首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In vivo, ubiquitin exists both free and conjugated through its carboxyl terminus to the alpha- and epsilon-amino groups of a wide variety of cellular proteins. Ubiquitin carboxyl-terminal hydrolytic activity is likely a necessary step in the regeneration of the ubiquitin cofactor from ubiquitin-protein conjugates. In addition, this type of activity is required to generate the active, monomeric ubiquitin from the only known gene products: the polyprotein precursor and various ubiquitin fusion proteins. Thus, this activity is of vital importance to systems that utilize ubiquitin as a cofactor. A generic substrate, ubiquitin ethyl ester, was previously developed [Wilkinson, K. D., Cox, M. J., Mayer, A. N., & Frey, T. (1986) Biochemistry 25, 6644-6649] and utilized here to monitor the fractionation of these activities from calf thymus. By use of a rapid HPLC assay, four distinct, ubiquitin-specific esterases were identified and separated. A previously undescribed activity has been resolved and characterized, in addition to the bovine homologue of ubiquitin carboxyl-terminal hydrolase purified from rabbit reticulocytes. Two other activities resemble deconjugating activities previously detected in crude extracts but not previously purified. These activities appear to form a family of mechanistically related hydrolases. All four activities are inhibited by iodoacetamide, indicating the presence of an essential thiol group, and are inhibited to various extents by manganese. All have specific ubiquitin binding sites as judged by the low observed Km values (0.6-30 microM). The carboxyl-terminal aldehyde of ubiquitin is a potent inhibitor of these enzyme activities, with Ki values approximately 1000-fold lower than the respective Km values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Ubiquitin (Ub) carboxyl-terminal hydrolase (E) catalyzes the hydrolysis, at the Ub-carboxyl terminus, of a wide variety of C-terminal Ub derivatives. We show that the enzyme is inactivated by millimolar concentrations of either sodium borohydride or hydroxylamine, but only if Ub is present. We have interpreted these results on the assumption that the hydrolase mechanism is one of nucleophilic catalysis with an acyl-Ub-E intermediate. The borohydride-inactivated enzyme has the following properties. It is a stoichiometric complex of E and Ub containing tritium from sodium boro[3H]hydride. This complex is stable at neutral pH in 5 M urea and can be isolated on the basis of size on a sieving column, but a labeled product the size of Ub is released under more strongly denaturing conditions. The "Ub" released in acid is Ub-carboxyl-terminal aldehyde, based on the observations that: it contains the tritium present in the reduced complex and it is able to form the inactive enzyme from a stoichiometric amount of fresh enzyme, and inactivation is accompanied by E-Ub adduct formation; it has chemical properties expected of an aldehyde: after a second reduction of the Ub released with boro[3H]hydride and complete acid hydrolysis, tritium counts are found in ethanolamine (the carboxyl-terminal residue of Ub is glycine). These results suggest that enzyme and Ub combine in an equilibrium reaction to form an ester or thiol ester adduct (at the Ub-carboxyl terminus), and that this adduct is trapped by borohydride to give a very stable inactive E-Ub (thio) hemiacetal which is unable to undergo a second reduction step and which can release Ub-aldehyde in mild acid. Inactivation in the presence of hydroxylamine of hydrolase occurs once during hydrolysis of 1200 molecules of Ub-hydroxamate by the enzyme. The hydrolysis/inactivation ratio is constant over the range of 10-50 mM hydroxylamine showing that forms of E-Ub with which hydroxylamine and water react are different and not in rapid equilibrium. The inactive enzyme may be an acylhydroxamate formed from an E-Ub mixed anhydride generated from the E-Ub (thiol) ester inferred from the borohydride study. A direct radioactive assay for the hydrolase has been developed using the Ub-C-terminal amide of [3H]butanol-4-amine as substrate.  相似文献   

