首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
脂质过氧化对人红细胞膜脂流动性的影响   总被引:20,自引:3,他引:17  
研究枯稀过氧化氢/高铁血红素体系所产生的烷基过氧自由基对红细胞的损伤。测定了脂质过氧化的产物——丙二脂的生成,并证明阿魏酸钠对脂质过氧化的抑制。荧光偏振的结果指出,膜脂过氧化以后降低了膜脂的流动性。人红细胞用5DSA和16DSA标记并用ESR检测膜脂流动性,结果表明,序参数S几乎没有发生变化,旋转相关时间τ值的增加证明膜脂过氧化以后,疏水尾部的物理状态发生了改变。经脂质过氧化以后,红细胞膜中的不饱和脂防酸的减少,可能是降低膜脂流动性的原因之一。  相似文献   

2.
Effects of fatty acids on the growth of Caco-2 cells   总被引:14,自引:0,他引:14  
Epidemiological studies suggest that polyunsaturated fatty acids may protect against colorectal neoplasia. In order to explore this observation, cell proliferation and viability, lipid composition, membrane fluidity, and lipid peroxidation were measured in Caco-2 cells after 48h incubation with various fatty acids. Saturated and monounsaturated fatty acids incorporated less well in the membranes than polyunsaturated fatty acids (PUFAs). All of the PUFAs tested had an inhibitory effect on cell proliferation/viability whereas the saturated and monounsaturated fatty acids did not. Addition of palmitic acid had no significant effect on membrane fluidity whereas unsaturated fatty acids increased membrane fluidity in a dose-dependent manner. PUFAs strongly increased tumor cell lipid peroxidation in a dose-dependent manner. Saturated and monounsaturated fatty acids increased lipid peroxidation in this cell line only at high concentration. Preincubation of Caco-2 cells with vitamin E prevented the inhibition of proliferation/viability, the elevation of the MDA concentration and the increased membrane fluidity induced by PUFAs. Our data indicate that PUFAs are potent inhibitors of the growth of colon cancer cells in vitro.  相似文献   

3.
Lipid peroxidation is a degenerative chain reaction in biological membranes that may be initiated by exposure to free radicals. This process is associated with changes in the membrane fluidity and loss of several cell membrane-dependent functions. 5-methoxytryptophol (ML) is an indole isolated from the mammalian pineal gland. The purpose of this study was to investigate the effects of ML (0. 01mM-10mM) on membrane fluidity modulated by lipid peroxidation. Hepatic microsomes obtained from rats were incubated with or without ML (0.01-10 mM). Then lipid peroxidation was induced by FeCl(3), ADP, and NADPH. Membrane fluidity was determined using fluorescence spectroscopy. Malonaldehyde (MDA) +4-hydroxyalkenals (4-HDA) concentrations were estimated as an indicator of the degree of lipid peroxidation. With oxidative stress, membrane fluidity decreased and MDA+4-HDA levels increased. ML (0.01-3 mM) reduced membrane rigidity and the rise in MDA+4-HDA formation in a concentration-dependent manner. 10 mM ML protected against lipid peroxidation but failed to prevent the membrane rigidity. In the absence of oxidative reagents, ML (0.3-10 mM) decreased membrane fluidity whereas MDA+4-HDA levels remained unchanged. This indicates that ML may interact with membrane lipids. The results presented here suggest that ML may be another pineal indoleamine (in addition to melatonin) that resists membrane rigidity due to lipid peroxidation.  相似文献   

