首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The structural characteristics of exclusive equilibrium molten globule-like intermediate formed during peanut lectin unfolding in urea and guanidine hydrochloride (GdnHCl) have been investigated by size-exclusion chromatography, circular dichroism, fluorescence, phosphorescence, and chemical modification. The elution behavior and 8-anilino-1-naphthalenesulfonate binding indicate a less compact tertiary structure in urea than in GdnHCl. Further, the urea-induced intermediate reveals perturbed, nonnative typical β-sheet conformation in contrast to native-like atypical β-structure in GdnHCl. N-bromosuccinimide oxidation shows that none of three tryptophan residues is modified for GdnHCl-induced intermediate while one gets oxidized in urea. Such difference in tryptophan environment is supported by acrylamide quenching (Stern-Volmer constant being 3.2 and 5.8 M(-1) respectively), and phosphorescence studies at 77 K which show a blue-shift of (0, 0) band from 412.4 nm (GdnHCl) to 411.4 nm (urea). These results may provide important insight into the differential effects of GdnHCl and urea on the structural characteristics of intermediate state(s) in protein folding.  相似文献   

2.
The unfolding and refolding of riboflavin-binding protein (RfBP) from hen egg-white induced by addition of guanidinium chloride (GdnHCl), and its subsequent removal by dialysis have been studied by c.d. and fluorescence for both the native and reduced protein. The reduction of its nine disulphide bonds causes a reduction in the secondary structure (alpha-helix plus beta-sheet) from 63% to 33% of the amino acid residues. Unfolding of the native protein occurred in two phases; the first involving a substantial loss of tertiary structure, followed by a second phase involving loss of secondary structure at higher GdnHCl concentrations. By contrast this biphasic behaviour was not discernible in the reduced protein. The loss of ability to bind riboflavin occurred after the first phase of unfolding. Comparison of unfolding of the holoprotein and apoprotein suggested that riboflavin has only a small stabilizing effect on the unfolding process. After removal of GdnHCl, the holoprotein, apoprotein and reduced protein assumed their original conformation. The significance of the results in relation to various models for protein folding is discussed.  相似文献   

3.
The guanidinium hydrochloride (GdnHCl)-induced unfolding of an all beta-sheet protein, the human acidic fibroblast growth factor (hFGF-1), is studied using a variety of biophysical techniques including multidimensional NMR spectroscopy. The unfolding of hFGF-1 in GdnHCl is shown to involve the formation of a stable equilibrium intermediate. Size exclusion chromotagraphy using fast protein liquid chromatography shows that the intermediate accumulates maximally at 0.96 m GdnHCl. 1-Anilinonapthalene 8-sulfonate binding, one-dimensional (1)H NMR, and limited proteolytic digestion experiments suggest that the intermediate has characteristics resembling a molten globule state. Chemical shift perturbation and hydrogen-deuterium exchange monitored by (1)H-(15)N heteronuclear single quantum coherence spectra reveal that profound structural changes in the intermediate state (in 0.96 m GdnHCl) occur in the C-terminal, heparin binding region of the protein molecule. Additionally, results of the stopped flow fluorescence experiments suggest that the kinetic refolding of hFGF-1 proceeds through the accumulation of an intermediate at low concentrations of the denaturant. To our knowledge, the present study is the first report wherein an equilibrium intermediate is characterized in detail in an all beta-barrel protein.  相似文献   

4.
M Yang  D Liu  D W Bolen 《Biochemistry》1999,38(34):11216-11222
This work determines the ratio of DeltaH(vH) /DeltaH(cal) for staphylococcal nuclease (SN) denaturation in guanidine hydrochloride (GdnHCl) to test whether GdnHCl-induced denaturation is two-state. Heats of mixing of SN as a function of [GdnHCl] were determined at pH 7.0 and 25 degrees C. The resulting plot of DeltaH(mix) vs [GdnHCl] exhibits a sigmoid shaped curve with linear pre- and post-denaturational base lines. Extending the pre- and post-denaturational lines to zero [GdnHCl] gives a calorimetric DeltaH (DeltaH(cal)) of 24.1 +/- 1.0 kcal/mol, for SN denaturation in the limit of zero GdnHCl concentration. Guanidine hydrochloride-induced denaturation Gibbs energy changes in the limit of zero denaturant concentration (DeltaG degrees (N)(-)(D)) at pH 7. 0 were determined for SN from fluorescence measurements at fixed temperatures over the range from 15 to 35 degrees C. Analysis of the resulting temperature-dependent DeltaG degrees (N)(-)(D) data defines a van't Hoff denaturation enthalpy change (DeltaH(vH)) of 26. 4 +/- 2.8 kcal/mol. The model-dependent van't Hoff DeltaH(vH) divided by the model-independent DeltaH(cal) gives a ratio of 1.1 +/- 0.1 for DeltaH(vH)/DeltaH(cal), a result that rules out the presence of thermodynamically important intermediate states in the GdnHCl-induced denaturation of SN. The likelihood that GdnHCl-induced SN denaturation involves a special type of two-state denaturation, known as a variable two-state process, is discussed in terms of the thermodynamic implications of the process.  相似文献   