3.
4-(Oxoacetyl)phenoxyacetic acid (OAPA) forms a stable, covalent bond between its glyoxal group and the guanidino group of arginine and arginine derivatives [Duerksen, P. J., & Wilkinson, K. D. (1987) Anal. Biochem. 160, 444-454]. Studies were carried out to determine the chemical nature of this linkage, and the structure of the stable adduct between OAPA and methylguanidine was elucidated. The stable product results from an internal oxidation-reduction of the Schiff base adduct to form a cyclic alpha-aminoamide, 4-[4-(carboxymethoxy)phenyl]-2-(methylimino)-5-oxoimidazolidine. OAPA coupled to polyacrylamide beads was used to immobilize ubiquitin via its arginine residues, and the resulting affinity support was shown to specifically and reversibly bind a previously described enzyme, ubiquitin carboxyl-terminal hydrolase [Pickart, C. M., & Rose, I. A. (1985) J. Biol. Chem. 260, 7903-7910]. The resin was then used to isolate three newly identified ubiquitin carboxyl-terminal hydrolytic activities, which did not bind to ubiquitin immobilized via lysine residues. Significant purification was achieved in each case, and one isozyme was further purified to homogeneity.  相似文献   

4.
I A Rose  J V Warms 《Biochemistry》1983,22(18):4234-4237
Thiols such as dithiothreitol (DTT) are known to allow recycling of the ubiquitin activating enzyme presumably due to attack by thiol on E-ubiquitin forming E + DTT-ubiquitin. It is now reported that the resulting ubiquitin thiol ester is extremely susceptible to hydrolysis, giving rise to free ubiquitin that can then also recycle in the activating enzyme reaction. The instability of ubiquitin thiol esters in this system is caused by a ubiquitin carboxy-terminal thiolesterase activity found as a minor contaminant of the activating enzyme. This activity of rabbit reticulocytes has been extensively purified, and some of its properties are reported. The enzyme, which also cleaves carboxy-terminal adenosine 5'-phosphate-ubiquitin, is inhibited by free ubiquitin at micromolar concentrations. The ubiquitin-specific esterase probably functions to hydrolyze glutathione and other thiol esters of ubiquitin that would be formed spontaneously from activated ubiquitin in cells.  相似文献   

5.
Post-translational modification by small ubiquitin-like modifier 1 (SUMO-1) is a highly conserved process from yeast to humans and plays important regulatory roles in many cellular processes. Sumoylation occurs at certain internal lysine residues of target proteins via an isopeptide bond linkage. Unlike ubiquitin whose carboxyl-terminal sequence is RGG, the tripeptide at the carboxyl terminus of SUMO is TGG. The presence of the arginine residue at the carboxyl terminus of ubiquitin allows tryptic digestion of ubiquitin conjugates to yield a signature peptide containing a diglycine remnant attached to the target lysine residue and rapid identification of the ubiquitination site by mass spectrometry. The absence of lysine or arginine residues in the carboxyl terminus of mammalian SUMO makes it difficult to apply this approach to mapping sumoylation sites. We performed Arg scanning mutagenesis by systematically substituting amino acid residues surrounding the diglycine motif and found that a SUMO variant terminated with RGG can be conjugated efficiently to its target protein under normal sumoylation conditions. We developed a Programmed Data Acquisition (PDA) mass spectrometric approach to map target sumoylation sites using this SUMO variant. A web-based computational program designed for efficient identification of the modified peptides is described.  相似文献   

