latent TGFbeta to a TGFbeta-responsive reporter cell line in the presence of T. cruzi. We observed that T. cruzi was able to activate latent recombinant TGFbeta in this cellular model. We then investigated the ability of T. cruzi to activate latent TGFbetain vitro. We found that live T. cruzi, or cytosolic extracts of T. cruzi, activated latent TGFbeta in a dose- and temperature-dependent manner. The agent involved in TGFbeta activation was shown to be thermolabile and hydrophobic. Taken together, our studies demonstrate that T. cruzi directly activates latent TGFbeta. This activation is required for parasite entry into the mammalian cells and is likely to play an important role in modulating the outcome of T. cruzi infection.  相似文献   

13.
Pro-hormone or pro-protein convertases are a conserved family of eukaryotic serine proteases found in the secretory pathway. These endoproteases mature precursors for peptides and proteins that perform a wide range of physiologically important and clinically relevant functions. The first member of this family to be identified was Kex2 in the yeast Saccharomyces cerevisiae. One mammalian member of this family - furin - is responsible for processing substrates that include insulin pro-receptor, human immunodeficiency virus gp160 glycoprotein, Ebola virus glycoprotein, and anthrax protective antigen. Recent determination of the crystal structures for the catalytic core domains of both Kex2 and furin - the first for any members of this family - provide remarkable insights and a new level of understanding of substrate specificity and catalysis by the pro-protein convertases.  相似文献   

14.
All proprotein convertases (PCs) of the subtilisin/kexin family contain an N-terminal prosegment that is presumed to act both as an intramolecular chaperone and an inhibitor of its parent enzyme. In this work, we examined inhibition by purified, recombinant bacterial prosegments of furin and PC7 on the in vitro processing of either the fluorogenic peptide pERTKR-MCA or the human immunodeficiency virus envelope glycoprotein gp160. These propeptides are potent inhibitors that display measurable selectivity toward specific proprotein convertases. Small, synthetic decapeptides derived from the C termini of the prosegments are also potent inhibitors, albeit less so than the full-length proteins, and the C-terminal P1 arginine is essential for inhibition. The bacterial, recombinant prosegments were also used to generate specific antisera, allowing us to study the intracellular metabolic fate of the prosegments of furin and PC7 expressed via vaccinia virus constructs. These vaccinia virus recombinants, along with transient transfectants of the preprosegments of furin and PC7, efficiently inhibited the ex vivo processing of the neurotrophins nerve growth factor and brain-derived neurotrophic factor. Thus, we have demonstrated for the first time that PC prosegments, expressed ex vivo as independent domains, can act in trans to inhibit precursor maturation by intracellular PCs.  相似文献   

15.
Nerve growth factor (NGF) is synthesized as a precursor, proNGF that undergoes post-translational processing to generate the biologically active mature NGF. While the neurotrophic function of NGF is well established, the activity of the proNGF precursor is still unclear. In this study, we have cloned the pro-domain of the precursor NGF molecule and have elucidated its function. We have used both mature and the furin resistant pro((R/G))NGF as controls in our experiments. Both pro((R/G))NGF and mature NGF (NGF) exhibited neurotrophic activity on PC12 cells while the pro-domain itself promoted cell death. The pro-domain, has been found to mediate apoptosis possibly by promoting the formation of a signaling complex comprising of endogenous p75(NTR) receptor, Bim/Bcl2 group of proteins and JNK and MEK1/2 signaling pathways.  相似文献   

16.
In eucaryotes, many secreted proteins and peptides are proteolytically excised from larger precursor proteins by a specific class of serine proteases, the proprotein/prohormone convertases (PCs). This cleavage is essential for substrate activation, making the PCs very interesting pharmacological targets in cancer and infectious disease research. Correspondingly, their structure, function and inhibition are intensely studied - studies that require the respective target proteins in large amounts and at high purity. Here we describe the development of a novel purification protocol of furin, the best-studied member of the PC family. We combined the heterologous expression of furin from CHO cells with a novel purification scheme employing an affinity step that efficiently extracts only active furin from the conditioned medium by using furin-specific inhibitor moieties as bait. Several potential affinity tags were synthesized and their binding to furin characterized. The best compound, Biotin-(Adoa)(2)-Arg-Pro-Arg-4-Amba coupled to streptavidin-Sepharose beads, was used in a three-step chromatographic protocol and routinely resulted in a high yield of a homogeneous furin preparation with a specific activity of ~60 units/mg protein. This purification and the general strategy can easily be adapted to the efficient purification of other PC family members.  相似文献   

