首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RGS14 is a multifunctional protein that contains an RGS domain, which binds active Gi/o alpha-GTP, a GoLoco/GPR domain, which binds inactive Gi alpha-GDP, and a tandem Rap1/2 binding domain (RBD). Studies were initiated to determine the roles of these domains and their interactions with Gi alpha on RGS14 subcellular localization. We report that RGS14 dynamic subcellular localization in HeLa cells depends on distinct domains and selective interactions with preferred Gi alpha isoforms. RGS14 shuttles rapidly between the nucleus and cytoplasm, and associates with centrosomes during interphase and mitosis. RGS14 localization to the nucleus depends on the RGS and RBD domains, its translocation out of the nucleus depends on the GoLoco/GPR domain, and its localization to centrosomes depends on the RBD domain. Gi alpha subunits (Gi alpha1, 2 and 3) localize predominantly at the plasma membrane. RGS14 binds directly to inactive and active forms of Gi alpha1 and Gi alpha3, but not Gi alpha2, both as a purified protein and when recovered from cells. RGS14 localizes predominantly at the plasma membrane in cells with inactive Gi alpha1 and Gi alpha3, but not Gi alpha2, whereas less RGS14 associates with active Gi alpha1/3 at the plasma membrane. RGS14 binding to inactive, but not active Gi alpha1/3 also prevents association with centrosomes or nuclear localization. Removal or functional inactivation of the GoLoco/GPR domain causes RGS14 to accumulate at centrosomes and in the nucleus, but renders it insensitive to recruitment to the plasma membrane by Gi alpha1/3. These findings highlight the importance of the GoLoco/GPR domain and its interactions with Gi alpha1/3 in determining RGS14 subcellular localization and linked functions.  相似文献   

2.
It was recently demonstrated that growth in cell size can be dissociated from DNA synthesis and mitosis. 3T3 cells starved to quiescence in low serum concentration can be stimulated to undergo DNA synthesis and one cell division without growing in size (unbalanced growth) (42-44). We report here that in cells stimulated to undergo unbalanced growth, the cell nucleus undergoes balanced growth, i.e., nearly doubles in size prior to mitosis. The reduced ability to grow in cell size under unbalanced growth conditions is thus mainly ascribable to the cytoplasm. Furthermore, the extent to which cells grow in size prior to mitosis is dependent on the serum concentration in the tissue culture medium (44). This data suggests that some macromolecular factor or factors in serum are required for growth in cell size prior to mitosis. We report in this study that epidermal growth factor (EGF) alone exerts a small but significant stimulatory influence on DNA synthesis and mitosis but does not affect cellular enlargement. In contrast, insulin added at supraphysiological concentrations does not stimulate quiescent cells to enter S phase but instead stimulates growth in cell size in the small fraction of dividing cells. Furthermore, cells stimulated to proliferate by EGF could be induced to undergo balanced growth when insulin was added concomitantly. Finally, platelet-derived growth factor (PDGF) stimulates quiescent sparse 3T3 cells to undergo DNA synthesis and mitosis. PDGF also exerts a limited but significant effect on cellular enlargement. However, PDGF alone could not induce a complete balanced growth, i.e., a doubling in cell size prior to mitosis.  相似文献   

3.
Recently, we reported that in mouse mastocytoma P-815 cells the cytosol contains some factor(s) which promotes the release of GTP-activated Gi2 alpha from the membrane, and that thrombin induces the translocation of Gi2 alpha from the membrane to the cytosol (Takahashi, S., Negishi, M. and Ichikawa, A. (1991) J. Biol. Chem. 266, 5367-5370). Here we investigated the mechanism underlying the thrombin-induced translocation of Gi2 alpha in mastocytoma cells. Thrombin induced a rapid and transient increase in the intracellular Ca2+ concentration ([Ca2+]i) within 1 min, attenuated pertussis toxin-catalyzed ADP-ribosylation of Gi2 in the membrane, and caused the subsequent translocation of Gi2 alpha. Thrombin induced the translocation of protein kinase C from the cytosol to the membrane, and a protein kinase C inhibitor, staurosporine, completely inhibited the thrombin-induced translocation of Gi2 alpha. When cells were treated with thrombin, the ability of the cytosol to release Gi2 alpha from the membrane in the presence of GTP gamma S markedly increased. This stimulatory effect of thrombin on the ability of the cytosol was mimicked by 12-O-tetradecanoylphorbol 13-acetate (TPA), but not by the Ca2+ ionophore, ionomycin. The thrombin- and TPA-induced potentiation of the ability of the cytosol to release Gi2 alpha was completely abolished by staurosporine. Furthermore, phosphorylation of the cytosol by protein kinase C markedly potentiated the ability of the cytosol to release Gi2 alpha. These results together demonstrate that the thrombin-induced translocation of Gi2 alpha is due to enhancement of the ability of the cytosol to release Gi2 alpha via activation of protein kinase C.  相似文献   