4.
Young, adult, and old rats were used to study the effect of age on the integrity and functioning of brain synaptosomes. An evaluation was made of the differences in lipid composition, membrane fluidity, Na+, K(+)-ATPase activity, and susceptibility to in vitro lipid peroxidation. There was an age-related increase in synaptosomal free fatty acids, with no modification in acyl chain composition, and a decrease in membrane phospholipids which increased the cholesterol/phospholipid mole ratio. With altered lipid composition, there was a corresponding age-dependent decrease in membrane fluidity, a reduction of Na+, K(+)-ATPase activity, and an overall greater susceptibility to in vitro lipid peroxidation. Furthermore, lipid peroxidation promoted strong modifications of the membrane fluidity, lipid composition, and Na+,K(+)-ATPase activity just as aging did, thus indicating a possible contribution of oxidative damage to ageing processes. The cases studied revealed that the greater responsiveness of old membranes to in vitro lipid peroxidation resulted in the highest degree of membrane alteration, indicating that all pathological states known to promote a peroxidative injury can have even more dramatic consequences when they take place in old brain.  相似文献   

5.
Level of lipid peroxidation in doxorubicin treated human erythrocytes was studied and compared with that of cells pretreated with alpha-tocopherol. Erythrocytes treated with alpha-tocopherol had reduced level of lipid peroxidation with concomitantly lowered membrane damage. The membrane damage was monitored by the levels of conjugated diene absorption, lipid hydroperoxides and lipid peroxides. alpha-tocopherol was not effective in inhibiting the conjugated diene formation, but the lipid hydroperoxides and the lipid peroxide levels were significantly decreased. Methemoglobin level was found to be increased in alpha-tocopherol pretreated cells, which protects the membrane from damage. Erythrocyte membrane lipids were found to be decreased during doxorubicin treatment and alpha-tocopherol significantly reduced the membrane lipid breakdown. Level of reduced glutathione was maintained in alpha-tocopherol pretreated cells. These results are discussed with reference to the antioxidant property of alpha-tocopherol.  相似文献   

6.
利用化学发光、TBA 反应与测量共轭二烯的方法观测了Al3 + 对Fe2 + 启动的卵磷脂脂质体脂质过氧化的影响。实验结果显示,在生理pH 条件下,Al3 + 对Fe2 + 启动的脂质过氧化有增强作用,表现为缩短潜伏期和加快脂质过氧化的反应速率, Al3 + 的增强作用与脂质体中原先存在的过氧化物有关。这可能是因为在脂质体存在的条件下,Al3 + 加速了Fe2 + 的氧化,且加速作用与脂质体中原先存在的过氧化物的含量有关;另一方面,Al3 + 可以引起脂质体的聚集,表现为浊度的增加;测量脂质体上标记的脂肪酸自旋标记物5 - Doxyl stearic acid 的ESR 波谱发现: Al3 + 降低了脂质体的膜脂的流动性。研究表明: Al3 + 对Fe2 + 启动的卵磷脂脂质体的过氧化的增强作用可能与Al3 + 加速了Fe2 + 的氧化和改变了脂质体的物理状态有关  相似文献   

7.
Measurements of fluorescence polarization in intact diploid skin fibroblasts after exposure to 1,6-diphenyl-1,3,5-hexatriene were used to estimate the fluidity of the lipid phase(s) of cellular membranes. The membrane lipids of cells derived from four patients with homozygous familial hypercholesterolemia were in a more fluid state than those of cells obtained from 13 other individuals of normal and nonrelated mutant genotypes when all cultures were grown on medium with native serum. The only other cell type having membrane lipids of increased fluidity under these conditions was one fibroblast line derived from a patient with the Lesch-Nyhan syndrome. Examination of two additional nonconsanguinous lines of Lesch-Nyhan fibroblasts, however, revealed that an abnormally high level of lipid fluidity was not a common property of the membranes of cells of this genotype. Incubation of cultures in medium containing lipid-depleted serum (virtually devoid of lipoprotein-bound sterol) caused a reversible increase in the fluidity of the membranes of normal cells to values similar to those of the hypercholesterolemic cells, but had no effect on the membranelipid fluidity of the latter. By contrast, exposure of cultures to cholesterol not bound to lipoprotein in serum-free medium resulted in a decrease in the lipid fluidity of the membranes of both normo- and hypercholesterolemic fibroblasts.  相似文献   

