首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An aminopeptidase showing broad substrate specificity was purified to electrophoretic homogeneity from spermatozoa of the sea urchin, Strongylocentrotus intermedius. It is a single chain protein (Mr = 110,000) with an isoelectric point of 5.2 and shows the highest activity in a pH range between 7.0 and 7.5. Ni2+, Cu2+, Zn2+, and Hg2+, as well as 1,10-phenanthroline and p-chloromercuribenzoate, inhibit the enzyme irrespective of the substrates used, but Ca2+, Mn2+, Mg2+, and Co2+ modified the activity differently depending on the nature of the substrate. The effect of Ca2+ was most marked; it stimulated the activity toward some 4-methylcoumaryl-7-amide (MCA) substrates (for example leucine MCA), whereas it depressed the activity toward some other substrates such as arginine-MCA and lysine-MCA in a competitive manner. The rate of enzymatic hydrolysis determined for a mixture of leucine-MCA and arginine-MCA, in respect to the release of their common product (7-amino-4-methylcoumarin), was in good agreement with the value calculated on the assumption that these two substrates compete with each other for a single active site of the enzyme. Furthermore, the enzyme showed an identical Ki value for each of the competitive inhibitors examined, irrespective of the type of substrate. Ca2+ also influenced the activities toward various peptide substrates in a dual way similar to that observed on the MCA substrates. These results indicate that the sea urchin sperm aminopeptidase has an active site that alters its substrate preference depending on the Ca2+ concentration of the reaction medium.  相似文献   

2.
C A Grosshans  T R Cech 《Biochemistry》1989,28(17):6888-6894
A shortened form of the self-splicing intervening sequence RNA of Tetrahymena thermophila acts as an enzyme, catalyzing sequence-specific cleavage of RNA substrates. We have now examined the metal ion requirements of this reaction. Mg2+ and Mn2+ are the only metal ions that by themselves give RNA enzyme activity. Atomic absorption spectroscopy indicates that Zn, Cu, Co, and Fe are not present in amounts equimolar to the RNA enzyme and when added to reaction mixtures do not facilitate cleavage. Thus, these ions can be eliminated as cofactors for the reaction. While Ca2+ has no activity by itself, it alleviates a portion of the Mg2+ requirement; 1 mM Ca2+ reduces the Mg2+ optimum from 2 to 1 mM. These results, combined with studies of the reactivity of mixtures of metal ions, lead us to postulate that two classes of metal ion binding sites are required for catalysis. Class 1 sites have more activity with Mn2+ than with Mg2+, with the other divalent ions and Na+ and K+ having no activity. It is not known if ions located at class 1 sites have specific structural roles or are directly involved in active-site chemistry. Class 2 sites, which are presumably structural, have an order of preference Mg2+ greater than or equal to Ca2+ greater than Mn2+ and Ca2+ greater than Sr2+ greater than Ba2+, with Zn2+, Cu2+, Co2+, Na+, and K+ giving no detectable activity over the concentration range tested.  相似文献   

3.
For murine adenosine deaminase, we have determined that a single zinc or cobalt cofactor bound in a high affinity site is required for catalytic function while metal ions bound at an additional site(s) inhibit the enzyme. A catalytically inactive apoenzyme of murine adenosine deaminase was produced by dialysis in the presence of specific zinc chelators in an acidic buffer. This represents the first production of the apoenzyme and demonstrates a rigorous method for removing the occult cofactor. Restoration to the holoenzyme is achieved with stoichiometric amounts of either Zn2+ or Co2+ yielding at least 95% of initial activity. Far UV CD and fluorescence spectra are the same for both the apo- and holoenzyme, providing evidence that removal of the cofactor does not alter secondary or tertiary structure. The substrate binding site remains functional as determined by similar quenching measured by tryptophan fluorescence of apo- or holoenzyme upon mixing with the transition state analog, deoxycoformycin. Excess levels of adenosine or N6- methyladenosine incubated with the apoenzyme prior to the addition of metal prevent restoration, suggesting that the cofactor adds through the substrate binding cleft. The cations Ca2+, Cd2+, Cr2+, Cu+, Cu2+, Mn2+, Fe2+, Fe3+, Pb2+, or Mg2+ did not restore adenosine deaminase activity to the apoenzyme. Mn2+, Cu2+, and Zn2+ were found to be competitive inhibitors of the holoenzyme with respect to substrate and Cd2+ and Co2+ were noncompetitive inhibitors. Weak inhibition (Ki > or = 1000 microM) was noted for Ca2+, Fe2+, and Fe3+.  相似文献   