4.
Treatment of rat hepatocytes with epidermal growth factor (EGF) produced an enhanced tyrosine phosphorylation of the EGF receptor and phospholipase C-gamma (PLC-gamma) in conjunction with the mobilization of Ca2+. Approximately 30% of the total PLC-gamma was tyrosine-phosphorylated with a maximum being reached after 30 s of incubation with EGF. Pretreatment of the rats with pertussis toxin prior to isolation of the hepatocytes blocked EGF-induced tyrosine phosphorylation of PLC-gamma and Ca2+ mobilization but had no effect on autophosphorylation of the EGF receptor or Ca2+ responses elicited by angiotensin II or phenylephrine. Under these conditions Gi protein alpha subunits were fully ADP-ribosylated. A 41-kDa Gi protein alpha subunit was found to be present in the anti-PLC-gamma immune complex after EGF stimulation as shown by in vitro ADP-ribosylation using [32P]NAD+ and activated pertussis toxin. The kinetics of association between PLC-gamma with Gi alpha protein reached a maximum after 1 min of incubation with EGF. Antibodies specific for the EGF receptor also coimmunoprecipitated a Gi protein alpha subunit. Treatment of hepatocytes with EGF caused first an increase and then a decrease in the amount of Gi protein alpha subunit associated with the EGF receptor. In contrast, studies with cultured rat liver (WB) cells, a cell line in which EGF stimulation of phosphoinositide hydrolysis is not inhibited by pertussis toxin, showed that a stable complex of Gi alpha was not formed with either PLC-gamma or EGF receptor immunoprecipitates. These results indicate that a pertussis toxin-sensitive Gi protein is uniquely involved in the signal transduction pathway mediating EGF-induced activation of PLC-gamma and Ca2+ mobilization in hepatocytes.  相似文献   

5.
A I Radchenko 《Tsitologiia》1987,29(4):404-409
The intermediate cell is a third definitely outlined morpho-functional type of cells within sarcocysts, in addition to the two other well known ones--metrocytes and merozoites (Fedoseenko, Levit, 1979; Beyer et al., 1981). The intermediate cell divides by endodyogeny, the nuclear division being accomplished by semi-closed pleuromitosis. In the dividing nuclei, centrioles and extranuclear bundle of microtubules connecting two pairs of centrioles are seen in addition to centrocones and associated semi-spindles. Pro-, ana- and telophases of mitosis have been followed. The microtubule organizing center (MTOC) seen in the cytoplasm of the intermediate cell is represented by the polar ring with microtubules originating from it. The MTOC is involved in the division of both the nucleus and the cytoplasm. The formation of the polar ring (MTOC) from the Golgi-adjunct has been first discovered and followed in the course of the intermediate cell division.  相似文献   

6.
Cell division must be tightly coupled to cell growth in order to maintain cell size, yet the mechanisms linking these two processes are unclear. It is known that almost all proteins involved in cell division shuttle between cytoplasm and nucleus during the cell cycle; however, the implications of this process for cell cycle dynamics and its coupling to cell growth remains to be elucidated. We developed mathematical models of the cell cycle which incorporate protein translocation between cytoplasm and nucleus. We show that protein translocation between cytoplasm and nucleus not only modulates temporal cell cycle dynamics, but also provides a natural mechanism coupling cell division to cell growth. This coupling is mediated by the effect of cytoplasmic-to-nuclear size ratio on the activation threshold of critical cell cycle proteins, leading to the size-sensing checkpoint (sizer) and the size-independent clock (timer) observed in many cell cycle experiments.  相似文献   