5.
The Mycobacterium tuberculosis protein Rv2302 (80 residues; molecular mass of 8.6 kDa) has been characterized using nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopy. While the biochemical function of Rv2302 is still unknown, recent microarray analyses show that Rv2302 is upregulated in response to starvation and overexpression of heat shock proteins and, consequently, may play a role in the biochemical processes associated with these events. Rv2302 is a monomer in solution as shown by size exclusion chromatography and NMR spectroscopy. CD spectroscopy suggests that Rv2302 partially unfolds upon heating and that this unfolding is reversible. Using NMR-based methods, the solution structure of Rv2302 was determined. The protein contains a five-strand, antiparallel beta-sheet core with one C-terminal alpha-helix (A61 to A75) nestled against its side. Hydrophobic interactions between residues in the alpha-helix and beta-strands 3 and 4 hold the alpha-helix near the beta-sheet core. The electrostatic potential on the solvent-accessible surface is primarily negative with the exception of a positive arginine pocket composed of residues R18, R70, and R74. Steady-state {(1)H}-(15)N heteronuclear nuclear Overhauser effects indicate that the protein's core is rigid on the picosecond timescale. The absence of amide cross-peaks for residues G13 to H19 in the (1)H-(15)N heteronuclear single quantum correlation spectrum suggests that this region, a loop between beta-strands 1 and 2, undergoes motion on the millisecond to microsecond timescale. Dali searches using the structure closest to the average structure do not identify any high similarities to any other known protein structure, suggesting that the structure of Rv2302 may represent a novel protein fold.  相似文献   

6.
Guanidine x HCl (GdnHCl)-induced unfolding of tetrameric N(5)-(L-1-carboxyethyl)-L-ornithine synthase (CEOS; 141,300 M(r)) from Lactococcus lactis at pH 7.2 and 25 degrees C occurred in several phases. The enzyme was inactivated at approximately 1 M GdnHCl. A time-, temperature-, and concentration-dependent formation of soluble protein aggregates occurred at 0.5-1.5 M GdnHCl due to an increased exposure of apolar surfaces. A transition from tetramer to unfolded monomer was observed between 2 and 3.5 M GdnHCl (without observable dimer or trimer intermediates), as evidenced by tyrosyl and tryptophanyl fluorescence changes, sulfhydryl group exposure, loss of secondary structure, size-exclusion chromatography, and sedimentation equilibrium data. GdnHCl-induced dissociation and unfolding of tetrameric CEOS was concerted, and yields of reactivated CEOS by dilution from 5 M GdnHCl were improved when unfolding took place on ice rather than at 25 degrees C. Refolding and reconstitution of the enzyme were optimal at 相似文献   

7.
Aggregation of proteins is a problem with serious medical implications and economic importance. To develop strategies for preventing aggregation, the mechanism(s) and pathways by which proteins aggregate must be characterized. In this study, the thermally induced aggregation processes of three alpha-helix proteins (myoglobin, cytochrome c, and lysozyme) in the presence and absence of 1.0 m guanidine hydrochloride (GdnHCl) were investigated by means of infrared spectroscopy. In the absence of GdnHCl, intensities of the alpha-helix bands (approximately 1656 cm(-1)) decrease as a function of temperature at above 50 degrees C. With myoglobin and cytochrome c, the loss of helix bands was accompanied by the appearance of two new bands at 1694 and 1623 cm(-1), indicative of the formation of intermolecular beta-sheet aggregates. For lysozyme, bands indicative of intermolecular beta-sheet aggregates did not appear in any significant intensity. In the presence of 1.0 m GdnHCl, two major intermediate states rich in 3(10)-helix (represented by the band at 1663 cm(-1)) and beta-turn structure (represented by the band at 1667 cm(-1)), respectively, were observed. These findings demonstrated that IR spectroscopic studies of protein aggregation using a combination of thermal and chemical denaturing factors could provide a means to populate and characterize aggregation intermediates.  相似文献   

