首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We studied 3H-glycine and 3H-strychnine specific binding to glycine receptor (GlyR) in intact isolated frog retinas. To avoid glycine binding to glycine uptake sites, experiments were performed at low ligand concentrations in a sodium-free medium. The binding of both radiolabeled ligands was saturated. Scatchard analysis of bound glycine and strychnine revealed a KD of 2.5 and 2.0 M, respectively. Specific binding of glycine was displaced by -alanine, sarcosine, and strychnine. Strychnine binding was displaced 50% by glycine, and sarcosine. Properties of the strychnine-binding site in the GlyR were modified by sarcosine. Binding of both radioligands was considerably reduced by compounds that inhibit or activate adenylate cyclase and increased cAMP levels. A phorbol ester activator of PKC remarkably decreased glycine and strychnine binding. These results suggest modulation of GlyR in response to endogenous activation of protein kinases A and C, as well as protein phosphorylation modulating GlyR function in retina.  相似文献   

2.
Synaptosomal fractions were isolated from frog retina: a fraction enriched in photoreceptor terminals (P1) and a second one (P2) containing interneurons terminals. We compared the binding of [3H]glycine and [3H]strychine to membranes of these synaptosomes. The binding of both radioactive ligands was saturable and Na+-independent. [3H]Glycine bound to a single site in P1 and P2 synaptosomal fractions, with KD=12 and 82 nM and BMax=3.1 and 3.06 pmol/mg protein respectively. [3H]Strychnine bound to two sites in each one of the synaptosomal fractions. For P1 KD values were 3.9 and 18.7 nM, and BMax values were 1.1 and 7.1 pmol/mg protein, respecitively. Membranes from the P2 synaptosomal fraction showed KD's of 0.6 and 48 nM and BMax's of 0.4 and 4.5 pmol/mg. Specific [3H]glycine binding was displaced by -alanine, l-serine, d-serine and HA966, but not by strychnine 7-chlorokynurenic or 5,7-dichloro-kynurenic acids. Specific [3H]strychnine, binding was partially displaced by glycine and related aminoacids and totally displaced only by 2-NH2-strychnine. Our results indicate the presence of high affinity binding sites for glycine and strychnine in frog retinal synaptosomal membranes. The pharmacological binding pattern indicates the presence of the strychnine sensitive glycine receptor as well as other sites. These might not include the NMDA receptor-associated glycine site.  相似文献   

3.
The effect of glycine (Gly) and taurine (Tau) on the biochemical and pharmacological properties of [3H]l-glutamate ([3H] Glu) binding to membranes from primary cultures of chick retinal pigment epithelium (RPE), as well as from intact tissue during development was studied. Gly and Tau increase Bmax of [3H]Glu binding to a high affinity site (KB=300 nM) in membranes from 16 days in vitro (immature) cultures; additionally, Gly discloses a low affinity Glu-binding site (KB=970 nM) at this stage. In membranes from 25 days in vitro (mature) cultures, the high affinity site is no longer present and Tau has no effect on Glu-binding; Gly still stimulates binding to the low affinity site by four fold, with an EC50=200 M. Pharmacological profile using specific excitatory amino acid (EAA) receptor agonists and antagonists suggests that at 16 days in vitro Glu binds preferentially to metabotropic Glu receptors (mGluRs), and at 25 days in vitro to ionotropic receptors different from neuronal ones. The stimulatory effect of Gly and Tau was also observed in intact RPE, and decreased with increasing embryonic age. Glu binding was also stimulated in membranes from chick retina, but not in those from rat brain. Results support the possibility of EAA participation in several aspects of RPE physiology, including phagocytosis and cell division.Abbreviations L-Glu l-glutamate - QA quisqualate - KA kainate - NMDA N-methyl-d-aspartate - trans-ACPD (±) 1-aminocyclopentane-trans-1,3-dicarboxylic acid - D-AP5 d-2-amino-5-phosphonopentanoic acid - L-AP4 l-2-amino-4-phosphonobutyric acid - L-AP3 l-2-amino-3-phosphonopropionic acid - CNQX 6-cyano-7-nitroquinoxaline-2,3-dione - (+)MCPG (+)-methyl-4-carboxyphenyl-glycine - DHPG (RS) 3,5-dihydroxyphenyl-glycine - CPP 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid - MK-801 (+)-5-methyl-10, 11-dihydro-5H-dibenzo [a.d.] cyclohepten-5, 10-imine - PIP2 phosphatidyl inositol bisphosphate - ED embryonic day - DIV days in vitro - RPE retinal pigment epithelium - EAA excitatory amino acids  相似文献   