7.
PASTICCINO2 (PAS2), a member of the protein Tyr phosphatase-like family, is conserved among all eukaryotes and is characterized by a mutated catalytic site. The cellular functions of the Tyr phosphatase-like proteins are still unknown, even if they are essential in yeast and mammals. Here, we demonstrate that PAS2 interacts with a cyclin-dependent kinase (CDK) that is phosphorylated on Tyr and not with its unphosphorylated isoform. Phosphorylation of the conserved regulatory Tyr-15 is involved in the binding of CDK to PAS2. Loss of the PAS2 function dephosphorylated Arabidopsis thaliana CDKA;1 and upregulated its kinase activity. In accordance with its role as a negative regulator of the cell cycle, overexpression of PAS2 slowed down cell division in suspension cell cultures at the G2-to-M transition and early mitosis and inhibited Arabidopsis seedling growth. The latter was accompanied by altered leaf development and accelerated cotyledon senescence. PAS2 was localized in the cytoplasm of dividing cells but moved into the nucleus upon cell differentiation, suggesting that the balance between cell division and differentiation is regulated through the interaction between CDKA;1 and the antiphosphatase PAS2.  相似文献   

8.
Lymphocytes from human newborns inhibit division of their mothers' lymphocytes. Three days after we cultured equal numbers of cells from a mother and her baby in the presence of PHA, mitosis of the mother's lymphocytes was suppressed 13-fold compared to that of the baby's lymphocytes. At the end of 3 days the number of baby's lymphocytes were doubled those of the mother's. The survival rates and mean mitotic indexes of both pairs of cell were roughly equivalent (mean +/- S.E: baby 2.4 +/- 0.8; mother 2.6 +/- 0.7), indicating that the lack of dividing lymphocytes from the mother was caused by inhibited division of the mother's lymphocytes, no enhanced growth of the newborn's cells. The cell population in newborns that is responsible for the inhibition effect resides in the T cell-enriched population. Lymphocytes from one newborn were not able to inhibit division of lymphocytes from another newborn, suggesting that lymphocytes from newborns could continue to divide despite their inhibitory effect. Other experiments showed that actively dividing fetal fibroblasts, amnion cells from the newborn, and continuous T lymphoblastoid cell lines were unable to inhibit mitosis of lymphocytes of the mother.  相似文献   

9.
Zeng W  Michael L 《Tissue & cell》1993,25(5):709-723
The Golgi complexes of animal cells are said to become vesicular during cell division in order to allow the equal partitioning of organelles between daughter cells (Warren, 1985). However, in the epidermis of fifth stage larval Calpodes ethlius (Lepidoptera, Hesperi idae), cutical deposition is concurrent with cell division in preparation for pupation. We therefore looked at the Golgi complexes of these epidermal cells to see if they maintained their interphase form to allow them to continue to function during cell division. Dividing cells were recognized by changes in the nucleus and nuclear envelope, the form of the cell cortex and cell surface, and by the disposition of microtubules. Epidermal Golgi complexes consist of 3-5 cisternae capped by endoplasmic reticulum with transfer vesicles and rings of GC beads next to the cis face, and secretory vesicles on the trans face. Golgi complexes of dividing cells are structurally indistinguishable from those in interphase, their beads are in the rings characteristic of active GCs, and cuticle continues in uninterrupted lamellae above the apical microvilli. The observations suggest that Golgi complexes in dividing insect cells differ from those of most vertebrates by remaining functional through mitosis.  相似文献   

