首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) has been applied primarily to the analysis of glycosphingolipids separated from other complex mixtures by TLC, but it is difficult to obtain quantitative profiling of each glycosphingolipid among the different spots on TLC by MALDI-MS. Thus, the development of a convenient approach that utilizes liquid chromatography/electrospray ionization (LC/ESI)-MS has received interest. However, previously reported methods have been insufficient to separate and distinguish each ganglioside class. Here we report an effective method for the targeted analysis of theoretically expected ganglioside molecular species by LC/ESI tandem mass spectrometry (LC/ESI-MS/MS) in combination with multiple reaction monitoring (MRM). MRM detection specific for sialic acid enabled us to analyze ganglioside standards such as GM1, GM2, GM3, GD1, and GT1 at picomolar to femtomolar levels. Furthermore, other gangliosides, such as GD2, GD3, GT2, GT3, and GQ1, were also detected in glycosphingolipid standard mixtures from porcine brain and acidic glycolipid extract from mouse brain by theoretically expanded MRM. We found that this approach was also applicable to sulfatides contained in the glycosphingolipid mixtures. In addition, we established a method to separate and distinguish regioisomeric gangliosides, such as GM1a and -1b, GD1a, -1b, and -1c, and GT1a, -1b, and -1c with diagnostic sugar chains in the MRM.  相似文献   

2.
Ganglioside Composition in Human Meningiomas   总被引:4,自引:3,他引:1  
The ganglioside composition in meningioma specimens from 20 patients was analyzed to find potential meningioma-associated structures. The characterization was performed by immunological staining with specific monoclonal antibodies to ganglioside antigens and fast atom bombardment-mass spectrometry. The major gangliosides were GM3 and GD3, and most of the meningioma specimens could be divided into a "GM3-rich" or a "GD3-rich" group. Gangliosides of the gangliotetraose series were represented by GM1, GD1a, GD1b, and GT1b, which were found in minor amounts in all the specimens. The ratios of GM1/GD1a and GD1a/GD1b differed from that in normal brain, and therefore existence of this series could not be explained by contamination with brain material. Ganglioside 3'-isoLM1, found in human malignant glioma, could not be detected in any meningioma specimen.  相似文献   

3.
The ganglioside composition of the brain from an individual with classical Tay-Sachs disease and from an individual with Sandhoff disease was examined using our new quantitative methods for ganglioside content determination and compared with that of age-matched control brains. The concentration of GM2 was found to be 12.2 and 13.0 mumol/g of fresh tissue in Tay-Sachs disease and in Sandhoff disease cerebral gray matter, respectively. GM2 was 86 and 87% respectively, of total gangliosides. The concentration of GM1 and, in particular, GM3 ganglioside was also found to be increased, whereas the concentration of the major di- and trisialogangliosides (GD1a, GD1b, and GT1b) had diminished markedly. There was no significant increase in level of any other ganglioside than lyso-GM2. Its concentration was 12 and 16 nmol/g in cerebral gray matter of two Tay-Sachs disease brains and 43 nmol/g in Sandhoff disease brain. The Sandhoff disease brain also differed from the classical Tay-Sachs disease brain by having a much higher concentration of gangliotriaosylceramide and globotetraosylceramide. The structures of relevant gangliosides and neutral glycolipids were established by fast atom bombardment-mass spectrometry and permethylation studies.  相似文献   

4.
Serum ganglioside patterns in multiple sclerosis   总被引:4,自引:0,他引:4  
The relative distribution of gangliosides was determined in the serum of 37 patients with multiple sclerosis (MS) and of 30 healthy subjects. There was a significant increase of GM1 and GD1a, and a decrease of GM3 proportion in the serum of relapsing-remitting MS patients (RRMS) during their first MS attack. The RRMS patients in relapse with a long duration of the disease had a significant decrease of GM1 and an increase of GD1a portion in the serum. An increase of GD1a, one of the major brain neuron ganglioside fraction, suggested the neuron injury in the early and with a long duration RRMS. The finding of an increase of GM1, the main human myelin ganglioside, during the first MS attack in RRMS patients confirms previous evidence for the possible involvement of gangliosides in the early pathological course of demyelination in MS.  相似文献   