4.
Our earlier observations showed thatl-lysine enhanced the activity of diazepam against seizures induced by pentylenetetrazol (PTZ), and increased the affinity of benzodiazepine receptor binding in a manner additive to that caused by -aminobutyric acid (GABA). The present paper provides additional evidence to show thatl-lysine has central nervous system depressant-like characteristics.l-lysine enhanced [3H]flunitrazepam (FTZ) binding in brain membranes was dose-dependent and stimulated by chloride, bromide and iodide, but not fluoride. Enhancement of [3H]FTZ binding byl-lysine at a fixed concentration was increased by GABA but inhibited by pentobarbital between 10–7 to 10–3M. While GABA enhancement of [3H]FTZ binding was inhibited by the GABA mimetics imidazole acetic acid and tetrahydroisoxazol pyridinol, the enhancement by pentobarbital andl-lysine of [3H]FTZ binding was dose-dependently increased by these two GABA mimetics. The above results suggest thatl-lysine and pentobarbital acted at the same site of the GABA/benzodiazepine receptor complex which was different from the GABA binding site. The benzodiazepine receptor antagonist imidazodiazepine Ro15-1788 blocked the antiseizure activity of diazepam against PTZ. Similar to pentobarbital, the anti-PTZ effect ofl-lysine was not blocked by Ro15-1788. Picrotoxinin and the GABA, receptor antagonist bicuculline partially inhibitedl-lysine's enhancement of [3H]FTZ binding with the IC50s of 2 M and 0.1 M, respectively. The convulsant benzodiazepine Ro5-3663 dose-dependently inhibited the enhancement of [3H]FTZ binding byl-lysine. This article shows the basic amino acidl-lysine to have a central nervous system depressant characteristics with an anti-PTZ seizure activity and an enhancement of [3H]FTZ binding similar to that of barbiturates but different from GABA.  相似文献   

5.
We determined the extent of Na+-independent, proton-driven amino acid transport in human intestinal epithelia (Caco-2). In Na+-free conditions, acidification of the apical medium (apical pH 6.0, basolateral pH 7.4) is associated with a saturable net absorption of glycine. With Na+-free media and apical pH set at 6.0, (basolateral pH 7.4), competition studies with glycine indicate that proline, hydroxyproline, sarcosine, betaine, taurine, -alanine, -aminoisobutyric acid (AIB), -methylaminoisobutyric acid (MeAIB), -amino-n-butyric acid and l-alanine are likely substrates for pH-dependent transport in the brush border of Caco-2 cells. Both d-serine and d-alanine were also substrates. In contrast leucine, isoleucine, valine, phenylalanine, methionine, threonine, cysteine, asparagine, glutamine, histidine, arginine, lysine, glutamate and d-aspartate were not effective substrates. Perfusion of those amino acids capable of inhibition of acid-stimulated net glycine transport at the brush-border surface of Caco-2 cell monolayers loaded with the pH-sensitive dye 2,7-bis(2-carboxyethyl-5(6)-carboxyfluorescein) (BCECF) caused cytosolic acidification consistent with proton/amino acid symport. In addition, these amino acids stimulate an inward short-circuit current (I sc) in voltage-clamped Caco-2 cell monolayers in Na+-free media (pH 6.0). Other amino acids such as leucine, isoleucine, phenylalanine, tryptophan, methionine, valine, serine, glutamine, asparagine, d-aspartic acid, glutamic acid, cysteine, lysine, arginine and histidine were without effect on both pHi and inward I sc. In conclusion, Caco-2 cells express a Na+-independent, H+-coupled, rheogenic amino acid transporter at the apical brush-border membrane which plays an important role in the transepithelial transport of a range of amino acids across this human intestinal epithelium.This study was supported by a Wellcome Trust Fellowship (to DTT). Charlotte Ward, Maureen Sinclair and Ken Elliott provided excellent technical assistance.  相似文献   