10.
Proper activation of the Ras/MAPK pathway is broadly required during development, and in many cases, signal transduction downstream of the receptor is linear. Thus, different mechanisms exist to properly regulate the large number of specific developmental outputs that are required by the activation of this pathway. Previously, we have reported a regulated cytoplasmic sequestration of phosphorylated MAPK (pMAPK) in developing Drosophila compound eyes and wings “called MAPK Cytoplasmic Hold”. In the developing wing, we have shown that cytoplasmic hold promotes the differentiation of wing vein tissue, while pMAPK nuclear translocation regulates growth and division. We had also suggested that the Ras pathway signals for inducing cell growth and cell division split upstream of the nuclear translocation of MAPK itself. Here, we further refine the role of MAPK in Drosophila. We report evidence that suggests, for the first time, that the phosphorylation of MAPK is itself another step in the regulation of cell growth and division in both Drosophila wing and eye cells. We show that inhibition of MAPK phosphorylation, or pMAPK nuclear translocation, is sufficient to block cell growth, but not cell division. These data suggest that non-phosphorylated MAPK is sufficient to induce cell division, but not cell growth, once inside the nucleus of the cell.Key words: Drosophila, MAPK, growth, division, proliferation, phosphorylation  相似文献   

11.
Somatostatin (SRIF) induces its biological effects by interacting with membrane-bound receptors that are linked to cellular effector systems via G proteins. We have studied SRIF receptor-G protein associations by solubilizing the SRIF receptor from rat brain and AtT-20 cells and immunoprecipitating the receptor-G protein complex with peptide-directed antisera against the different subunits of the G protein heterotrimer. Antiserum 8730, which selectively interacts with all Gi alpha subtypes, maximally and specifically immunoprecipitated SRIF receptor-Gi alpha complexes. To identify the subtypes of Gi alpha that are coupled to SRIF receptors, the subtype-selective antisera 3646, 1521, and 1518, which specifically interact with Gi alpha 1, Gi alpha 2, and Gi alpha 3, respectively, were used to immunoprecipitate SRIF receptor-Gi alpha complexes. Antiserum 3646 immunoprecipitated SRIF receptor-Gi alpha 1 complexes from both brain and AtT-20 cells. Antiserum 1521 immunoprecipitated Gi alpha 2 from both brain and AtT-20 cells but did not immunoprecipitate SRIF receptors from these tissues. Antiserum 1518 immunoprecipitated AtT-20 cell SRIF receptors but uncoupled brain SRIF receptor-G protein complexes. This result was confirmed with another peptide-selective antiserum, SQ, directed against Gi alpha 3. The findings from these studies indicate that Gi alpha 1 and Gi alpha 3 are coupled to SRIF receptors, whereas Gi alpha 2 is not. Even though brain and AtT-20 cell SRIF receptors were both coupled to Gi alpha, the receptors from these tissues differed in their coupling to Go alpha. Antiserum 2353, which is directed against Go alpha, immunoprecipitated SRIF receptors from AtT-20 cells, but did not immunoprecipitate or uncouple SRIF receptor-G protein complexes from rat brain. To determine the beta subunits associated with the SRIF receptor, antisera directed against G beta 36 and G beta 35 were used to immunoprecipitate SRIF receptor-G protein complexes from brain. Peptide-directed antiserum against G beta 36 selectively immunoprecipitated solubilized brain SRIF receptors. However, antiserum directed against the G beta 35 subunit did not immunoprecipitate brain SRIF receptors, suggesting that brain SRIF receptors may preferentially associate with G beta 36. In addition to coimmunoprecipitating with Gi alpha and G beta, brain SRIF receptors coimmunoprecipitated the G protein gamma subunits, G gamma 2 and G gamma 3. These results provide the first evidence that SRIF receptors are coupled to different subunits of G proteins and suggest that selectivity exists in the association of different G protein subunits with the SRIF receptor.  相似文献   

12.
Dynamics of proteasome distribution in living cells.   总被引:18,自引:2,他引:16       下载免费PDF全文
Proteasomes are proteolytic complexes involved in non-lysosomal degradation which are localized in both the cytoplasm and the nucleus. The dynamics of proteasomes in living cells is unclear, as is their targeting to proteins destined for degradation. To investigate the intracellular distribution and mobility of proteasomes in vivo, we generated a fusion protein of the proteasome subunit LMP2 and the green fluorescent protein (GFP). The LMP2-GFP chimera was quantitatively incorporated into catalytically active proteasomes. The GFP-tagged proteasomes were located within both the cytoplasm and the nucleus. Within these two compartments, proteasomes diffused rapidly, and bleaching experiments demonstrated that proteasomes were transported slowly and unidirectionally from the cytoplasm into the nucleus. During mitosis, when the nuclear envelope has disintegrated, proteasomes diffused rapidly throughout the dividing cell without encountering a selective barrier. Immediately after cell division, the restored nuclear envelope formed a new barrier for the diffusing proteasomes. Thus, proteasomes can be transported unidirectionally over the nuclear membrane, but can also enter the nucleus upon reassembly during cell division. Since proteasomes diffuse rapidly in the cytoplasm and nucleus, they may perform quality control by continuous collision with intracellular proteins, and degrading those proteins that are properly tagged or misfolded.  相似文献   

