首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spread of brain oedema in hypertensive brain injury   总被引:1,自引:0,他引:1  
Severe hypertension in humans may lead to fibrinoid necroses of cerebral blood vessels with small hemorrhages and cystic necroses. Similar lesions have also been reported in the experimental model of stroke-prone spontaneously hypertensive rats (SHRSP). We examined the genesis and spreading pattern of the brain oedema in SHRSP. The extravasation of plasma proteins was visualized with the Evans-Blue or the immunoperoxidase method. Most commonly the leakage occurred in the grey matter of the cerebral cortex or basal ganglia. The spreading pattern followed that of vasogenic brain oedema with a local spread in the grey matter and an extensive one in the white matter. In addition, we detected a novel pathway upwards along the perivascular spaces of the penetrating vessels as well as laterally in the subpial zone. This route is likely to serve also as a drainage channel for the oedema into the cerebrospinal fluid in the subarachnoidal space. Transfer of the extravasated proteins from the white matter to the ventricles was also observed, confirming that this previously described pathway for the resolution of oedema fluid exists in the SHRSP model of vasogenic brain oedema.  相似文献   

2.
We have previously detected two brain-specific and development-dependent N-glycans [H. Shimizu, K. Ochiai, K. Ikenaka, K. Mikoshiba, and S. Hase (1993) J. Biochem. 114, 334-338]. In the present study we attempted to analyze specific N-glycans detected in neurological mutant mice. N-glycans in cerebrum and cerebellum obtained from 3-week-old neurological mutant mice (jimpy, staggerer, and shiverer) were compared with those obtained from normal mice. N-glycans liberated from the cerebrum and cerebellum by hydrazinolysis-N-acetylation were pyridylaminated, and pyridylamino derivatives of N-glycans thus obtained were separated into neutral and five acidic fractions by anion exchange chromatography. PA-N-glycans in each fraction were compared with those obtained from normal mice by reversed-phase HPLC, and the following results were obtained. The ratio of the two brain-type N-glycans, Manalpha1-3(GlcNAcbeta1-2Manalpha1-6)(GlcNAcbeta1-4)Manbeta1-4GlcNAcbeta1-4(Fucalpha1-6)GlcNAc (BA-1) to GlcNAcbetaManalpha1-3(GlcNAcbeta1-2Manalpha1-6)(GlcNAcbeta1-4)Manbeta1-4GlcNAcbeta1-4(Fuca1-6)GlcNAc (BA-2), was higher in staggerer mice than other mutant mice and normal mice. Sia-Gal-BA-2, triantennary N-glycans, and bisected biantennary N-glycans were found in the cerebellum of shiverer and staggerer mice but not in normal or jimpy mice. High-mannose type N-glycans were not altered in mutant mice brains. The amounts of disialylbiantennary N-glycans and disialylfucosylbiantennary N-glycans were lower in jimpy mouse cerebellum than in normal mouse cerebellum, but were higher in shiverer mouse. Some alterations of N-glycans specific to mutations were successfully identified, suggesting that expression of component(s) of the N-glycan biosynthetic pathway was specifically affected in neurological mutations.  相似文献   

3.
4.
Copper in brain   总被引:1,自引:0,他引:1  
  相似文献   

5.
6.
7.
Administration of methionine sulfoximine (MSO) to rats and mice significantly decreased cerebral levels ofS-adenosyl-l-homocysteine (AdoHcy). Concurrent administration of methionine prevented this decrease and, when methionine was given alone, significantly elevated AdoHcy levels resulted in both species. Regionally, AdoHcy levels varied from 20 nmol/g in rat cerebellum and spinal cord to about 60 nmol/g in hypothalamus and midbrain. MSO decreased AdoHcy in all regions tested except striatum, midbrain, and spinal cord. AdoMet/AdoHcy ratios (methylation index) varied from 0.48 in hypothalamus to 2.4 in cerebellum, and MSO administration decreased these ratios in all regions except hypothalamus. AdoHcy hydrolase activity was lowest in hypothalamus, highest in brainstem and, generally, varied inversely with regional AdoHcy levels. MSO decreased AdoHcy hydrolase activity in all regions except hypothalamus and spinal cord. Cycloleucine administration resulted in significantly decreased levels of mouse brain AdoHcy, whereas the administration of dihydroxyphenylalanine (DOPA) failed to affect AdoHcy levels. It is concluded that (a) cerebral AdoHcy levels are more tightly regulated than are those of AdoMet after MSO administration, (b) slight fluctuations of AdoHcy levels may be important in regulating AdoHcy hydrolase activity and hence AdoHcy catabolism in vivo, (c) the AdoMet/AdoHcy ratio reflects the absolute AdoMet concentration rather than the transmethylation flux, (d) the decreased AdoMet levels in midbrain, cortex, and striatum after MSO with no corresponding decrease in AdoHcy suggest an enhanced AdoMet utilization, hence an increased transmethylation in the MSO preconvulsant state.Supported by USPHS, NINCDS grant NS-06294.  相似文献   