6.
K D Wilkinson  M J Cox  A N Mayer  T Frey 《Biochemistry》1986,25(21):6644-6649
A new substrate for ubiquitin carboxyl-terminal hydrolase, the carboxyl-terminal ethyl ester of ubiquitin, has been synthesized by a trypsin-catalyzed transpeptidation. In the presence of 1.6 M glycylglycine ethyl ester, trypsin removes the carboxyl-terminal glycylglycine of ubiquitin and replaces it with the dipeptide ester. The equilibrium mixture under these conditions contains 30% ubiquitin ethyl ester and 70% hydrolysis product, the 74-residue fragment of ubiquitin. Ubiquitin ethyl ester can be purified by gel filtration and ion-exchange chromatography. The structure of this product has been verified by identification of the products of base hydrolysis, tryptic cleavage in aqueous solution, and peptide mapping. When ubiquitin ethyl ester is incubated with purified ubiquitin carboxyl-terminal hydrolase, specific cleavage of the ester linkage is observed. A rapid, sensitive assay is described utilizing high-performance liquid chromatography. By use of this assay, it has been shown that ubiquitin carboxyl-terminal hydrolase is inactivated in the absence of thiols. Optimal protective effects are seen with 10 mM dithiothreitol. The rate of catalysis is maximal at pH 8.5, with evidence for catalytically important groups with pK values of 5.2, 7.6, and 9.5. These findings are consistent with the participation of a thiol group in the active site. Native ubiquitin is a competitive inhibitor of ubiquitin ethyl ester hydrolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The carboxyl terminus of ubiquitin is activated in the presence of ATP to enter the ubiquitin cycle in cells. Peptides corresponding to the COOH-terminal region of ubiquitin were synthesized to investigate their effects on the ATP/ubiquitin-dependent proteolytic pathway. Their activities in the PPi exchange assay with ubiquitin activating enzyme (E1) were proportional to their length. The hexapeptide Ac-Leu-Arg-Leu-Arg-Gly-Gly reacted with ATP to form an enzyme-adenylate-hexapeptide complex and at high concentrations was 20-25% as active as human ubiquitin in the PPi exchange assay with E1. However, the hexapeptide was not transferred to the sulfhydryl "thiol" site on E1. In addition, the COOH-terminal peptides did not support the degradation of 125I-bovine serum albumin in the reticulocyte lysate system. A nonhomologous peptide of equivalent length was inactive in all assays. Thus, synthetic COOH-terminal peptide(s) of ubiquitin can partially substitute for ubiquitin in its reactions with E1 but do not support subsequent steps of the energy-dependent proteolytic pathway. These results show that it may be possible to design small molecules that either serve as substrates or inhibitors for other specific steps in ubiquitin-dependent pathways.  相似文献   

8.
Ubiquitinated derivatives of histones H2A and H2B, in which the carboxyl terminus of ubiquitin is joined to epsilon-amino groups of specific lysine residues of each histone, occur in vivo. Certain ubiquitin carrier proteins (E2s) catalyze ubiquitin transfer to histones (Pickart, C. M., and Rose, I. A. (1985) J. Biol. Chem. 260, 1573-1581). The catalytic activities of these purified ubiquitin carrier proteins have been quantitatively characterized with purified histones, in order to determine if one or more of them exhibits specificity for H2A over other histones (H3,H4) which are not known to be ubiquitinated in vivo. The results show the following. 1) No E2 exhibits strong specificity for H2A over the other histones. 2) For a given histone, kinetics of formation of its monoubiquitinated adduct do not differ strongly among the E2s; sigmoid kinetics (nH = 2) are generally observed, with values of K 0.5 ranging from 2-6 microM. 3) E214K catalyzes primarily monoubiquitination. 4) E220K catalyzes multiple ubiquitination (up to three ubiquitin/histone) by a processive mechanism that involves joining of ubiquitin carboxyl termini to multiple histone lysine residues. 5) E235K also catalyzes processive ubiquitination, with formation of polyubiquitinated products exhibiting a lag phase. Many of the polyubiquitinated adducts produced at low histone concentration are larger than expected for monoubiquitination of every histone-lysine residue, and polyubiquitination is selectively inhibited by substitution of reductively methylated ubiquitin for ubiquitin. These results suggest that E235K uniquely catalyzes ubiquitin transfer to lysine residues of previously conjugated ubiquitin molecule(s). The implications of these results for biological mechanisms of histone ubiquitination are discussed.  相似文献   

9.
Induction of the 17-kDa ubiquitin-like protein ISG15/UCRP and its subsequent conjugation to cellular targets is the earliest response to type I interferons. The polypeptide is synthesized as a precursor containing a carboxyl-terminal extension whose correct processing is required for subsequent ligation of the exposed mature carboxyl terminus. Recombinant pro-ISG15 is processed in extracts of human lung fibroblasts by a constitutive 100-kDa enzyme whose activity is unaffected by type I interferon stimulation. The processing enzyme has been purified to apparent homogeneity by a combination of ion exchange and hydrophobic chromatography and found to be stimulated 12-fold by micromolar concentrations of ubiquitin. Analysis of the products of pro-ISG15 processing enzyme demonstrates specific cleavage exclusively at the Gly(157)-Gly(158) peptide bond to generate a mature ISG15 carboxyl terminus. Irreversible inhibition of pro-ISG15 processing activity by thiol-specific alkylating agents and a pH rate dependence conforming to titration of a single group of pK(a) 8.1 indicate the 100-kDa enzyme is a thiol protease. Partial sequencing of a trypsin-derived peptide indicates the enzyme is either the human ortholog of yeast Ubp1 or a Ubp1-related protein. As yeast do not contain ISG15, these results suggest that a ubiquitin-specific enzyme was recruited for pro-ISG15/UCRP processing by adaptive divergence.  相似文献   