8.
Changes in the conformation of apoliprotein B-100 in the early stages of copper-mediated low density lipoprotein oxidation have been monitored by infrared spectroscopy. During the lag phase no variation in structure is observed, indicating that copper binding to the protein does not significantly affect its structure. In the propagation phase, while hydroperoxides are formed but the protein is not modified, no changes in secondary structure are observed, but the thermal profile of the band corresponding to alpha-helix is displaced in frequency, indicating changes in tertiary structure associated with this conformation but not with beta-sheet components. When aldehyde formation starts, a decrease of approximately 3% in the area of bands corresponding to alpha-helix and beta-sheet is produced, concomitantly with an increase in beta-turns and unordered structure. The two bands corresponding to beta-turns vary as well under these conditions, indicating changes in these structures. Also at this stage the thermal profile shows variations in frequency for the bands corresponding to both alpha-helix and beta-sheet.The results are consistent with the hypothesis that as soon as the polyunsaturated fatty acids from the particle core are modified, this change is reflected at the surface, in the alpha-helical components contacting the monolayer.  相似文献   

9.
The secondary and tertiary structure of T4 bacteriophage dihydrofolate reductase is investigated by vacuum ultraviolet circular dichroism (CD) spectroscopy and probability analysis of the primary amino acid sequence. The far ultraviolet CD spectrum of the enzyme in the range of 260-178 nm is analyzed by the generalized inverse and variable selection methods developed by our laboratory. Variable selection yields an average content of 26% alpha-helix, 21% antiparallel beta-sheet, 10% parallel beta-sheet, 20% beta-turns, and 32% "other" structures within the T4 protein. The characteristic peaks of the CD spectrum indicate that the enzyme has a lot of antiparallel beta-sheet, which is typical of the alpha + beta tertiary class of globular proteins. The secondary structure of the protein is also analyzed by using four statistical methods on the amino acid sequence. Although the secondary structures predicted by each individual statistical method vary to a considerable extent, the fractions of each structure jointly predicted by a majority of the methods are in excellent agreement with our CD analysis. The alternating arrangement for some segments of alpha-helix and beta-sheet predicted from primary structure to be within the enzyme is characteristic of proteins containing parallel beta-sheet. This supports our conclusion that the protein contains both parallel and antiparallel beta-sheet structures, but finding both types of beta-sheet also means that the protein may have the variation on alpha/beta tertiary structure recently found in EcoRI endonuclease and thymidylate synthase. These observations, in conjunction with other physical properties of the T4 reductase, suggest that the enzyme perhaps shares an evolution in common with the dihydrofolate reductases derived from type I R-plasmids rather than with the host-cell protein.  相似文献   

10.
Xu X  Liu Q  Xie Y 《Biochemistry》2002,41(11):3546-3554
Anticoagulation factor II (ACF II) isolated from the venom of Agkistrodon acutus is an activated coagulation factor X-binding protein in a Ca(2+)-dependent fashion with marked anticoagulant activity. The equilibrium unfolding/refolding of apo-ACF II, holo-ACF II, and Tb(3+)-reconstituted ACF II in guanidine hydrochloride (GdnHCl) solutions was studied by following the fluorescence and circular dichroism (CD). Metal ions were found to increase the structural stability of ACF II against GdnHCl and irreversible thermal denaturation and, furthermore, influence its unfolding/refolding behavior. The GdnHCl-induced unfolding/refolding of both apo-ACF II and Tb(3+)-ACF II is a two-state process with no detectable intermediate state, while the GdnHCl-induced unfolding/refolding of holo-ACF II in the presence of 1 mM Ca(2+) follows a three-state transition with an intermediate state. Ca(2+) ions play an important role in the stabilization of both native and I states of holo-ACF II. The decalcification of holo-ACF II shifts the ending zone of unfolding/refolding curve toward lower GdnHCl concentration, while the reconstitution of apo-ACF II with Tb(3+) ions shifts the initial zone of the denaturation curve toward higher GdnHCl concentration. Therefore, it is possible to find a denaturant concentration (2.1 M GdnHCl) at which refolding from the fully denatured state of apo-ACF II to the I state of holo-ACF II or to the native state of Tb(3+)-ACF II can be initiated merely by adding the 1 mM Ca(2+) ions or 10 microM Tb(3+) ions to the unfolded state of apo-ACF II, respectively, without changing the concentration of the denaturant. Using Tb(3+) as a fluorescence probe of Ca(2+), the kinetic results of metal ion-induced refolding provide evidence for the fact that the first phase of Tb(3+)-induced refolding should involve the formation of the compact metal-binding site regions, and subsequently, the protein undergoes further conformational rearrangements to form the native structure.  相似文献   