4.
The increase in intracellular cyclic GMP concentrations in response to muscarinic-receptor activation in N1E-115 neuroblastoma cells is dependent on extracellular Ca2+ ion. The calcium ionophore A23187 can also evoke an increase in cyclic GMP in the presence of Ca2+ ion. Most (about 85%) of the guanylate cyclase activity of broken-cell preparations is found in the soluble fraction. The soluble enzyme can utilize MnGTP (Km = 55 micrometer), MgGTP (Km = 310 micrometer) and CaGTP (Km greater than 500 micrometer) as substrates. Free GTP is a strong competitive inhibitor (Ki approximately 20 micrometer). The enzyme possesses an allosteric binding site for free metal ions (Ca2+, Mg2+ and Mn2+). The membrane-bound guanylate cyclase is qualitatively similar to the soluble form, but has lower affinity for the metal-GTP substrates. Entry of Ca2+ into cells may increase cyclic GMP concentration by activating guanylate cyclase through an indirect mechanism.  相似文献   

5.
The effect of divalent cations on bovine sperm adenylate cyclase activity was studied. Mn2+, Co2+, Cd2+, Zn2+, Mg2+ and Ca2+ were found to satisfy the divalent cation requirement for catalysis of the bovine sperm adenylate cyclase. These divalent cations in excess of the amount necessary for the formation of the metal-ATP substrate complex were found to stimulate the enzyme activity to various degrees. The magnitude of stimulation at saturating concentrations of the divalent cations was strikingly greater with M2+ than with either Ca2+, Mg2+, Zn2+, Cd2+ or Co2+. The apparent Km was lowest for Zm2+ (0.1 - 0.2 mM) than for any of the other divalent cations tested (1.2 - 2.3 mM). The enzyme stimulation by Mn2+ was decreased by the simultaneous addition of Co2+, Cd2+, Ni2+ and particularly Zn2+ and Cu2+. The antagonism between Mn2+ and Cu2+ or Zn2+ appeared to have both competitive and non-competitive features. The inhibitory effect of Cu2+ on Mn2+-stimulated adenylate cyclase activity was prevented by 2,3-dimercaptopropanol, but not by dithiothreitol, L-ergothioneine, EDTA, EGTA or D-penicillamine. Ca2+ at concentrations of 1-5 mM was found to act synergistically with Mg2+, Zn2+, Co2+ and Mn2+ in stimulating sperm adenylate cyclase activity. The Ca2+ augmentation of the stimulatory effect of Zn2+, Co2+, Mg2+ and Mn2+ appeared to be specific.  相似文献   

6.
Using Thr(P)-inhibitor-1 and Ser(P)-casein as substrates, studies on the activation of calcineurin purified from bovine brain have been carried out. The phosphatase requires the synergistic action of Ca2+, calmodulin and another divalent cation (Mg2+, Mn2+, Co2+ or Ni2+, but not Zn2+) for full expression of its activity. Ca2+ and Ca2+ X calmodulin act as allosteric activators to transform the phosphatase to a relaxed conformation, while Mg2+ acts solely as a cofactor for the catalytic action of the enzyme. In addition to their function as cofactors for catalysis, transition metal ions can also substitute for Ca2+ as allosteric activators. Ca2+ and calmodulin exert their activating effects mainly by increasing the Vm of the phosphatase reaction with little effect on the Km values for the substrates or on the KA values for the divalent cation cofactors. The predominant factor in dictating the catalytic properties of calcineurin is the divalent cation cofactor. For example, with Mg2+ as a cofactor, the phosphatase exhibits an optimum around pH 8.0-8.5; while with a transition metal ion as a cofactor, the optimum is around pH 7.0-7.5, regardless of whether Thr(P)-inhibitor-1 or Ser(P)-casein serves as a substrate, in the absence or the presence of Ca2+ X calmodulin.  相似文献   