13.
The defining feature of the eukaryotic cell, the nucleus, is bounded by a double envelope. This envelope and the nuclear pores within it play a critical role in separating the genome from the cytoplasm. It also presents cells with a challenge. How are cells to remodel the nuclear compartment boundary during mitosis without compromising nuclear function? In the two billion years since the emergence of the first cells with a nucleus, eukaryotes have evolved a range of strategies to do this. At one extreme, the nucleus is disassembled upon entry into mitosis and then reassembled anew in the two daughter cells. At the other, cells maintain an intact nuclear compartment boundary throughout the division process. In this review, we discuss common features of the division process that underpin remodelling mechanisms, the topological challenges involved and speculate on the selective pressures that may drive the evolution of distinct modes of division.  相似文献   

14.
The life cycle of the metazoan nuclear envelope   总被引:1,自引:0,他引:1  
  相似文献   

15.
The position of the division plane affects cell shape and size, as well as tissue organization. Cells of the fission yeast Schizosaccharomyces pombe have a centrally placed nucleus and divide by fission at the cell center. Microtubules (MTs) are required for the central position of the nucleus. Genetic studies lead to the hypothesis that the position of the nucleus may determine the position of the division plane. Alternatively, the division plane may be positioned by the spindle or by morphogen gradients or reaction diffusion mechanisms. Here, we investigate the role of MTs in nuclear positioning and the role of the nucleus in division-plane positioning by displacing the nucleus with optical tweezers. A displaced nucleus returned to the cell center by MT pushing against the cell tips. Nuclear displacement during interphase or early prophase resulted in asymmetric cell division, whereas displacement during prometaphase resulted in symmetric division as in unmanipulated cells. These results suggest that the division plane is specified by the predividing nucleus. Because the yeast nucleus is centered by MTs during interphase but not in mitosis, we hypothesize that the establishment of the division plane at the beginning of mitosis is an optimal mechanism for accurate symmetric division in these cells.  相似文献   

16.
Cell growth and osmotic volume regulation are undoubtedly linked to the progression of the cell cycle as with each division, a newly generated cell must compensate for loss of half of its volume to its sister cell. The extent to which size influences cell cycle decisions, however, is controversial in mammalian cells. Further, a mechanism by which cells can monitor and therefore regulate their size has not been fully elucidated. Despite an ongoing debate, there have been few studies which directly address the question in single cell real-time experiments. In this study we used fluorescent time-lapse imaging to quantitatively assess volume in individual spontaneously dividing cells throughout the cell cycle. Together with biophysical studies, these establish that the efflux of salt and water brings about a condensation of cytoplasmic volume as glioma cells progress through mitosis. As cells undergo this pre-mitotic condensation (PMC) they approach a preferred cell volume preceding each division. This is functionally linked to chromatin condensation, suggesting that PMC plays an integral role in mitosis.  相似文献   