11.
12.
Acidic fibroblast growth factors from human (hFGF-1) and newt (nFGF-1) (Notopthalamus viridescens) are 16-kDa, all beta-sheet proteins with nearly identical three-dimensional structures. Guanidine hydrochloride (GdnHCl)-induced unfolding of hFGF-1 and nFGF-1 monitored by fluorescence and far-UV circular dichroism (CD) shows that the FGF-1 isoforms differ significantly in their thermodynamic stabilities. GdnHCl-induced unfolding of nFGF-1 follows a two-state (Native state to Denatured state(s)) mechanism without detectable intermediate(s). By contrast, unfolding of hFGF-1 monitored by fluorescence, far-UV circular dichroism, size-exclusion chromatography, and NMR spectroscopy shows that the unfolding process is noncooperative and proceeds with the accumulation of stable intermediate(s) at 0.96 M GdnHCl. The intermediate (in hFGF-1) populated maximally at 0.96 M GdnHCl has molten globule-like properties and shows strong binding affinity to the hydrophobic dye, 1-Anilino-8-naphthalene sulfonate (ANS). Refolding kinetics of hFGF-1 and nFGF-1 monitored by stopped-flow fluorescence reveal that hFGF-1 and nFGF-1 adopts different folding mechanisms. The observed differences in the folding/unfolding mechanisms of nFGF-1 and hFGF-1 are proposed to be either due to differential stabilizing effects of the charged denaturant (Gdn(+) Cl(-)) on the intermediate state(s) and/or due to differences in the structural interactions stabilizing the native conformation(s) of the FGF-1 isoforms.  相似文献   

13.
The variant surface glycoprotein (VSG) of African trypanosomes has a structural role in protecting other cell surface proteins from effector molecules of the mammalian immune system and also undergoes antigenic variation necessary for a persistent infection in a host. Here we have reported the solution structure of a VSG type 2 C-terminal domain from MITat1.2, completing the first structure of both domains of a VSG. The isolated C-terminal domain is a monomer in solution and forms a novel fold, which commences with a short alpha-helix followed by a single turn of 3(10)-helix and connected by a short loop to a small anti-parallel beta-sheet and then a longer alpha-helix at the C terminus. This compact domain is flanked by two unstructured regions. The structured part of the domain contains 42 residues, and the core comprises 2 disulfide bonds and 2 hydrophobic residues. These cysteines and hydrophobic residues are conserved in other VSGs, and we have modeled the structures of two further VSG C-terminal domains using the structure of MITat1.2. The models suggest that the overall structure of the core is conserved in the different VSGs but that the C-terminal alpha-helix is of variable length and depends on the presence of charged residues. The results provided evidence for a conserved tertiary structure for all the type 2 VSG C-terminal domains, indicated that VSG dimers form through interactions between N-terminal domains, and showed that the selection pressure for sequence variation within a conserved tertiary structure acts on the whole of the VSG molecule.  相似文献   