7.
We previously reported (Ryu, S. H., Cho, K. S., Lee, K. Y., Suh, P. G., and Rhee, S. G. (1986) Biochem. Biophys. Res. Commun. 141, 137-144) that cytosolic fractions of bovine brain contain two phosphoinositide-specific phospholipase C (PLC), PLC-I and PLC-II. In this paper purification procedures and properties of these two forms of enzyme are presented. The two enzymes exhibit similar substrate specificity. Both PLC-I and PLC-II catalyze the hydrolysis of phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2). Yet, they respond differently to activators such as Ca2+ and nucleotides and to inhibitory divalent metal ions such as Hg2+ and Cd2+. In addition, they are immunologically distinct as evidenced by the fact that monoclonal antibodies directed against either enzyme do not cross-react with the other. Their activities are Ca2+ concentration-dependent. PIP and PIP2 are better substrates than PI for both PLC-I and PLC-II when the concentration of Ca2+ is in the micromolar range. Study of the effect of nucleotides, such as GTP, guanosine 5'-(3-O-thio)triphosphate, guanyl-5'-yl imidodiphosphate, and ATP, on the activities of both isozymes with PIP2 as substrate revealed that (i) in the absence of Ca2+, PLC-I activity is enhanced by 400% by either GTP or ATP. In the presence of Ca2+ (a condition in which PLC-I exhibits much higher activity), the activation factor by nucleotides is diminished to approximately 140%. (ii) without Ca2+, PLC-II activity is too low to measure with or without added nucleotides. The effect of nucleotides on PLC-II activity is trivial in the presence of Ca2+. In addition, studies on the effect of metal ions on PI hydrolysis showed that the activities of both PLC-I and PLC-II are not affected by 50 microM of Mg2+, Mn2+, Ca2+, or Ni2+. However, Hg2+, Zn2+, and Cu2+ inhibited both PLC-I and PLC-II, with PLC-II exhibiting much higher sensitivity to these metal ions than PLC-I. For example, the value of I0.5 for Hg2+ inhibition is 0.2 microM for PLC-II and 1 microM for PLC-I. Cd2+ selectively inhibits PLC-II with a I0.5 value of 5 microM. Most of these metal ions' inhibition can be overcome by either dithiothreitol or EDTA.  相似文献   

8.
Using the activated cGMP-dependent protein kinase in the presence of the phosphorylatable peptide [[Ala34]histone H2B-(29-35)], we found that lin-benzoadenosine 5'-diphosphate (lin-benzo-ADP) was a competitive inhibitor of the enzyme with respect to ATP with a Ki (22 microM) similar to the Kd (20 microM) determined by fluorescence polarization titrations. The Kd for lin-benzo-ADP determined in the absence of the phosphorylatable peptide, however, was only 12 microM. ADP bound with lower affinity (Ki = 169 microM; Kd = 114 microM). With [Ala34]histone H2B-(29-35) as phosphoryl acceptor, the Km for lin-benzo-ATP was 29 microM, and that for ATP was 32 microM. The Vmax with lin-benzo-ATP, however, was only 0.06% of that with ATP as substrate [0.00623 +/- 0.00035 vs. 11.1 +/- 0.17 mumol (min.mg)-1]. Binding of lin-benzo-ADP to the kinase was dependent upon a divalent cation. Fluorescence polarization revealed that Mg2+, Mn2+, Co2+, Ni2+, Ca2+, Sr2+, and Ba2+ supported nucleotide binding to the enzyme; Ca2+, Sr2+, and Ba2+, however, did not support any measurable phosphotransferase activity. The rank order of metal ion effectiveness in mediating phosphotransferase activity was Mg2+ greater than Ni2+ greater than Co2+ greater than Mn2+. Although these results were similar to those observed with the cAMP-dependent protein kinase [Hartl, F. T., Roskoski, R., Jr., Rosendahl, M. S., & Leonard, N. J. (1983) Biochemistry 22, 2347], major differences in the Vmax with lin-benzo-ATP as substrate and the effect of peptide substrates on nucleotide (both lin-benzo-ADP and ADP) binding were observed.  相似文献   