6.
Summary We have confirmed previous demonstrations of sodium gradient-stimulated transport ofl-alanine, phenylalanine, proline, and -alanine, and in addition demonstrated transport of N-methylamino-isobutyric acid (MeAIB) and lysine in isolated rabbit kidney brush border vesicles. In order to probe the multiplicity of transport pathways available to each of these14C-amino acids, we measured the ability of test amino acids to inhibit tracer uptake. To obtain a rough estimate of nonspecific effects, e.g., dissipation of the transmembrane sodium electrochemical potential gradient, we measured the ability ofd-glucose to inhibit tracer uptake.l-alanine and phenylalanine were completely mutually inhibitory. Roughly 75% of the14C-l-alanine uptake could be inhibited by proline and -alanine, while lysine and MeAIB were no more effective thand-glucose. Roughly 50% of the14C-phenylalanine uptake could be inhibited by proline and -alanine; lysine was as effective as proline and -alanine, and the effects of pairs of these amino acids at 50mm each were not cumulative. MeAIB was no more effective thand-glucose. We conclude that three pathways mediate the uptake of neutral,l, -amino acids. One system is inaccessible to lysine, proline, and -alanine. The second system carries a major fraction of thel-alanine flux; it is sensitive to proline and -alanine, but not to lysine. The third system carries half the14C-phenylalanine flux, and it is sensitive to proline, lysine, and -alanine. Since the neutral,l, -amino acid fluxes are insensitive to MeAIB, we conclude that they are not mediated by the classicalA system, and since all of thel-alanine flux is inhibited by phenylalanine, we conclude that it is not mediated by the classicalASC system.l-alanine and phenylalanine completely inhibit uptake of lysine. MeAIB is no more effective thand-glucose in inhibiting lysine uptake, while proline and -alanine appear to inhibit a component of the lysine flux. We conclude that the14C-lysine fluxes are mediated by two systems, one, shared with phenylalanine, which is inhibited by proline, -alanine, andl-alanine, and one which is inhibited byl-alanine and phenylalanine but inaccessible to proline, -alanine, and MeAIB. Fluxes of14C-proline and14C-MeAIB are completely inhibited byl-alanine, phenylalanine, proline, and MeAIB, but they are insensitive to lysine. Proline and MeAIB, as well as alanine and phenylalanine, but not lysine, inhibit14C--alanine uptake. However, -alanine inhibits only 38% of the14C-proline uptake and 57% of the MeAIB uptake. We conclude that two systems mediate uptake of proline and MeAIB, and that one of these systems also transports -alanine.  相似文献   

7.
The chemoautotrophic symbiont-bearing clam Lucinoma aequizonata contains very high levels of free d-alanine in all tissues. The possible sources for this amino acid and its involvement in the clams' metabolism were investigated. Very low levels of d-alanine (generally below 1 mol·l-1) were measured in the sediment porewaters from the habitat of the clams. Experiments with 14C-labeled tracers demonstrate an active metabolism of d-alanine in the clams rather than a role as inert waste product. d-alanine is metabolized at about 0.12 mol·g fw-1·h-1. Label from aspartate, but not glucose and CO2, is incorporated into d-alanine. Incubation with labeled d-alanine did not result in formation of radioactive l-alanine. Tests for alanine racemase (EC 5.1.1.1) and d-amino acid oxidase (EC 1.4.3.3.) did not show activity in either gill, i.e. symbiont and host, or foot tissue. d-Alanine amino transferase (EC 2.6.1.b.) was demonstrated in gill and foot tissues. Two sources for d-alanine are proposed: a degradation of cell walls of symbiotic bacteria and production by the host using a d-specific alanine transaminase.Abbreviations aa amino acid(s) - fw fresh weight - HPLC high-performance liquid chromatography - MBH methyl benzethonium hydroxyde - NAC N-acetyl-l-cysteine - OPA ortho-phthaldialdehyde - TCA tricarbonic acid  相似文献   