10.
Leader peptidase, an integral membrane protein of Escherichia coli, is made without a cleavable leader sequence. It has 323 amino acid residues and spans the plasma membrane with a small amino-terminal domain exposed to the cytoplasm and a large, carboxyl-terminal domain exposed to the periplasm. We have investigated which regions of leader peptidase are necessary for its assembly across the membrane. Deletions were made in the carboxyl-terminal domain of leader peptidase, removing residues 141-222, 142-323, or 222-323. Protease accessibility was used to determine whether the polar, carboxyl-terminal domains of these truncated leader peptidases were translocated across the membrane. The removal of either residues 222-323 (the extreme carboxyl terminus) or residues 141-222 does not prevent leader peptidase membrane assembly. However, leader peptidase lacking both regions, i.e. amino acid residues 142-323, cannot translocate the remaining portion of its carboxyl terminus across the membrane. Our data suggest that the polar, periplasmic domain of leader peptidase contains information which is needed for membrane assembly.  相似文献   

11.
Sodium-dependent glutamate uptake is essential for limiting excitotoxicity, and dysregulation of this process has been implicated in a wide array of neurological disorders. The majority of forebrain glutamate uptake is mediated by the astroglial glutamate transporter, GLT-1. We and others have shown that this transporter undergoes endocytosis and degradation in response to activation of protein kinase C (PKC), however, the mechanisms involved remain unclear. In the current study, transfected C6 glioma cells or primary cortical cultures were used to show that PKC activation results in incorporation of ubiquitin into GLT-1 immunoprecipitates. Mutation of all 11 lysine residues in the amino and carboxyl-terminal domains to arginine (11R) abolished this signal. Selective mutation of the seven lysine residues in the carboxyl terminus (C7K–R) did not eliminate ubiquitination, but it completely blocked PKC-dependent internalization and degradation. Two families of variants of GLT-1 were prepared with various lysine residues mutated to arginine. Analyses of these constructs indicated that redundant lysine residues in the carboxyl terminus were sufficient for the appearance of ubiquitinated product and degradation of GLT-1. Together these data define a novel mechanism by which the predominant forebrain glutamate transporter can be rapidly targeted for degradation.  相似文献   

12.
An expression vector (pSJyub-5) was constructed which contained five repeats of the "yeast ubiquitin gene" regulated by a heat-inducible lambda PL promoter. The vector, when expressed in Escherichia coli, produced a penta-ubiquitin of approximately 42 kDa. Purified penta-ubiquitin was found to be as active as the human mono-ubiquitin in the in vitro ATP/ubiquitin-dependent proteolytic assay of the reticulocyte lysate, indicating that the expressed gene product was recognized by the enzymes involved in the ATP/ubiquitin-dependent proteolytic pathway. The inability of penta-ubiquitin to act as a substrate in the pyrophosphate exchange reaction with the ubiquitin-activating enzyme E1 suggested that it had a carboxyl-terminal Asn, in agreement with the nucleotide sequence. In E. coli, the expressed penta-ubiquitin was processed correctly to mono-ubiquitin. The fidelity of processing in E. coli was confirmed by the following observations. The amino acid compositions of the processed mono-ubiquitin and human ubiquitin were similar. The 1H NMR spectrum of peaks representing amide hydrogens of the carboxyl-terminal Arg-74, Gly-75, and Gly-76 of the processed mono-ubiquitin was identical with that of human ubiquitin. The immunoreactivity of processed mono-ubiquitin and human ubiquitin against polyclonal antibodies that recognized epitope(s) only on the carboxyl terminus of ubiquitin were similar. The human and processed mono-ubiquitin were equally active in degrading 125I-bovine serum albumin in the ATP/ubiquitin-dependent in vitro proteolytic assay with reticulocyte lysates. In the pyrophosphate exchange assay with isolated ubiquitin activating enzyme E1, they were also equally reactive, confirming that the expressed and processed ubiquitin contained an intact carboxyl-terminal Gly-76. Purified penta-ubiquitin should prove to be a useful substrate for identifying and isolating processing enzyme(s) involved in the ATP/ubiquitin-dependent proteolytic pathway.  相似文献   