9.
Oh BC  Chang BS  Park KH  Ha NC  Kim HK  Oh BH  Oh TK 《Biochemistry》2001,40(32):9669-9676
The thermostable phytase from Bacillus amyloliquefaciens DS11 hydrolyzes phytate (myo-inositol hexakisphosphate, IP6) to less phosphorylated myo-inositol phosphates in the presence of Ca2+. In this report, we discuss the unique Ca2+-dependent catalytic properties of the phytase and its specific substrate requirement. Initial rate kinetic studies of the phytase indicate that the enzyme activity follows a rapid equilibrium ordered mechanism in which binding of Ca2+ to the active site is necessary for the essential activation of the enzyme. Ca2+ turned out to be also required for the substrate because the phytase is only able to hydrolyze the calcium-phytate complex. In fact, both an excess amount of free Ca2+ and an excess of free phytate, which is not complexed with each other, can act as competitive inhibitors. The Ca2+-dependent catalytic activity of the enzyme was further confirmed, and the critical amino acid residues for the binding of Ca2+ and substrate were identified by site-specific mutagenesis studies. Isothermal titration calorimetry (ITC) was used to understand if the decreased enzymatic activity was related to poor Ca2+ binding. The pH dependence of the Vmax and Vmax/Km consistently supported these observations by demonstrating that the enzyme activity is dependent on the ionization of amino acid residues that are important for the binding of Ca2+ and the substrate. The Ca2+-dependent activation of enzyme and substrate was found to be different from other histidine acid phytases that hydrolyze metal-free phytate.  相似文献   

10.
The specificity of glycogen synthase (casein) kinase-1 (CK-1) for different divalent metal ions was explored in this study. Of nine metal ions (Mg2+, Mn2+, Zn2+, Cu2+, Ca2+, Ba2+, Ni2+, Co2+, Fe2+) tested, only Mg2+ supported significant kinase activity. Several of the other metals, however, inhibited the Mg2+-stimulated kinase activity. Half-maximal inhibitions by Mn2+, Zn2+, Co2+, Fe2+, and Ni2+ were observed at 55, 65, 110, 125, and 284 microM, respectively. Kinetic analyses indicate that the metal ions are acting as competitive inhibitors of CK-1 with respect to the protein substrate (casein) and as noncompetitive inhibitors with respect to the nucleotide substrate (ATP). The inhibition of CK-1 by the different metal ions can be reversed by EGTA.  相似文献   

11.
Sheep liver cytoplasmic aldehyde dehydrogenase is strongly inhibited by Mg2+, Ca2+ and Mn2+. The inhibition is only partial, however, with 8-15% of activity remaining at high concentrations of these agents. In 50 mM-Tris/Hcl, pH 7.5, the concentrations giving half-maximal effect were: Mg2+, 6.5 micrometers; Ca2+, 15.2 micrometers; Mn2+, 1.5 micrometer. The esterase activity of the enzyme is not affected by such low metal ion concentrations, but appears to be activated by high concentrations. Fluorescence-titration and stopped-flow experiments provide evidence for interaction of Mg2+ with NADH complexes of the enzyme. As no evidence for the presence of increased concentrations of functioning active centres was obtained in the presence of Mg2+, it is concluded that effects of Mg2+ (and presumably Ca2+ and Mn2+ also) are brought about by trapping increased concentrations of NADH in a Mg2+-containing complex. This complex must liberate products more slowly than any of the complexes involved in the non-inhibited mechanism.  相似文献   