8.
Summary Metal coordination confers an extraordinary structural stability to the ferrichromes which, independent of their variable amino acid composition, results in a basically unperturbed conformation for all the homologous peptides in the series. The proton magnetic resonance (pmr) characteristics for Al3+ analogues (alumichromes) reflect this conformational isomorphism in usual solvents so that single site substitutions are clearly recognized in the pmr spectra. Thus, the substitution of glycine byl-alanine orl-serine introduce new resonances characteristic of the sidechains and alter the pattern of the amide NH pmr region in that doublets substitute for glycyl triplets at the same site. Since for glycine- andl-serine-containing alumichromes the resonances have already been identified, it is possible to unequivocally establish the primary structure of the twol-alanyl homologues ferrichrome C ( ) and sake colorant A ( ) on the basis of the comparative pmr spectra of their Al3+ analogues, namely, alumichrome C and alumisake. The resonance assignment, and hence the site occupancy, is substantiated by the temperature coefficients of the NH chemical shifts, rates of1H-2H exchange and homonuclear proton spin decoupling experiments centered on the NH spectral region. Occupancy of site 1 by a glycine residue is observed for all known ferrichromes, which serves to conserve a hairpin turn. This method of obtaining sequence information should prove of general use for other systems of homologous polypeptides, provided their conformations are not affected by the residue substitutions.  相似文献   

9.
Carnosine in the chemoreceptor neurons of the olfactory epithelium can be labeled in vivo by intranasal irrigation with either14C--alanine or14C-L-histidine. This newly synthesized carnosine (but not the precursor amino acids) is translocated to the olfactory bulb, where the olfactory chemoreceptor axons synapse with the dendrites of mitral cells and other second-order neurons. Labeled carnosine arrives in the bulb several hours after intranasal administration of precursor. Similar arrival time is seen for macromolecules after intranasal administration of [3H]L-fucose, [14C]L-proline, or [14C]L-histidine. Macromolecules labeled with [3H]uridine take much longer to reach the bulb. Carnosine is also labeled after [3H]uridine administration. No labeling of macromolecules is observed after administration of 1-[14C]--alanine. Oral administration of the same dose of [14C]--alanine gives almost no labeled carnosine in bulb or epithelium. This method has permitted us to estimate that the half-life of labeled carnosine in both the bulb and epithelium is about 20 h. This method provides a means of selectively prelabeling the olfactory chemoreceptor neurons in the olfactory epithelium and their synapses in the olfactory bulb prior to cellular and subcellular separation procedures, and may also enable us to monitor the influences of olfactory stimulation on synthesis and transport of carnosine.  相似文献   

10.
The rat retina and the different brain regions contain membranes sites that bindl-lysine in the nanomolar range. These binding sites undergo changes in different experimental conditions, thus: I) intraocular injection of kainic acid induces a reduction of the density ofl-lysine binding sites, II)d,l--aminoadipic acid injected into the eye enhances both kinetic parameters (B max andK d) ofl-[3H]lysine binding sites, III) the intraperitoneal injection of iodoacetic acid decreases the sensitivity for its ligand binding sites, and IV) the exposure to darkness of the rats reducesl-[3H]lysine binding in the retina, thalamus, hypothalamus and superior colliculus, but not in the occipital cortex; such a decrease appears to be characterized, at least in the retina, by a lower sensitivity of the binding sites forl-lysine after the exposure to darkness. The results show thatl-lysine binding sites are located on kainic acid-sensitive cells and can be involved in the physiological mechanism of vision.  相似文献   