14.
Guanidine hydrochloride (GdnHCl)-induced unfolding of human prostatic acid phosphatase (hPAP), a homodimer of 50 kDa subunit molecular weight, was investigated with activity measurements, size exclusion HPLC, tryptophan fluorescence, 1-anilinonaphtalene-8-sulfonate (ANS) binding and reactivity with 2-(4'-maleimidoanilino)naphthalene-6-sulfonate (MIANS). Equilibrium analysis was performed to shed light on the role of dimerization in the folding and stability of the catalytically active oligomeric protein. Unfolding was reversible, as verified by activity measurements and tryptophan fluorescence. The noncoincidence of the unfolding curves obtained by different techniques suggests the occurrence of a multiphasic process.The reaction of hPAP inactivation is accompanied by dissociation of the dimer into two monomers. The midpoint of this transition is at 0.65 M GdnHCl with 4.24+/-0.12 kcalmol(-1) free energy change. Binding of ANS to the inactive phosphatase monomer, especially remarkable in the region from 0.8 to 1.25M GdnHCl, suggests that the hydrophobic probe indicates exposition of the intersubunit hydrophobic surface and a loosening of the monomer's tertiary structure. Strong fluorescence of thiol group derivatives, the products of their reaction with MIANS, appears in a limited range of GdnHCl concentrations (1.2-1.6M). This shows that in the relaxed structure of the intermediate, the reagent is allowed to penetrate into the hydrophobic environment of the partially hidden thiol groups.The equilibrium unfolding reaction of hPAP, as monitored by tryptophan fluorescence, does not depend on the protein concentration and displays a single transition curve with a midpoint at 1.7 M GdnHCl and value of DeltaG(unf)(H(2)O)=3.38+/-0.08 kcalmol(-1) per monomer, a result implying that this transition is related to the conformational change of the earlier dissociated and already inactive subunit of the protein.  相似文献   

15.
The relationship among protein oligomerization, secondary structure at the interface, and the interfacial behavior was investigated for spread layers of native pulmonary surfactant associated proteins B and C. SP-B and SP-C were isolated either from butanol or chloroform/methanol lipid extracts that were obtained from sheep lung washings. The proteins were separated from other components by gel exclusion chromatography or by high performance liquid chromatography. SDS gel electrophoresis data indicate that the SP-B samples obtained using different solvents showed different oligomerization states of the protein. The CD and FTIR spectra of SP-B isolated from all extracts were consistent with a secondary structure dominated by alpha-helix. The CD and FTIR spectra of the first SP-C corresponded to an alpha-helical secondary structure and the spectra of the second SP-C corresponded to a mixture of alpha-helical and beta-sheet conformation. In contrast, the spectra of the third SP-C corresponded to antiparallel beta-sheets. The interfacial behavior was characterized by surface pressure/area (pi-A) isotherms. Differences in the oligomerization state of SP-B as well as in the secondary structure of SP-C all produce significant differences in the surface pressure/area isotherms. The molecular cross sections determined from the pi-A isotherms and from dynamic cycling experiments were 6 nm(2)/dimer molecule for SP-B and 1.15 nm(2)/molecule for SP-C in alpha-helical conformation and 1.05 nm(2)/molecule for SP-C in beta-sheet conformation. Both the oligomer ratio of SP-B and the secondary structure of SP-C strongly influence organization and behavior of these proteins in monolayer assemblies. In addition, alpha-helix --> beta-sheet conversion of SP-C occurs simply by an increase of the summary protein/lipid concentration in solution.  相似文献   

16.
Serpin tertiary structure transformation   总被引:6,自引:0,他引:6  
Previous crystallographic analyses have demonstrated that proteolytic cleavage of the serpins can result in a dramatic transformation of their tertiary structure. Some 16 residues on the amino terminal side of the cleavage site are inserted into a large beta-sheet to become a central strand, separating the two cleaved residues by about 70 A. We have determined, in outline, the nature of the conformational change responsible for this transformation. After cleavage, a fragment of the protein, consisting of an alpha-helix and three strands of beta-sheet, moves away from the rest of the structure to make the space for the new strand. This movement involves a new type of structural change: sheet residues in the small fragment slide along grooves in an alpha-helix that belongs to the rest of the protein. The general conservation of residues in the regions between the small fragment and the rest of the protein imply that the same mechanism will be found in all serpins that undergo this tertiary structure transformation.  相似文献   