8.
9.
Human brain natriuretic peptide-like immunoreactivity in human brain.   总被引:8,自引:0,他引:8  
The presence of immunoreactive human brain natriuretic peptide in the human brain was studied with a specific radioimmunoassay for human brain natriuretic peptide-32. This assay showed no significant cross-reaction with human alpha atrial natriuretic peptide, porcine brain natriuretic peptide or rat brain natriuretic peptide. Immunoreactive human brain natriuretic peptide was found in all 5 regions of human brain examined (cerebral cortex, thalamus, cerebellum, pons and hypothalamus) (0.6-6.7 pmol/g wet weight, n = 3). These values were comparable to the concentrations of immunoreactive alpha atrial natriuretic peptide in human brain (0.5-10.1 pmol/g wet weight). However, Sephadex G-50 column chromatography showed that the immunoreactive human brain natriuretic peptide in the human brain eluted earlier than synthetic human brain natriuretic peptide-32. These findings suggest that human brain natriuretic peptide is present in the human brain mainly as larger molecular weight forms.  相似文献   

10.
Selenium and selenoproteins in the brain and brain diseases   总被引:11,自引:0,他引:11  
Over the past three decades, selenium has been intensively investigated as an antioxidant trace element. It is widely distributed throughout the body, but is particularly well maintained in the brain, even upon prolonged dietary selenium deficiency. Changes in selenium concentration in blood and brain have been reported in Alzheimer's disease and brain tumors. The functions of selenium are believed to be carried out by selenoproteins, in which selenium is specifically incorporated as the amino acid, selenocysteine. Several selenoproteins are expressed in brain, but many questions remain about their roles in neuronal function. Glutathione peroxidase has been localized in glial cells, and its expression is increased surrounding the damaged area in Parkinson's disease and occlusive cerebrovascular disease, consistent with its protective role against oxidative damage. Selenoprotein P has been reported to possess antioxidant activities and the ability to promote neuronal cell survival. Recent studies in cell culture and gene knockout models support a function for selenoprotein P in delivery of selenium to the brain. mRNAs for other selenoproteins, including selenoprotein W, thioredoxin reductases, 15-kDa selenoprotein and type 2 iodothyronine deiodinase, are also detected in the brain. Future research directions will surely unravel the important functions of this class of proteins in the brain.  相似文献   

11.
Disposition of fucose in brain   总被引:6,自引:4,他引:2  
Abstract— Labelled fucose administered to rats in vivo was rapidly incorporated into brain glycoproteins, but not into any other brain constituents, including glycolipids and acid mucopolysaccharides. Maximum incorporation of tritium-labelled fucose into brain glyco-proteins occurred 3–6 h after intraperitoneal injection in young or adult rats, and the half-time for the turnover of glycoprotein-fucose in young rats was approximately 2 weeks. Within 3 h after the administration of either [1-3H]fucose or fucose generally labelled with tritium, 75 per cent of the total acid-soluble radioactivity in plasma and brain was found to be volatile, and by 24 h after injection more than 90 per cent of the acid-soluble radioactivity was volatile. The tritium in labelled fiicose appears to undergo arapid exchange reaction with hydrogen atoms in body water, although the tritium in fucose glycosidically- linked to glycoproteins is biologically stable. The rapid disappearance of labelled free fucose from the plasma and tissues of the rat precludes the possibility of any significant degree of reutilization of labelled precursor, and provides support for other data indicating that the turnover of fucose in brain glycoproteins is relatively slow in comparison to that of hexosamine and sialic acid. Activities of α-L-fucosidase in rat brain, with pH optima at 40 and 6.0, had essentially the same Km (4 × 10?4 M and 3.2 × 10?4 M, respectively) with p-nitrophenyl-α-L-fucopyranoside as substrate. Activities of both were competitively inhibited by L-fucose. However, the Kt measured at pH 4 (1.9 × 10?2) was almost ten times greater than that measured at pH 6 (1.5 × 10?4).  相似文献   