11.
Summary Electrical currents associated with sodium-coupled alanine transport in mouse pancreatic acinar cells were studied using the method of whole-cell recording with patch pipettes. Single cells or small clusters of (electrically coupled) cells were isolated by collagenase treatment. The composition of the intracellular solution could be controlled by internal perfusion of the patch pipette. In this way both inward and outward currents could be measured under zero-trans conditions, i.e., with finite concentrations of sodium andl-alanine on one side and zero concentrations on the other. Inward andoutward currents for equal but opposite concentration gradients were found to be of similar magnitude, meaning that the cotransporter is functionally nearly symmetric. The dependence of current on the concentrations of sodium andl-alanine exhibited a Michaelis-Menten behavior. From the sodium-concentration dependence of current as well as from the reversal potential of the current in the presence of an alanine-concentration, gradient, a sodium/alanine stoichiometric ratio of 1:1 can be inferred. The finding that N-methylated amino acids may substitute, forl-alanine, as well as the observed pH dependence of currents indicate that the pancreatic alanine transport system is similar to (or identical with) the A-system which is widespread in animal cells. The transport system is tightly coupled with respect to Na+; alanine-coupled inward flow of Na+ is at least 30 times higher than uncoupled Na+ flow mediated by the cotransporter. The current-voltage characteristic of the cotransporter could be (approximately) determined from the difference of transmembrane current in the presence and in the absence ofl-alanine. The sodium-concentration dependence of the current-voltage characteristic indicates that a Na+ ion approaching the binding site from the extracellular medium has to cross part of the transmembrane electric field.  相似文献   

12.
Summary Phencyclidine is a highly specific noncompetitive inhibitor of the nicotinic acetylcholine receptor. In a novel approach to study this site, a spin-labeled analogue of phencyclindine. 4-phenyl-4-(1-piperidinyl)-2.2.6.6.-tetramethylpiperidinoxyl (PPT) was synthesized. The binding of PPT inhibits86Rb flux (IC50=6.6m), and [3H] phencyclidine binding to both resting and desensitized acetylcholine receptor (IC50=17 m and 0.22 m, respectively). From an indirect Hill plot of the inhibition of [3H]phencyclidine binding by PPT. a Hill coefficient of approximately one was obtained in the presence of carbamylcholine and 0.8 in -bungarotoxin-treated preparations. Taken together, these results indicate that PPt mimics phencyclidine in its ability to bind to the noncompetitive inhibitor site and is functionally active in blocking ion flux across the acetylcholine receptor channel. Analysis of the electron spin resonance signal of the bound PPT suggests that the environment surrounding the probe within the ion channel is hydrophobic, with a hydrophobicity parameter of 1.09. A dielectric constant for the binding site was estimated to be in the range of 2–3 units.  相似文献   

13.
Summary Scatchard analysis of3H ouabain bound to isolated rectal gland cells as a function of increasing ouabain concentrations produced a concave curvilinear plot that was resolved into two specific sites with either a high (I) or low (II) affinity for ouabain. Cyclic cAMP/theophylline (±furosemide, 10–4 m) increased the amount of3H ouabain bound to the high-affinity site I. Vanadate, a phosphate congener which promotes formation of the ouabain-binding state of the enzyme, mimicked the effects of cAMP/theophylline at low concentrations of ouabain, suggesting that cAMP/theophylline increases binding to site I by enhancing the rate of turnover of resident enzyme. Enhanced86Rb uptake seen following cAMP/theophylline administration was primarily associated with increased flux through the high-affinity ouabain site, and this stimulation was not obliterated by the co-administration of furosemide. A model was presented which suggested the presence of two noninteracting pools of enzyme or isozymes which exhibit either a high or low affinity for ouabain. Cyclic AMP both stimulated turnover via site I, and modified the kinetics of binding of3H ouabain to site II. The (ave)K d of3H ouabain for site II was increased from 3.6 m (controls) to 0.5 m (cAMP/theophylline) and the Hill coefficient was modified from 0.45 (controls) to 1.12 (caMP/theophylline), suggesting a transition from a negative- to a noncooperative binding state. While furosemide reversed the effects of cAMP/theophylline on site II kinetics, it did not obliterate cAMP/theophylline effects on site I. This suggests that cAMP may alter the intrinsic turnover rate of this particular pool of Na,K-ATPase in shark rectal gland.  相似文献   