8.
Summary

Radiation-induced apoptosis in chinese hamster ovary (CHO) cell lines is characterized by endonucleolytic cleavage of cellular DNA and changes of cell morphology within hours after radiation exposure. We investigated the capacity of ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-one], a seleno-organic compound with selenium-dependent glutathione peroxidase (GPx) activity, to protect cells from radiation-induced apoptosis. This phenomenon was studied by the quantitation of apoptotic cells and DNA gel electrophoresis after 6 Gy X-ray exposure. We also measured the activity of GPx and membrane lipid peroxidation. It was observed that 20 µM ebselen efficiently blocked apoptotic cell formation and DNA fragmentation 48 h post irradiation. Furthermore the data demonstrated that lipid peroxides increased significantly in irradiated cells and ebselen inhibited this process by elevating the cellular GPx activity. The results presented here indicate the requirement of free radicals for radiation-induced apoptosis and ultimately may yield insight necessary for designing protocols to modulate the process of radiation-induced apoptosis with antioxidant agents that scavenge radiation-induced free radicals.  相似文献   

9.
Past studies have shown that contact between tumor cells and fibroblasts results in stimulation of collagenase production by the fibroblasts. Membrane fractions prepared by differential centrifugation of sonicated B-16 melanoma cells were shown here to contain a collagenase stimulatory factor(s) (CSF). Trypsin treatment of intact B-16 cells prior to membrane fractionation led to loss of 90% of the total activity, indicating that CSF is localized on the outer surface of the cells. Stimulation of fibroblast collagenase production was also observed with dialyzed octylglucoside extracts of the B-16 membranes. Additional of exogenous lipid, ie, a mixture of phosphatidylcholine and phosphatidylserine, to the detergent extract of the membranes followed by dialysis and centrifugation at 100,000g resulted in 80% recovery of the factor activity in the pellet containing reconstituted lipid vesicles. Fractionation of tritium-labeled, reconstituted lipid vesicles on a Sephacryl S-300 column revealed that the collagenase stimulatory factor coeluted with the radioactive lipid vesicles. The fractionated lipid vesicles lost stimulatory activity completely after trypsin treatment or heating at 65 degrees C, indicating that the factor is a protein.  相似文献   

10.
The effect of lipid peroxidation on membrane fluidity was examined in sonicated soybean phospholipid vesicles. Following iron/ascorbate dependent peroxidation, the vesicles were labeled with a series of doxyl stearate spin probes which differed in the site of attachment of the nitroxide free radical to the fatty acid. Comparison of motional and partitioning parameters derived from electron spin resonance spectra of the probes indicated that the membranes were less fluid following peroxidation. However, the magnitude of the fluidity decrease was markedly dependent on the intramembrane location, as well as on the extent of lipid peroxidation. The effect of lipid peroxidation on fluidity was maximal in the membrane microenvironment sampled by 12-doxyl stearate, whereas other regions of the bilayer were less affected. These findings indicate that lipid peroxidation leads to an alteration of the transbilayer fluidity gradient.  相似文献   

11.
In order to monitor the membrane fluidity of cells without perturbation by an introduced probe, we developed a method for large-scale preparation of 2H-labeled melanoma cells for a 2H NMR study by incubating melanoma cells with [18,18,18-2H3]stearic acid/phosphatidylcholine liposomes for 2 h at 37 degrees C. It turned out that this treatment did not significantly change the cell viability, lipid metabolism or membrane fluidity. The 2H from C-18 of stearic acid is dominantly located at the original position of the fatty acid in the 2H-labeled membrane vesicles, as studied by a tracer experiment with [1-14C]stearic acid. We found that three to four 2H-labeled species were present at 19 degrees C in 2H NMR spectra of the 2H-labeled membrane vesicles prepared from B16 melanoma cells. The extent of peak-splittings due to 2H-quadrupole interaction decreased as the temperature rose, and a definite point of phase transition was not observed. At elevated temperature, 2H-labeled lipids undergo fast exchange between the bilayer and an isotropic phase such as oil phase of triolein or inverted micelles in lipid polymorphs. We further analyzed the change of membrane organization in mouse B16 melanoma cells treated with 12-O-tetradecanoylphorbol-13-acetate (TPA), which strongly inhibited melanogenesis. The magnitude of the quadrupole splitting at 19 degrees C in membranes from TPA-treated cells was significantly less (40%) than in the untreated control. This is mainly explained by decreased molecular ordering (fluidity) due to the increased amount of unsaturated fatty acids in the membranes of TPA-treated cells.  相似文献   