12.
Lu ZJ  Markham GD 《Biochemistry》2007,46(27):8172-8180
S-Adenosylmethionine decarboxylase from Escherichia coli is a pyruvoyl cofactor-containing enzyme that requires a metal cation for activity. We have found that the enzyme is activated by cations of varying charge and ionic radius, such as Li+, A13+, Tb3+, and Eu3+, as well as the divalent cations Mg2+, Mn2+, and Ca2+. All of the activating cations provide kcat values within 30-fold of one another, showing that the charge of the cation does not greatly influence the rate-limiting step for decarboxylase turnover. Cation concentrations for half-maximal activation decrease by >100-fold with each increment of increase in the cation charge, ranging from approximately 300 mM with Li+ to approximately 2 microM with trivalent lanthanide ions. The cation affinity is related to the charge/radius ratio of the ion for those ions with exchangeable first coordination sphere ligands. The exchange-inert cation Co(NH3)63+ activates in the presence of excess EDTA (and NH4+ does not activate), indicating that direct metal coordination to the protein or substrate is not required for activation. The binding of metal ions (monitored by changes in the protein tryptophan fluorescence) and enzyme activation are both cooperative with Hill coefficients as large as 4, the active site stoichiometry of this (alphabeta)4 enzyme. The Hill coefficients for Mg2+ binding and activation increase from 1 to approximately 4 as the KCl concentration increases, which is also observed with NaCl or KNO3; neither Na+ nor K+ activates the enzyme. The single tryptophan in the protein is located 16 residues from the carboxyl terminus of the pyruvoyl-containing alpha chain, in a 70-residue segment that is not present in metal ion independent AdoMet decarboxylases from other organisms. The results are consistent with allosteric metal ion activation of the enzyme, congruent with the role of the putrescine activator of the mammalian AdoMet decarboxylase.  相似文献   

13.
Jackman JE  Raetz CR  Fierke CA 《Biochemistry》1999,38(6):1902-1911
The enzyme UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc deacetylase (LpxC) catalyzes the committed step in the biosynthesis of lipid A and is therefore a potential antibiotic target. Inhibition of this enzyme by hydroxamate compounds [Onishi, H. R.; Pelak, B. A.; Gerckens, L. S.; Silver, L. L.; Kahan, F. M.; Chen, M. H.; Patchett, A. A.; Stachula, S. S.; Anderson, M. S.; Raetz, C. R. H. (1996) Science 274, 980-982] suggested the presence of a metal ion cofactor. We have investigated the substrate specificity and metal dependence of the deacetylase using spectroscopic and kinetic analyses. Comparison of the steady-state kinetic parameters for the physiological substrate UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc and an alternative substrate, UDP-GlcNAc, demonstrates that the ester-linked R-3-hydroxymyristoyl chain increases kcat/KM (5 x 10(6))-fold. Metal-chelating reagents, such as dipicolinic acid (DPA) and ethylenediaminetetraacetic acid, completely inhibit LpxC activity, implicating an essential metal ion. Plasma emission spectroscopy and colorimetric assays directly demonstrate that purified LpxC contains bound Zn2+. This Zn2+ can be removed by incubation with DPA, causing a decrease in the LpxC activity that can be restored by subsequent addition of Zn2+. However, high concentrations of Zn2+ also inhibit LpxC. Addition of Co2+, Ni2+, or Mn2+ to apo-LpxC also activates the enzyme to varying degrees while no additional activity is observed upon the addition of Cd2+, Ca2+, Mg2+, or Cu2+. This is consistent with the profile of metals that substitute for catalytic zinc ions in metalloproteinases. Co2+ ions stimulate LpxC activity maximally at a stoichiometry of 1:1. These data demonstrate that E. coli LpxC is a metalloenzyme that requires bound Zn2+ for optimal activity.  相似文献   

14.
The D-xylose isomerase from T. aquaticus accepts, besides D-xylose, also D-glucose, and, with lower efficiency, D-ribose, and D-arabinose as alternative substrates. The activity of the enzyme is strictly dependent on divalent cations. Mn2+ is most effective in the D-xylose isomerase reaction and Co2+ in the D-glucose isomerization. Mg2+ is active in both reactions, Zn2+ only in the further one. The enzyme is strongly inhibited by Cu2+, and weakly by Ni2+, Fe2+, and Ca2+. A hyperbolic dependence of the reaction velocity of the D-xylose isomerase on the concentration of D-xylose xylose and of D-glucose was found, while biphasic saturation curves were obtained by variation of the metal ion concentrations. The D-glucose isomerization reaction shows normal behaviour with respect to the metal ions. A kinetic model was derived on the basis of the assumption of two binding sites for divalent cations, one cofactor site with higher affinity and a second, low affinity site, which modulates the activity of the enzyme.  相似文献   