13.
Carboxylic ester hydrolases of rat pancreatic juice   总被引:3,自引:0,他引:3  
An attempt was made to establish the number and characteristics of the enzymes in pancreatic juice that hydrolyze nitrogen- and phosphorus-free esters of fatty acids. For this purpose model compounds were hydrolyzed by lyophilized rat pancreatic juice under conditions that accelerated or inhibited the reactions. Although it is not established with certainty, it is suggested that three enzymes are responsible for the hydrolysis of fatty acid esters. The first enzyme is glycerol-ester hydrolase (EC 3.1.1.3) or lipase. This enzyme hydrolyzes water-insoluble esters of primary alcohols. The reaction occurs at an oil/water interface and is inhibited by bile salts at pH 8. The enzyme is relatively stable at pH 9, but unstable at pH 4. It has a broad pH optimum between 7.5 and 9.5. The second enzyme hydrolyzes esters of secondary alcohols and of other alcohols as well. It has an absolute requirement for bile salts and has a pH optimum at about 8. The enzyme is unstable in pancreatic juice when maintained at pH 9, probably due to the action of trypsin. It may be identical with sterol-ester hydrolase (EC 3.1.1.13). The third enzyme hydrolyzes water-soluble esters. It too has an absolute requirement for bile salts, although a smaller amount is necessary for maximum activity. This enzyme also is unstable at pH 9, but can be differentiated from the preceding enzyme by its stability at pH 4 and its pH optimum of 9.0. Carboxylic-ester hydrolase (EC 3.1.1.1) is not found in pancreatic juice, although it is present in pancreatic tissue.  相似文献   

14.
Functional heterogeneity of ubiquitin carrier proteins   总被引:24,自引:0,他引:24  
In the formation of covalent ubiquitin-protein conjugates that occurs during ATP- and ubiquitin-dependent proteolysis in reticulocyte extracts, ubiquitin (Ub) is activated to a thiol ester of the activating enzyme E1 (via the Ub carboxyl terminus), transferred to low-molecular weight "carrier proteins" (E2s) to form E2-Ub thiol esters, and then transferred by a third enzyme (E3) to amino groups on target proteins (Hershko, A., Heller, H., Elias, S., and Ciechanover, A. (1983) J. Biol. Chem. 258, 8206-8214). We report here the fractionation of Ub carrier proteins by molecular weight, and their characterization with respect to several activities. The Ub thiol ester forms of at least four of the five E2s catalyze Ub transfer to a number of small amines, in a reaction that does not require E3; only primary amines on primary carbons can serve as Ub acceptors. E3-independent Ub transfer to the small, basic proteins histones H2A and H2B, and cytochrome c, is also observed. The Ub thiol ester forms of two of the E2s were found to catalyze Ub transfer to cytochrome c. Only a single E2 functions in E3-dependent conjugate formation (with the substrates creatine phosphokinase, reduced/carboxymethylated serum albumin, and oxidized RNase) and in E3-dependent protein breakdown (with the substrate serum albumin). This E2 has a subunit molecular weight of 14,000 and migrates as a dimer on Sephacryl 200.  相似文献   

15.
The structural chromatin protein A24 (uH2A) is a conjugate of histone H2A and a non-histone protein, ubiquitin. Eukaryotic cells contain an enzyme, generically termed isopeptidase, which can cleave A24 stoichiometrically into H2A and ubiquitin in vitro. Isopeptidase, free of proteinase activity, has been partially purified from calf thymus by ion-exchange chromatography, gel filtration and affinity chromatography, and analyzed for its substate specificity. There are three major types of isopeptide bonds besides the epsilon-(alpha-glycyl)lysine bond between H2A and ubiquitin; namely, the disulfide bridge, the aldol and aldimide bonds and the epsilon-(gamma-glutamyl)lysine crosslink. Under conditions where A24 was completely cleaved into H2A and ubiquitin, none of these naturally occurring isopeptide bonds was cleaved by isopeptidase. Furthermore, the bonds formed in vitro by transglutaminase reaction between casein and putrescine, through the gamma-NH2 of glutamine residue and the NH2 of putrescine, were not cleaved by the enzyme. The enzyme also failed to cleave the glycyl-lysyl and other orthodox peptide linkages within proteins. Among various proteins examined, the substrates for isopeptidase reaction were confined to conjugates between ubiquitin and other proteins, formed through epsilon-(alpha-glycyl)lysine bonds. Since ubiquitin released by isopeptidase is re-usable for an ATP-dependent conjugation with other proteins, its carboxyl terminal -Gly-Gly-COOH most likely is preserved intact, and is not blocked. These results suggest that isopeptidase specifically recognizes and cleaves the epsilon-(alpha-glycyl)lysine bond. A possible biological significance of this enzyme is discussed.  相似文献   