17.
Vascular endothelial cells cultured from guinea pig aorta or portal vein contain naturally occurring bundles of 100 A (diameter) filaments that completely encircle the nucleus. These rings are phase lucent and birefringent when examined with the light microscope. Perinuclear bundles of 100 A filaments were also seen in endothelial cells in vivo, indicating that they are a normal cytoplasmic component. These filaments did not decorate with S-1, and were not disrupted by glyceination. With these cells, experiments were designed to answer the following questions: (a) does Colcemid have an effect on these naturally occuring bundles? And (b) do these filaments remain during cell division? Endothelial cells grown in the presence of Colcemid were followed over 24 h. The perinuclear ring coiled into a juxtanuclear cap that consisted of disorganized arrays of 100 A filaments. This "coiling" effect was not blocked by cycloheximide, an inhibitor of protein synthesis. In another experiment, dividing cells were examined. During division the bundle of filaments is passively pulled in half into the daughter cells. These bundles did not disappear during the mitosis when mitotic spindle microtubules assemble. These studies suggest that Colcemid may exert a direct effect on 100 A filaments, independent of microtubules. Since these filaments do not disappear during mitosis, it is possible that in these cells the 100 A filaments and tubulin do not share a common pool of precursor proteins.  相似文献   

18.
Accurate chromosome segregation in mitosis is crucial to maintain a diploid chromosome number. A majority of cancer cells are aneuploid and chromosomally unstable, i.e. they tend to gain and lose chromosomes at each mitotic division. Chromosome mis-segregation can arise when cells progress through mitosis with mis-attached kinetochores. Merotelic kinetochore orientation, a type of mis-attachment in which a single kinetochore binds microtubules from two spindle poles rather than just one, can represent a particular threat for dividing cells, as: (i) it occurs frequently in early mitosis; (ii) it is not detected by the spindle assembly checkpoint (unlike other types of mis-attachments); (iii) it can lead to chromosome mis-segregation, and, hence, aneuploidy. A number of studies have recently started to unveil the cellular and molecular mechanisms involved in merotelic kinetochore formation and correction. Here, I review these studies and discuss the relevance of merotelic kinetochore orientation in cancer cell biology.  相似文献   

19.
G protein activation by Gi/Go coupling M2 muscarinic receptors, Gq coupling M3 receptors and Gs coupling beta2 adrenergic receptors causes rapid reversible translocation of the G protein gamma11 subunit from the plasma membrane to the Golgi complex. Co-translocation of the beta1 subunit suggests that gamma11 translocates as a betagamma complex. Pertussis toxin ADP ribosylation of the alphai subunit type or substitution of the C terminal domain of alphao with the corresponding region of alphas inhibits gamma11 translocation demonstrating that alpha subunit interaction with a receptor and its activation are requirements for the translocation. The rate of gamma11 translocation is sensitive to the rate of activation of the G protein alpha subunit. alpha subunit types that show high receptor activated rates of guanine nucleotide exchange in vitro support high rates of gamma11 translocation compared to alpha subunit types that have a relatively lower rate of guanine nucleotide exchange. The results suggest that the receptor induced translocation of gamma11 is controlled by the rate of cycling of the G protein through active and inactive forms. They also demonstrate that imaging of gamma11 translocation can be used as a non-invasive tool to measure the relative activities of wild type or mutant receptor and alpha subunit types in a live cell.  相似文献   

20.
SC Chafe  JB Pierce  D Mangroo 《PloS one》2012,7(8):e42501
NTF2 is a cytosolic protein responsible for nuclear import of Ran, a small Ras-like GTPase involved in a number of critical cellular processes, including cell cycle regulation, chromatin organization during mitosis, reformation of the nuclear envelope following mitosis, and controlling the directionality of nucleocytoplasmic transport. Herein, we provide evidence for the first time that translocation of the mammalian NTF2 from the nucleus to the cytoplasm to collect Ran in the GDP form is subjected to regulation. Treatment of mammalian cells with polysorbitan monolaurate was found to inhibit nuclear export of tRNA and proteins, which are processes dependent on RanGTP in the nucleus, but not nuclear import of proteins. Inhibition of the export processes by polysorbitan monolaurate is specific and reversible, and is caused by accumulation of Ran in the cytoplasm because of a block in translocation of NTF2 to the cytoplasm. Nuclear import of Ran and the nuclear export processes are restored in polysorbitan monolaurate treated cells overproducing NTF2. Moreover, increased phosphorylation of a phospho-tyrosine protein and several phospho-threonine proteins was observed in polysorbitan monolaurate treated cells. Collectively, these findings suggest that nucleocytoplasmic translocation of NTF2 is regulated in mammalian cells, and may involve a tyrosine and/or threonine kinase-dependent signal transduction mechanism(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号