12.
The aim of this work was to assess the relative contributions of lipid peroxidation and cholesterol content to the increase in membrane rigidity observed during senescence. Membrane fluidity was manipulated through exposure to peroxidized or cholesterol-loaded liposomes. Small unilamella liposomes were prepared and either peroxidized by Fe++-ADP-ascorbic acid or loaded with cholesterol. After incorporation of the liposomes into rat liver microsomal membranes, membrane fluidity was quantitated by measuring changes in polarization. Membranes exhibited a greater sensitivity to peroxidation than cholesterol in that incorporation of peroxidized liposomes induced microsomal membrane rigidity substantially more than did cholesterol-loaded liposomes. Thus it is proposed, based on data from the present and earlier studies, that membrane fluidity can be modulated readily by lipid peroxidation of membrane phospholipids, irrespective of the influences of cholesterol. These results support the proposal that alterations of lipid structure are more potent and effective than compositional changes in cholesterol in inducing age-related increases in membrane rigidity.  相似文献   

13.
Increased membrane fluidity, which causes cofactor leakage and loss of membrane potential, has long been documented as a cause for decreased cell growth during exposure to ethanol, butanol, and other alcohols. Reinforcement of the membrane with more complex lipid components is thus thought to be beneficial for the generation of more tolerant organisms. In this study, organisms with more complex membranes, namely, archaea, did not maintain high growth rates upon exposure to alcohols, indicating that more complex lipids do not necessarily fortify the membrane against the fluidizing effects of alcohols. In the presence of alcohols, shifts in lipid composition to more saturated and unbranched lipids were observed in most of the organisms tested, including archaea, yeasts, and bacteria. However, these shifts did not always result in a decrease in membrane fluidity or in greater tolerance of the organism to alcohol exposure. In general, organisms tolerating the highest concentrations of alcohols maintained membrane fluidity after alcohol exposure, whereas organisms that increased membrane rigidity were less tolerant. Altered lipid composition was a common response to alcohol exposure, with the most tolerant organisms maintaining a modestly fluid membrane. Our results demonstrate that increased membrane fluidity is not the sole cause of growth inhibition and that alcohols may also denature proteins within the membrane and cytosol, adversely affecting metabolism and decreasing cell growth.  相似文献   

14.
In the present study, the in vitro effect of polyphenol rich plant extract, flavonoid--Pycnogenol (Pyc), on erythrocyte membrane fluidity was studied. Membrane fluidity was determined using 1-[4-trimethyl-aminophenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH), 1,6-diphenyl-1,3,5-hexatriene (DPH) and 12-(9-anthroyloxy) stearic acid (12-AS) fluorescence anisotropy. After Pyc action (50 microg/ml to 300 microg/ml), we observed decreases in the anisotropy values of TMA-DPH and DPH in a dose-dependent manner compared with the untreated erythrocyte membranes. Pyc significantly increased the membrane fluidity predominantly at the membrane surface. Further, we observed the protective effect of Pyc against lipid peroxidation, TBARP generation and oxidative hemolysis induced by H2O2. Pyc can reduce the lipid peroxidation and oxidative hemolysis either by quenching free radicals or by chelating metal ions, or by both. The exact mechanism(s) of the positive effect of Pyc is not known. We assume that Pyc efficacy to modify effectively some membrane dependent processes is related not only to the chemical action of Pyc but also to its ability to interact directly with cell membranes and/or penetrate the membrane thus inducing modification of the lipid bilayer and lipid-protein interactions.  相似文献   