16.
Molecular genetic experiments have suggested that the carboxyl terminus of the Saccharomyces cerevisiae plasma membrane H(+)-ATPase is an inhibitory domain involved in the "in vivo" regulation of the enzyme by glucose metabolism. An antibody prepared against a fusion protein including the last 59 amino acids of the ATPase sequence has been affinity purified to yield a preparation which requires the 18 carboxyl-terminal amino acids for recognition. Antibody binding experiments show that the carboxyl-terminal domain of the ATPase can be selectively exposed by concentrations of the detergent Tween-20 which do not break down the permeability barrier of the plasma membrane to the antibody. Both enzyme-linked immunosorbent assay and immunofluorescence analysis demonstrate that the accessibility of the carboxyl-terminal domain in isolated plasma membranes depends on the physiological state of the cell being increased by glucose metabolism. Immunofluorescence analysis of isolated plasma membrane vesicles, using a dual labeling protocol with concanavalin A and antibody to reveal the orientation of individual vesicles, and colloidal gold immunoelectron microscopy of ultrathin cryosections of whole yeast cells separately demonstrate that the ATPase carboxyl terminus is located in the cytoplasmic compartment. The application of a mutant deleted of the epitope(s) recognized by the affinity purified carboxyl-terminal antibody eliminates the possibility of artifacts arising from nonspecific antibody binding. The accessibility properties and cytoplasmic location of the carboxyl-terminal domain appear to be consistent with its role as a negative regulator of the ATPase.  相似文献   

17.
Chp (Cdc42 homologous protein) shares significant sequence and functional identity with the human Cdc42 small GTPase, and like Cdc42, promotes formation of filopodia and activates the p21-activated kinase serine/threonine kinase. However, unlike Cdc42, Chp contains unique amino- and carboxyl-terminal extensions. Here we determined whether Chp, like Cdc42, can promote growth transformation and evaluated the role of the amino- and carboxyl-terminal sequences in Chp function. Surprisingly, we found that a GTPase-deficient mutant of Chp exhibited low transforming activity but that deletion of the amino terminus of Chp greatly enhanced its transforming activity. Thus, the amino terminus may serve as a negative regulator of Chp function. The carboxyl terminus of Cdc42 contains a CAAX (where C is cysteine, A is aliphatic amino acid, X is terminal amino acid) tetrapeptide sequence that signals for the posttranslational modification critical for Cdc42 membrane association and biological function. Although Chp lacks aCAAXmotif, we found that Chp showed carboxyl terminus-dependent localization to the plasma membrane and to endosomes. Furthermore, an intact carboxyl terminus was required for Chp transforming activity. However, treatment with inhibitors of protein palmitoylation, but not prenylation, caused Chp to mislocalize to the cytoplasm. Thus, Chp depends on palmitoylation, rather than isoprenylation, for membrane association and function. In summary, Chp is implicated in cell transformation, and the unique amino and carboxyl termini of Chp represent atypical mechanisms of regulation of Rho GTPase function.  相似文献   