12.
Biosynthesis of diphosphoinositide in brain   总被引:8,自引:0,他引:8  
  相似文献   

13.
A heat-stable Ca2+-dependent regulator protein with the characteristics of calmodulin was extracted and purified from striatum and cerebral cortex of autopsied human brains. The human calmodulin preparation cross-reacts with Ca2+-dependent phosphodiesterase isolated from rat, bovine, and human cerebral cortex. There was no significant difference between calmodulin content measured in membranes obtained from striatum or cortex of nine control subjects without a psychiatric history and seven schizophrenic individuals.  相似文献   

14.
15.
16.
The authors studies the effects of blood serum and IgG fraction from dogs immunized with brain and blood sera from patients with multiple sclerosis and schizophrenia on lipid peroxidation in rat brain homogenates. Measured the content of diene conjugates (DC) and malonic dialdehyde (MDA) in the rat brain after administering the IgG fraction. It was established that antioxidant activity of blood sera and IgG fraction from control animals and donors was significantly higher as compared to experimental. Administration of the IgG fraction brought about an increase in the content of DC and MDA in the brain of experimental animals. It is concluded that complement-dependent brain antibodies present in the blood serum of patients with schizophrenia and multiple sclerosis potentiate lipid peroxidation in the cerebral tissue and that the unsophisticated and informative method for antibody determination may be used in clinical practice.  相似文献   

17.
We present, herein, the evidence for lactoferrin (Lf) binding sites in brain endothelial capillary cells (BCECs) and mouse brain. The results from confocal microscopy showed the presence of Lf receptors on the surface of BCECs and the receptor-mediated endocytosis for Lf to enter the cells. Saturation binding analyses revealed that Lf receptors exhibited two classes of binding sites in BCECs (high affinity: dissociation constant (K (d)) = 6.77 nM, binding site density (B (max)) = 10.3 fmol bound/mug protein; low affinity: K (d) = 4815 nM, B (max) = 1190 fmol bound/mug protein) and membrane preparations of mouse brain (high affinity: K (d) = 10.61 nM, B (max) = 410 fmol bound/mug protein; low affinity: K (d) = 2228 nM, B (max) = 51641 fmol bound/mug protein). The distribution study indicated the effective uptake of (125)I-Lf in brain after intravenous administration. The present study provides experimental evidence for the application of Lf as a novel ligand for brain targeting.  相似文献   

18.
It has been recently established that in various brain regions D-serine, the product of serine racemase, occupies the so-called 'glycine site' within N-methyl D-aspartate receptors. Mammalian brain serine racemase is a pyridoxal-5' phosphate-containing enzyme that catalyzes the racemization of L-serine to D-serine. It has also been shown to catalyze the alpha,beta-elimination of water from L-serine or D-serine to form pyruvate and ammonia. Serine racemase is included within the group of type II-fold pyridoxal-5' phosphate enzymes, together with many other racemases and dehydratases. Serine racemase was first purified from rat brain homogenates and later recombinantly expressed in mammalian and insect cells as well as in Escherichia coli. It has been shown that serine racemase is activated by divalent cations like calcium, magnesium and manganese, as well as by nucleotides like ATP, ADP or GTP. In turn, serine racemase is also strongly inhibited by reagents that react with free sulfhydryl groups such as glutathione. Several yeast two-hybrid screens for interaction partners identified the proteins glutamate receptor interacting protein, protein interacting with C kinase 1 and Golga3 to bind to serine racemase, having different effects on its catalytic activity or stability. In addition, it has also been proposed that serine racemase is regulated by phosphorylation. Thus, d-serine production in the brain is tightly regulated by various factors pointing at its physiologic importance. In this minireview, we will focus on the regulation of brain serine racemase and d-serine synthesis by the factors mentioned above.  相似文献   

19.
20.
Selenium is present in various biologically important selenoproteins. The preferential incorporation of selenium into the brain indicates its significance for this organ, but so far knowledge concerning the cerebral selenoproteome is scarce. We therefore investigated the expression of selenoproteins in various regions of the rat brain, various subcellular fractions and several brain cell lines by (75)Se-labelling, gel electrophoretic separation and autoradiography, with the (75)Se tracer as the selenoprotein marker. Quantitative evaluation of the labelled proteins in selenium-deficient rats revealed information regarding preferentially supplied selenoproteins and their distribution; 21 selenoproteins could be distinguished, among them a novel or modified 15-kDa selenoprotein enriched in the cerebellum cytosol. The selenoproteins differed in the degree of their expression among the brain regions and within a region among the subcellular fractions. Some cell-type-specific selenium-containing proteins were found in the cell lines. Differences in the distribution patterns between mono-cultured and co-cultured endothelial cells and astrocytes showed that mediators produced by other cells could affect the selenoprotein expression of a specific cell-type. This effect might play a role in the uptake and distribution of selenium in the brain but could also be of significance in the selenium metabolism of other tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号