14.
Summary The amino acid pool of MDCK cells was essentially constituted by alanine, glycine, glutamic acid, serine, taurine, lysine, -alanine and glutamine. Upon reductions in osmolarity, free amino acids were rapidly mobilized. In 50% hyposmotic solutions, the intracellular content of free amino acids decreased from 69 to 25mm. Glutamic acid, taurine and -alanine were the most sensitive to hyposmolarity, followed by glycine, alanine and serine, whereas isoleucine, phenylalanine and valine were only weakly reactive. The properties of this osmolarity-sensitive release of amino acids were examined using3H-taurine. Decreasing osmolarity to 85, 75 or 50% increased taurine efflux from 0.6% per min to 1.6, 3.5 and 5.06 per min, respectively. The time course of3H-taurine release closely follows that of the regulatory volume decrease in MDCK cells. Taurine release was unaffected by removal of Na+, Cl or Ca2+, or by treating cells with colchicine or cytochalasin. It was temperature dependent and decreased at low pH. Taurine release was unaffected by bumetanide (an inhibitor of the Na+/K+/2Cl carrier); it was inhibited 16 and 67 by TEA and quinidine (inhibitors of K+ conductances), unaffected by gadolinium or diphenylamine-2-carboxylate (inhibitors of Cl channels) and inhibited 50% by DIDS. The inhibitory effects of DIDS and quinidine were additive. Quinidine but not DIDS inhibited taurine uptake by MDCK cells.  相似文献   

15.
Summary Renal brush border membrane vesicles (bbmv) from the aglomerular toadfish (Opsanus tau), isolated by differential precipitation, were tested for their ability to actively translocate (i) taurine, known to be secreted by the kidney of several marine teleosts, and (ii)l-alanine,l-glutamic acid, andd-glucose, solutes that are normally reabsorbed in the filtering nephron. Vesicular taurine uptake displayed a Na+ dependence. Transport was greatest under conditions of an inward-directed Na+ gradient, but a significant stimulation by Na+ over K+ could also be observed in the absence of a salt gradient. At high extravesicular K+, the addition of valinomycin reduced taurine uptake. Na+-dependent3H-taurine flux was almost completely inhibited by non-labeled taurine (tracer replacement) or -alanine, but was unaffected byl-alanine. Replacement of medium chloride by SCN or NO 3 in the presence of Na+ resulted in significantly lower uptake rates under both anion gradient and anion equilibrium conditions, whereas Br could almost fully substitute for the stimulatory Cl action. These results indicate the presence of an electrogenic Na+-cotransport mechanism with specificity for -amino acids in the toadfish renal brush border. Whether the system under physiological conditions mediates reabsorption or secretion of taurine remains to be determined. Toadfish bbmv also translocatedl-alanine andl-glutamic acid in a Na+-dependent manner. Possible roles for these most likely reabsorptive transport systems in a non-filtering kidney are discussed.d-glucose uptake, however, appeared to occur via Na+-independent pathways, since it was not affected by phlorizin in the presence of Na+, or by Na+ replacement.Abbreviation bbmv brush border membrane vesicles  相似文献   

16.
The binding of [3H]AMPA (Dl--amino-3-hydroxy-5-methylisoxazole-4-propionic acid), a ligand for the putative quisqualate excitatory amino acid receptor subtype, was evaluated using centrifugation and filtration receptor binding techniques in rat brain crude synaptosomal membrane preparations. Maximal specific binding of [3H]AMPA occurred in Triton X-100 treated membranes in the presence of the chaotropic agent potassium thiocyanate (KSCN). The effects of KSCN on binding were reversible and optimal at 100 mM. Supernatant obtained from detergent-treated membranes inhibited specific [3H]AMPA and [3H]kainic acid binding, suggesting the presence of an inhibitory agent which was tentatively identified as glutamate. Using centrifugation, saturation analysis revealed two distinct binding sites in both the absence and presence of KSCN. The chaotrope was most effective in increasing binding at the low affinity binding site, enhancing the affinity (K d) without a concommitant change in the total number of binding sites. Using filtration, a single binding site was detected in Triton-treated membranes. Like the data obtained by centrifugation, KSCN enhanced the affinity of the receptor (K d value=10 nM) without altering the number of binding sites (B max=1.2 pmol/mg protein). The rank order of potency of various glutamate analogs in the [3H]AMPA binding assay was quisqualate > AMPA > l-glutamate > kainate > d-glutamate, consistent with the labeling of a quisqualate-type excitatory amino acid receptor subtype.l-glutamic acid diethylester, and 2-amino-7-phosphonoheptanoic acid (AP7) were inactive. The present technique provides a rapid, reliable assay for the evaluation of quisqualate-type excitatory amino acid agonists and/or antagonists that may be used to discover more potent and selective agents.  相似文献   