15.
Sun G  Budde RJ 《Biochemistry》1999,38(17):5659-5665
In addition to a magnesium ion needed to form the ATP-Mg complex, we have previously determined that at least one more free Mg2+ ion is essential for the activation of the protein tyrosine kinase, Csk [Sun, G., and Budde, R. J. A. (1997) Biochemistry 36, 2139-2146]. In this paper, we report that several divalent metal cations, such as Mn2+, Co2+, Ni2+, and Zn2+ bind to the second Mg2+-binding site of Csk with up to 13200-fold higher affinity than Mg2+. This finding enabled us to substitute the free Mg2+ at this site with Mn2+, Co2+, Ni2+, or Zn2+ while keeping ATP saturated with Mg2+ to study the role of the free metal cation in Csk catalysis. Substitution by these divalent metal cations resulted in varied levels of Csk activity, with Mn2+ even more effective than Mg2+. Co2+ and Ni2+ supports reduced levels of Csk activity compared to Mg2+. Zn2+ has the highest affinity for the second Mg2+-binding site of Csk at 0.65 microM, but supports no kinase activity, acting as a dead-end inhibitor. The inhibition by Zn2+ is reversible and competitive against free Mg2+, noncompetitive against ATP-Mg, and mixed against the phosphate accepting substrate, polyE4Y, significantly increasing the affinity for this substrate. Substitution of the free Mg2+ with Mn2+, Co2+, or Ni2+ also results in lower Km values for the peptide substrate. These results suggest that the divalent metal activator is an important element in determining the affinity between Csk and the phosphate-accepting substrate.  相似文献   

16.
韩笑奇  白姝  史清洪 《生物工程学报》2016,32(12):1676-1684
以葡萄糖氧化酶(GOx)为研究对象,系统地研究了钙离子对交联酶聚集体(CLEA)粒子尺寸和微观结构的调控作用以及酶催化性能和实用性的影响。研究结果表明,GOx酶沉淀过程中引入钙离子可显著降低CLEA粒子尺寸并导致粒子内纳米孔道结构逐步消失。在0.1 mmol/L钙离子浓度下,GOx酶的CLEA仍保有清晰的纳米孔道结构。以葡萄糖为底物的GOx酶CLEA催化结果显示,该CLEA粒子的酶活性为对照CLEA粒子的2.69倍。即便1.0 mmol/L钙离子浓度下制备的CLEA粒子的GOx酶活性仍高出对照CLEA粒子约42%。此外,0.1 mmol/L钙离子浓度下制备的CLEA不仅具有更高的底物转化速率和很好的操作稳定性,而且CLEA中GOx酶的最大反应速度显著提高。这些实验结果明确了钙离子对CLEA粒子尺寸和微观结构的调控作用,为制备具有高效生物催化活性的CLEA粒子奠定了基础。  相似文献   

17.
The catalytic activity of purified glutathione-insulin transhydrogenase (thiol:protein-disulfide oxidoreductase/isomerase, EC 1.8.4.2) from bovine pancreas is markedly stimulated by histidine and other chelating agents. The activation produced was highest with EDTA, followed by EGTA, 8-hydroxyquinoline and 1,10-phenanthroline. Of the many amino acids tested, histidine was the only one that activated the enzyme; the structurally related compounds, 3-methylhistidine and imidazole also stimulated the enzyme, but 1-methylhistidine and histamine were without effect. The activation of EDTA was negated by metal ions, most effectively by Se2+, Hg2+, Cu2+ and Zn2+, and less effectively by Ca2+ and Ni2+. Likewise, activation by histidine was negated by Zn2+ but not by Ca2+ or Mg2+. Thus, activation of glutathione-insulin transhydrogenase is apparently achieved in part by the chelation of inhibitory metal ion(s). These findings are consistent with a regulatory scheme for glutathione-insulin transhydrogenase in which (a) the enzyme is inhibited by selenium and heavy metal ions normally present in tissues and (b) this inhibition can be relieved by the addition of histidine or chelating agents.  相似文献   