17.
The relevance of partially ordered states of proteins (such as the molten-globule state) in cellular processes is beginning to be understood. We examined the conformational transitions in a multimeric and high molecular weight class II α-mannosidase from Canavalia ensiformis (Jack Bean) (Jbα-man) utilizing intrinsic fluorescence, solute quenching, hydrophobic dye binding, size exclusion chromatography and circular dichroism (CD) spectroscopy for the protein in presence of Guanidine hydrochloride (GdnHCl). The decomposition analysis of the protein spectra obtained during unfolding showed progressive appearance of class S, I, II and III trp. The parameter A and spectral center of mass showed multi state unfolding of the protein and phase diagram analysis revealed formation of an intermediate of Jbα-man in the vicinity of 1 M GdnHCl. The intermediate exhibited compact secondary and distorted tertiary structure with exposed hydrophobic amino acids on the surface, indicating the molten-globule nature. The dissociation, partial unfolding and aggregation of Jbα-man occurred simultaneously during chemical denaturation. The molten-globule possessed slightly higher hydrodynamic radius, perturbance in the structure up to 60 °C and stability of the structure up to 80 °C unlike the native Jack Bean α-mannosidase. The modes of chemical and thermal denaturation of the native protein were different. The solute quenching parameters confirmed the altered confirmation of the intermediate. Taken together, our results constitute one of the early reports of formation of GdnHCl induced molten globule in a class II α-mannosidase.  相似文献   

18.
The crystal structure of a collagen-binding domain (CBD) with an N-terminal domain linker from Clostridium histolyticum class I collagenase was determined at 1.00 A resolution in the absence of calcium (1NQJ) and at 1.65 A resolution in the presence of calcium (1NQD). The mature enzyme is composed of four domains: a metalloprotease domain, a spacing domain and two CBDs. A 12-residue-long linker is found at the N-terminus of each CBD. In the absence of calcium, the CBD reveals a beta-sheet sandwich fold with the linker adopting an alpha-helix. The addition of calcium unwinds the linker and anchors it to the distal side of the sandwich as a new beta-strand. The conformational change of the linker upon calcium binding is confirmed by changes in the Stokes and hydrodynamic radii as measured by size exclusion chromatography and by dynamic light scattering with and without calcium. Furthermore, extensive mutagenesis of conserved surface residues and collagen-binding studies allow us to identify the collagen-binding surface of the protein and propose likely collagen-protein binding models.  相似文献   

19.
The secondary structure of the purified glucosamine-6-phosphate deaminase from Escherichia coli K12 was investigated by both circular dichroism (CD) spectroscopy and empirical prediction methods. The enzyme was obtained by allosteric-site affinity chromatography from an overproducing strain bearing a pUC18 plasmid carrying the structural gene for the enzyme. From CD analysis, 34% of alpha-helix, 9% of parallel beta-sheet, 11% of antiparallel beta-sheet, 15% turns and 35% of non-repetitive structures, were estimated. A joint prediction scheme, combining six prediction methods with defined rules using several physicochemical indices, gave the following values: alpha-helix, 37%; beta-sheet, 22%; turns, 18% and coil, 23%. The structure predicted showed also a considerable degree of alternacy of alpha and beta structures; 64% of helices are amphipathic and 90% of beta-sheets are hydrophobic. Overall, the data suggest that deaminase has as dominant motif, an alpha/beta structure.  相似文献   

20.
Holladay and co-workers [Holladay, L. A., Hammonds, R. G., & Puett, D. (1974) Biochemistry 13, 1653-1661] reported the presence of an equilibrium intermediate in the guanidine hydrochloride (GdnHCl) induced denaturation of pituitary-derived bovine growth hormone (p-bGH). Since then, numerous reports have appeared demonstrating the inherent heterogeneity in p-bGH. In this report we show that a standard preparation of p-bGH can be separated into two components of almost equal abundance differing in molecular weight by approximately 1000. Each of these two components could give rise to different denaturation transitions which would be interpreted as evidence for equilibrium intermediates. We report here the equilibrium denaturation of bGH produced by Escherichia coli through recombinant DNA technology. The recombinant-derived bGH (r-bGH) is more homogeneous than that derived from pituitary sources and is greater than 95% a single polypeptide entity. Nevertheless, the GdnHCl-induced denaturation profiles of both recombinant bGH and pituitary bGH are very similar. The presence of equilibrium intermediates is verified by the asymmetry of the denaturation transition as measured by size-exclusion high-performance liquid chromatography and by noncoincidence of the denaturation transitions as observed by ultraviolet absorbance, fluorescence intensity, and circular dichroism. These findings conclusively show that the secondary structure of bovine growth hormone is more stable than the tertiary structure and is consistent with a framework model of protein folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号