17.
In Escherichia coli, -alanine is a direct precursor in the biosynthesis of pantothenic acid (vitamin B5). Although a sufficient -alanine supply is crucial for biotechnological vitamin B5 production, nothing was known about -alanine transport in E. coli until now. The aim of this work was the characterization of -alanine transport by E. coli and the identification and overexpression of the corresponding carrier-encoding gene for the rational improvement of pantothenic acid-producing strains. -Alanine uptake was found to be an active process catalyzed by the amino acid carrier CycA. The corresponding gene was cloned and overexpressed, resulting in an increase in the uptake rate, compared with the wild type. In all tested strains, this overexpression led to a strong sensitivity to -alanine, but not to the other CycA substrates, such as l-alanine, d-alanine, and glycine. This prevented a direct application for the improvement of pantothenic acid-producing strains by an enhanced precursor supply.  相似文献   

18.
Summary The sodium-dependentl-alanine transport across the plasma membrane of oocytes ofXenopus laevis was studied by means of [14C]-l-alanine,22Na+ and electrophysiological measurements. At fixed sodium concentrations, the dependence of alanine transport on alanine concentration follows Michaelis-Menten kinetics; at fixed alanine concentrations, the transport varies with sodium concentration with a Hill coefficient of 2. In the presence of sodium the uptake of alanine is accompanied by a depolarization of the membrane. Under voltage-clamp conditions this depolarization can be compensated by an inward-directed current. Assuming that this current is carried by sodium we arrive at a 21 stoichiometry for the sodium-alanine cotransport. The assumption was confirmed by direct measurements of both sodium and alanine fluxes at saturating concentrations of the two substrates, which also yielded a stoichiometry close to 21. The sodium-l-alanine cotransport is neither inhibited by furosemide (0.5 mmol/liter) nor by N-methyl amino isobutyric acid (5 mmol/liter). A 20-fold excess ofd-alanine overl-alanine caused about 60% inhibition.  相似文献   

19.
The amino acid leucine was transported by the cyanobacterium Anabaena variabilis. The K m for transport was 10.8 M; the V max was 8.7 nmoles min–1 mg–1 chlorophyll a. Transport of leucine was energy dependent: uptake of leucine was inhibited in the dark, and by DCMU and cyanide. Transport was neither dependent on nor enhanced by Na+. Prior growth of cells with leucine did not repress transport of [14C]-leucine. Alanine, glycine, valine, and methionine were strong competitive inhibitors of leucine uptake; serine, threonine, isoleucine, norleucine, and d-alanine competitively inhibited to a lesser degree. Other amino acids or amino acid analogues, including d-leucine, -aminoisobutyrate, and d-serine did not inhibit the transport of leucine.Abbreviations Chl a chlorophyll a - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - TES N-tris(hydroxymethyl)-2-aminoethane-sulfonic acid - TCA trichloroacetic acid - Tris N-tris(hydroxymethyl)aminoethane  相似文献   

20.
Binding ofl-[3H]glutamate to membranes from whole chick retina and from subcellular fractions enriched with photoreceptor terminals (P1), or terminals from the inner plexiform layer (P2) was studied. Na+-dependent and Na+-independent binding to these membranes was demonstrated. Na+-independent binding was stereospecific. Kinetic analysis of the binding process indicated a single high-affinity system (K B=0.55 M) with a capacity of approximately 20 pmoles/mg protein in all the membrane fractions. [3H]Glutamate binding to P1 and P2 fractions was effectively displaced by several structural analogues of glutamate. Glutamate diethyl-ester appreciably displaced binding, whereas kainic acid did not displace bound glutamate. Data indicate the binding of [3H]glutamate to physiologically relevant receptors in the chick retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号