18.
The effects of some cholinergic ligands, harmala alkaloids and local anesthetics on the activity of eel electroplax and Naja naja siamensis venom acetylcholinesterase have been studied. In most cases, eel electroplax was found to be more susceptible towards inhibition than the venom acetylcholinesterase. No major difference was observed with respect to the type of inhibition in both enzymes. The activation of the two enzyme preparations by inorganic cations (Ca2+, Mg2+ and Na+) showed a similar pattern. In both preparations, the onset of activation was detectable at much lower concentration with the divalent metal ions than with the monovalent Na+. Antagonism between Ca2+ and decamethonium, tubocurarine and tetracaine in both enzymes approached competitive kinetics. The onset of substrate inhibition is delayed by Ca2+ (30 mM) in both enzymes. It is suggested that the Ca2+ binding site overlaps with the substrate inhibitory site. It is concluded that cobra venom acetylcholinesterase has similar allosteric binding sites to those of eel electroplax.  相似文献   

19.
Guanylate cyclase (GTP pyrophosphate-lyse (cyclizing), EC 4.6.1.2.) of bovine retinal rod outer segments is almost completely particulate, i.e. associated with rod outer segment membranes. In contrast to particulate guanylate cyclase in other tissues, treatment of rod outer segments with Triton X-100 does not solublize the enzyme but inhibits it. Enzyme activity is dependent on the presence of divalent cation, especially Mn2+ with only poor activation by Mg2+ (10-fold lower) and no activation seen with other cation. Ezpression of maximal activity required Nm2+ and GTP in equimolar concentrations with an apparent Km of 8 . 10(-4) M and V of 10 nmol/min per mg protein. Excess of Mn2+ over that required for the formation of the Mn . GTP complex was inhibitory. Ca2+, Ba2+ and Co2+ inhibited enzyme activity when assayed with the Mn . GTP substrate complex. In the presence of a fixed concentration of 1mM Mn2+, the enzyme exhibited strong negative cooperative interactions with GTP, characterized by an intermediary plateau region in the substrate vs. enzyme activity curve, a curve of downward concavity in the double reciprocal plot and a Hill coefficient of 0.5. Nucleotides such as ITP, ATP and UTP at higher concentrations (1 mM) stimulates activity by 40%. NaN3 has no effect on the guanylate cyclase. It is thus possible that the guanylate cyclase may be regulated in vivo by both the metal : GTP substrate ratio and the free divalent cation concentration as well as by the ATP concentration and thus play an important but yet undefined role in the visual process.  相似文献   

20.
NADP+-linked isocitrate dehydrogenase (E.C.1.1.1.42) has been purified to homogeneity from germinating pea seeds. The enzyme is a tetrameric protein (mol wt, about 146,000) made up of apparently identical monomers (subunit mol wt, about 36,000). Thermal inactivation of purified enzyme at 45 degrees and 50 degrees C shows simple first order kinetics. The enzyme shows optimum activity at pH range 7.5-8. Effect of substrate [S] on enzyme activity at different pH (6.5-8) suggests that the proton behaves formally as an "uncompetitive inhibitor". A basic group of the enzyme (site) is protonated in this pH range in the presence of substrate only, with a pKa equal to 6.78. On successive dialysis against EDTA and phosphate buffer, pH 7.8 at 0 degrees C, yields an enzymatically inactive protein showing kinetics of thermal inactivation identical to the untreated (native) enzyme. Maximum enzyme activity is observed in presence of Mn2+ and Mg2+ ions (3.75 mM). Addition of Zn2+, Cd2+, Co2+ and Ca2+ ions brings about partial recovery. Other metal ions Fe2+, Cu2+ and Ni2+ are ineffective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号