15.
An increased lipid peroxides and a decreased production of prostacyclin have been shown in advanced atherosclerotic lesions and plasma. Our purpose was to determine whether the similar findings could be observed in cultured endothelial cells, and whether antioxidants could protect the cell against peroxide injury. In these experiments we have used bovine aortic endothelial cells in culture to address the issue of hyperlipidemia-induced arterial damage. Results of the present study showed that different concentration of hyperlipidemic sera from atherogenic rabbits induced a time- and dose-dependent alteration in the production of prostacyclin and levels of lipid peroxides in endothelial cells. Endothelial cells incubated with hyperlipidemic serum increased prostacyclin generation significantly during the initial stages and then continuously decreased. When endothelial cells were incubated for 36 h, TXA2 generation was also impaired and at the same time the cellular lipid peroxides content increased. There was a positive correlation between the concentration of hyperlipidemic serum and lipid peroxides and an inverse correlation with prostacyclin synthesis. The medium supplemented with antioxidant selenium or vitamin E showed a significant decrease in lipid peroxides and an increase in prostacyclin synthesis. These results suggest that both hyperlipidemic serum and lipid peroxides injury endothelial cells and inactivate prostacyclin synthetase, resulting in a decrease of prostacyclin production, while antioxidants have a protective effect. We conclude that the increase in lipid peroxides in association with hyperlipidemia results in alteration of prostacyclin synthesis that may play an important role in the pathogenesis of atherosclerosis.  相似文献   

16.
A brief literature review shows that ionizing radiation in biological membranes and in pure lipid membranes causes malondialdehyde formation, indicating lipid peroxidation processes. With respect to membrane fluidization by ionizing radiation, in pure lipid membranes rigidization effects are always reported, whereas contradictory results exist for biological membranes. Starting from the assumption that membrane proteins at least partly compensate for radiation effects leading to a rigidization of membrane lipid regions, pig liver microsomes, as a representative protein-rich intracellular membrane system, were irradiated with X-rays or UV-C with doses up to 120 Gy at a dose rate of 0.67 Gy min–1 and up to 0.73 J cm–2 at an exposure rate of 16.2 mJ cm–2 min–1, respectively. For both irradiation types a weak but significant positive correlation between malondialdehyde formation and membrane fluidity is revealed throughout the applied dose ranges. We conclude that the membraneous protein lipid interface increases its fluidity under radiation conditions. Also, thymocyte ghosts showed an increased fluidity after X-ray irradiation. Fluidity measurements were performed by the pyrene excimer method.  相似文献   

17.

Background

Noise exposure impairs outer hair cells (OHCs). The common basis for OHC dysfunction and loss by acoustic over-stimulation is represented by reactive oxygen species (ROS) overload that may affect the membrane structural organization through generation of lipid peroxidation.

Methods

Here we investigated in OHC different functional zones the mechanisms linking metabolic functional state (NAD(P)H intracellular distribution) to the generation of lipid peroxides and to the physical state of membranes by two photon fluorescence microscopy.

Results

In OHCs of control animals, a more oxidized NAD(P)H redox state is associated to a less fluid plasma membrane structure. Acoustic trauma induces a topologically differentiated NAD(P)H oxidation in OHC rows, which is damped between 1 and 6 h. Peroxidation occurs after ~ 4 h from noise insult, while ROS are produced in the first 0.2 h and damage cells for a period of time after noise exposure has ended (~ 7.5 h) when a decrease of fluidity of OHC plasma membrane occurs. OHCs belonging to inner rows, characterized by a lower metabolic activity with respect to other rows, show less severe metabolic impairment.

Conclusions

Our data indicate that plasma membrane fluidity is related to NAD(P)H redox state and lipid peroxidation in hair cells.