17.
Proprotein convertases are enzymes that proteolytically cleave protein precursors in the secretory pathway to yield functional proteins. Seven mammalian subtilisin/Kex2p-like proprotein convertases have been identified: furin, PC1, PC2, PC4, PACE4, PC5 and PC7. The binding pockets of all seven proprotein convertases are evolutionarily conserved and highly similar. Among the seven proprotein convertases, the furin cleavage site motif has recently been characterized as a 20-residue motif that includes one core region P6-P2´ inside the furin binding pocket. This study extended this information by examining the 3D structural environment of the furin binding pocket surrounding the core region P6-P2´ of furin substrates. The physical properties of mutations in the binding pockets of the other six mammalian proprotein convertases were compared. The results suggest that: 1) mutations at two positions, Glu230 and Glu257, change the overall density of the negative charge of the binding pockets, and govern the substrate specificities of mammalian proprotein convertases; 2) two proprotein convertases (PC1 and PC2) may have reduced sensitivity for positively charged residues at substrate position P5 or P6, whereas the substrate specificities of three proprotein convertases (furin, PACE4, and PC5) are similar to each other. This finding led to a novel design of a short peptide pattern for small molecule inhibitors: [K/R]-X-V-X-K-R. Compared with the widely used small molecule dec-RVKR-cmk that inhibits all seven proprotein convertases, a finely-tuned derivative of the short peptide pattern [K/R]-X-V-X-K-R may have the potential to more effectively inhibit five of the proprotein convertases (furin, PC4, PACE4, PC5 and PC7) compared to the remaining two (PC1 and PC2). The results not only provide insights into the molecular evolution of enzyme function in the proprotein convertase family, but will also aid the study of the functional redundancy of proprotein convertases and the development of therapeutic applications.  相似文献   

18.
The conversion of proteins into their mature forms underlies the functionality of many fundamental cellular pathways. One posttranslational modification leading to maturation of precursor proteins consists of the cleavage of their prodomain at pairs of basic amino acids by enzymes of the subtilisin-like mammalian proprotein convertase family. One of these enzymes, furin, acts in the constitutive secretory pathway of almost every cell type. However, in spite of furin's major roles in many pathophysiological processes, the exact subcellular sites of processing and activation of its substrates remain elusive. In this study, furin antigenic sites were tracked in subcellular compartments of various tissues and corresponding cell lines by high-resolution immunogold electron microscopy, Western blotting, cell transfection, and in vivo gene delivery of the furin cDNA. In addition to the Golgi apparatus, furin was assigned to endosomes and plasma membranes of polarized intestinal and renal epithelial cells and endothelial cells of the continuous, fenestrated, and discontinuous capillaries. Roles of furin in endothelial permeability, basement membrane turnover, and shedding of transmembrane proteins are supported by our data.  相似文献   

19.
Myostatin, a transforming growth factor-beta superfamily ligand, negatively regulates skeletal muscle growth. Generation of the mature signaling peptide requires cleavage of pro-myostatin by a proprotein convertase, which is thought to occur constitutively in the Golgi apparatus. In serum, mature myostatin is found in an inactive, non-covalent complex with its prodomain. We find that in skeletal muscle, unlike serum, myostatin is present extracellularly as uncleaved pro-myostatin. In cultured cells, co-expression of pro-myostatin and latent transforming growth factor-beta-binding protein-3 (LTBP-3) sequesters pro-myostatin in the extracellular matrix, and secreted pro-myostatin can be cleaved extracellularly by the proprotein convertase furin. Co-expression of LTBP-3 with myostatin reduces phosphorylation of Smad2, and ectopic expression of LTBP-3 in mature mouse skeletal muscle increases fiber area, consistent with reduction of myostatin activity. We propose that extracellular pro-myostatin constitutes the major pool of latent myostatin in muscle. Post-secretion activation of this pool by furin family proprotein convertases may therefore represent a major control point for activation of myostatin in skeletal muscle.  相似文献   

20.
To improve recombinant human bone morphogenetic protein-2 (rhBMP-2) yield, cell lines stably expressing hBMP2 were cultured in the presence of polyarginine peptide IND-1 and showed up to 6-fold increase in the yield of mature BMP-2. Repeated addition of IND-1 to cell cultures consistently improved BMP-2 yields over 53 days without affecting cell growth and viability. Investigation of its mechanism of action showed that IND-1 inhibited pro-protein convertase (PC) activity when incubated with cell lysates. However, when intact cells were cultured with IND-1, no change in cellular PC activity was observed. Furthermore, knockdown of furin (a prototypical member of the PCs) in cells did not affect their BMP-2 yields, suggesting furin/PC inhibition is unlikely the mechanism by which IND-1 enhances BMP-2 yields. IND-1 as a medium additive thus enhances BMP-2 production in mammalian cell expression systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号