18.
Medium-chain S-acyl fatty acid synthase thioester hydrolase (thioesterase II), a discrete 263-residue serine active-site enzyme, modifies the product specificity of the de novo lipogenic pathway in certain specialized tissues by hydrolyzing the thioester bond linking the growing acyl chain to the 4'-phosphopantetheine of the fatty acid synthase. Modification of one thioesterase II cysteine thiol with thionitrobenzoate inhibited interaction with the S-acyl-fatty acid synthase substrate but not with acyl-CoA model substrates. The identity of the sensitive cysteine residue was determined by treatment of the thionitrobenzoyl enzyme with cyanide and cleavage at the amino-terminal side of the S-cyanocysteinyl residue. Two small cleavage products were isolated; their molecular masses (889 and 675 Da) and amino acid compositions indicated that both originated from cleavage at Cys256. A new technique of electrospray ionization mass spectrometry was utilized to confirm that the heterogeneity displayed by the products of S-cyanocysteinyl cleavage resulted from the presence, in the purified preparations, of both full-length and a truncated form of the enzyme missing the carboxyl-terminal Leu-Thr peptide. The proportion of full-length polypeptide present appeared to correlate with the activity of the enzyme toward its natural substrate. The results of modification of Cys256 by thionitrobenzoate and removal of residues 262 and 263 by endogenous proteases indicate that integrity of the carboxyl-terminal region is important for interaction with its acyl-fatty acid synthase substrate.  相似文献   

19.
Human light chain 3/MAP1LC3B, an autophagosomal ortholog of yeast Atg8, is conjugated to phospholipid (PL) via ubiquitylation-like reactions mediated by human Atg7 and Atg3. Since human Atg4B was found to cleave the carboxyl terminus of MAP1LC3B in vitro, we hypothesized that this exposes its carboxyl-terminal Gly(120). It was recently reported, however, that when Myc-MAP1LC3B-His is expressed in HEK293 cells, its carboxyl terminus is not cleaved. (Tanida, I., Sou, Y.-s., Ezaki, J., Minematsu-Ikeguchi, N., Ueno, T., and Kominami, E. (2004) J. Biol. Chem. 279, 36268-36276). To clarify this contradiction, we sought to determine whether the carboxyl terminus of MAP1LC3B is cleaved to expose Gly(120) for further ubiquitylation-like reactions. When MAP1LC3B-3xFLAG and Myc-MAP1LC3B-His were expressed in HEK293 cells, their carboxyl termini were cleaved, whereas there was little cleavage of mutant proteins MAP1LC3B(G120A)-3xFLAG and Myc-MAP1LC3B(G120A)-His, containing Ala in place of Gly(120). An in vitro assay showed that Gly(120) is essential for carboxyl-terminal cleavage by human Atg4B as well as for formation of the intermediates Atg7-MAP1LC3B (ubiquitin-activating enzyme-substrate) and Atg3-MAP1LC3B (ubiquitin carrier protein-substrate). Recombinant MAP1LC3B-PL was fractionated into the 100,000 x g pellet in a manner similar to that shown for endogenous MAP1LC3B-PL. RNA interference of MAP1LC3B mRNA resulted in a decrease in both endogenous MAP1LC3B-PL and MAP1LC3B. These results indicate that the carboxyl terminus of MAP1LC3B is cleaved to expose Gly(120) for further ubiquitylation-like reactions.  相似文献   

20.
Sensory adaptation in bacterial chemotaxis involves reversible methylation of specific glutamyl residues on chemoreceptors. The reactions are catalyzed by a dedicated methyltransferase and dedicated methylesterase. In Escherichia coli and related organisms, control of these enzymes includes an evolutionarily recent addition of interaction with a pentapeptide activator located at the carboxyl terminus of the receptor polypeptide chain. Effective enzyme activation requires not only the pentapeptide but also a segment of the receptor polypeptide chain between that sequence and the coiled-coil body of the chemoreceptor. This segment has features consistent with a role as a flexible and presumably unstructured linker and enzyme tether, but there has been no direct information about its structure. We used site-directed spin labeling and electron paramagnetic resonance spectroscopy to characterize structural features of the carboxyl-terminal 40 residues of E. coli chemoreceptor Tar. Beginning ~ 35 residues from the carboxyl terminus and continuing to the end of the protein, spectra of spin-labeled Tar embedded in native membranes or in reconstituted proteoliposomes, exhibited mobilities characteristic of unstructured, disordered segments. Binding of methyltransferase substantially reduced mobility for positions in or near the pentapeptide but mobility for the linker sequence remained high, being only modestly reduced in a gradient of decreasing effects for 10-15 residues, a pattern consistent with the linker providing a flexible arm that would allow enzyme diffusion within defined limits. Thus, our data identify that the carboxyl-terminal linker between the receptor body and the pentapeptide is an unstructured, disordered segment that can serve as a flexible arm and enzyme tether.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号