General Significance

Our results could pave the way for therapeutic intervention targeting the onset of redox umbalance.  相似文献   

18.
Fluorescence anisotropy measurements are widely used as sensitive indicators of cell membrane fluidity. 1-[4-(trimethylamino)phenyl]-6-phenyl hexa-1,3,5-triene (TMA-DPH) is a cationic fluorescent aromatic hydrocarbon that anchors at the lipid-water interface of membrane lipid bilayers. Its uptake into porcine pulmonary artery and aortic endothelial cells was monitored and the probe remained specifically localized on the cell surface for at least 4 h. It can therefore be recommended for use for specific plasma membrane lipid fluidity measurements in these cells. The effect of hyperoxia on plasma membrane fluidity was measured by using TMA-DPH. In both cell types, hyperoxic damage resulted in decreases in plasma membrane fluidity. Recovery was achieved 48 h after a 42-h hyperoxic exposure. These results indicate that TMA-DPH is a sensitive probe of plasma membrane lipid domains of pulmonary artery and aortic endothelial cells and that hyperoxia causes reversible changes in the physical state of superficial lipid domains of the plasma membrane of these cells.  相似文献   

19.
Oxidative stress and lipid peroxidation are major causes of skin injury induced by ultraviolet (UV) irradiation. Ferroptosis is a form of regulated necrosis driven by iron-dependent peroxidation of phospholipids and contributes to kinds of tissue injuries. However, it remains unclear whether the accumulation of lipid peroxides in UV irradiation-induced skin injury could lead to ferroptosis. We generated UV irradiation-induced skin injury mice model to examine the accumulation of the lipid peroxides and iron. Lipid peroxides 4-HNE, the oxidative enzyme COX2, the oxidative DNA damage biomarker 8-OHdG, and the iron level were increased in UV irradiation-induced skin. The accumulation of iron and lipid peroxidation was also observed in UVB-irradiated epidermal keratinocytes without actual ongoing ferroptotic cell death. Ferroptosis was triggered in UV-irradiated keratinocytes stimulated with ferric ammonium citrate (FAC) to mimic the iron overload. Although GPX4 protected UVB-injured keratinocytes against ferroptotic cell death resulted from dysregulation of iron metabolism and the subsequent increase of lipid ROS, keratinocytes enduring constant UVB treatment were markedly sensitized to ferroptosis. Nicotinamide mononucleotide (NMN) which is a direct and potent NAD+ precursor supplement, rescued the imbalanced NAD+/NADH ratio, recruited the production of GSH and promoted resistance to lipid peroxidation in a GPX4-dependent manner. Taken together, our data suggest that NMN recruits GSH to enhance GPX4-mediated ferroptosis defense in UV irradiation-induced skin injury and inhibits oxidative skin damage. NMN or ferroptosis inhibitor might become promising therapeutic approaches for treating oxidative stress-induced skin diseases or disorders.  相似文献   

20.
Polychlorinated biphenyls (PCB) and other aryl hydrocarbon receptor (AHR) agonists induce oxidative stress and alter membrane lipid peroxidation and fluidity. This study tested the hypothesis that PCB-induced changes in membrane properties impact membrane beta-adrenoceptor (beta-AR) affinity and capacity in chick embryo hepatocytes. Embryos were injected into the air cell with 1.6 microg 3,3',4,4',5-pentachlorobiphenyl (PCB 126)/kg egg at day 0, and incubated to day 19 when livers were removed. This dose resulted in hepatic PCB 126 levels of 0.67 ng/g liver or 10.2 ng/g liver lipid; levels in untreated embryos were non-detectable. Hepatic microsomal EROD activity was elevated by approximately 12-fold and embryo mortality was significantly increased compared with the untreated group. Hepatic lipid peroxidation increased and membrane order (steady-state fluorescence anisotropy values) decreased with in ovo PCB 126 exposure. Consistent with changes in membrane structure, hepatic beta-AR affinity for CGP 12177 significantly decreased (Kd increased) without changes in receptor numbers. This study demonstrates that in ovo exposure to PCB 126 in chick eggs significantly impacted embryo survival, and this was correlated with altered hepatic membrane structure and ultimately membrane function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号