5.
Activities of Five Different Sialyltransferases in Fish and Rat Brains   总被引:2,自引:0,他引:2  
Abstract: To investigate the role of Sialyltransferases in the metabolism of brain gangliosides, we examined activities of five different Sialyltransferases (GM3-, GD3-, GT3-, GD1a-, and GT1a-synthase) using total membrane preparations from cichlid fish and Sprague-Dawley rat brains, and analyzed the relationship between the enzyme activities and the ganglloside compositions. The patterns of sialyltransferase activities in fish and rat brains differed from each other. In fish brain, the GM3-synthase activity was lower than GD3-synthase activity, whereas the opposite relationship was observed in rat brain. The GT3-synthase reaction with fish brain membranes produced radiolabeled GM3, GD3, and a ganglioside that was identified as GT3 based on mobility on TLC using two different solvent systems. No GT3-synthase activity was detected in rat brain. The GD1a-and GT1a-synthase activities in fish brain were higher than those in rat brain. Although GT1a was a single radiolabeled ganglioside in fish GT1a-synthase reaction, this ganglioside could not be detected in rat brain. The ratios of GM3-, GD3-, GT3-, GD1a-, and GT1a-synthase activities in fish and rat brain were 23:31:4:28:14 and 61:21:0:18:0, respectively. Ganglioside analysis showed that fish brain was enriched with c-series gangliosides including GT3 and polysialo-species, whereas a-and b-se-ries gangliosides were major components in rat brain. These results suggest that the species-specific expression of gangliosides in brain tissues may be regulated, at least in part, at the level of sialyltransferase activities.  相似文献   

6.
The main acidic glycosphingolipids (GSLs) of cock testis were identified as GalCer I3-sulfate and gangliosides GM4, GM3, GD3 and GT3. They contained N-acetylneuraminic acid as the major sialic acid, and ceramides composed mainly of sphingosine (dl8:1) and C18–24 non-hydroxy fatty acids. Appreciable amounts of hydroxy fatty acids were detected only in the GM4 preparation.  相似文献   

7.
The atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) is a quite convenient soft ionization for biomolecules, keeping analytes atmospheric conditions instead of high vacuum conditions. In this study, an AP-MALDI ion source has been coupled to a quadrupole ion trap time-of-flight (QIT-TOF) mass spectrometer, which is able to perform MSn analysis. We applied this system to the structural characterization of monosialogangliosides, GM1 (NeuAc) and GM2 (NeuAc), disialogangliosides, GD2 (NeuAc, NeuAc), GD1a (NeuAc, NeuAc) and GD1b (NeuAc, NeuAc) and trisialoganglioside GT1a (NeuAc, NeuAc, NeuAc). In this system, the negative ion mass spectra of MS, MS2 and MS3, a set of three mass spectra, were able to measure within 2 s per cycle. Thus, obtained results demonstrate that the negative ion mode MS, MS2 and MS3 spectra provided sufficient information for the determination of molecular weights, oligosaccharide sequences and ceramide structures, and indicate that the AP-MALDI-QIT-TOF mass spectrometry keeping analytes atmospheric conditions with MSn switching is quite useful and convenient for structural analyses of various types of sialic acid-containing GSLs, gangliosides.  相似文献   

8.
A first systematic synthesis of the glycan parts of the a-series gangliosides (GT1a, GD1a, and GM1) utilizing the newly developed N-Troc-protected GM3 and galactosaminyl building blocks is described. The key processes, including the assembly of the GM2 sequence and its conversion into the 3-hydroxy acceptor, were facilitated mainly by the high degree of participation and chemoselective cleavability of the Troc group in the galactosaminyl unit. Furthermore, the novel GM2 acceptor served as a good coupling partner during glycosylation with galactosyl, sialyl galactosyl, and disialyl galactosyl donors, successfully producing the GM1, GD1a, and GT1a glycans.  相似文献   

9.
Abstract: Previous studies from this laboratory have shown that synthesis of GT3, the precursor of c series gangliosides, occurs in proximal Golgi compartments, as has been shown for the synthesis of GM3 and GD3, the precursors of a and b series gangliosides, respectively. In this work we studied whether the synthesis of GM3, GD3, and GT3 occurs in the same or in different compartments of the proximal Golgi. For this, we examined in retina cells (a) the effect of monensin, a sodium ionophore that affects mostly the trans Golgi and the trans Golgi network function, on the metabolic labeling of glycolipids from [3H]Gal by cultured cells from 7- and 10-day chick embryos and (b) the labeling in vitro of endogenous glycolipids of Golgi membrane preparations from 7-day embryos incubated with UDP-[3H]Gal. In (a), 1 µM monensin produced a twofold accumulation of radioactive glucosylceramide and a decrease to ~50 and 20% of total ganglioside labeling in 7- and 10-day cells, respectively. At both ages, monensin produced a threefold accumulation of radioactive GM3 and an inhibition of >90% of GT3, GM1, GD1a, and GT1b synthesis. GD3 synthesis was inhibited ~30 and 70%, respectively, in 7- and 10-day cells. In (b), >80% of the [3H]Gal was incorporated into endogenous glucosylceramide to form radioactive lactosylceramide. About 90% of [3H]Gal-labeled lactosylceramide was converted into GM3, and most of this in turn into GD3 when unlabeled CMP-NeuAc was also present in the incubation system. Under the same conditions, however, <5% of labeled GD3 was converted into GT3. Golgi membranes incubated with CMP-[3H]NeuAc incorporated ~20% of [3H]NeuAc into endogenous GT3, and this percentage was not affected by 1 µM monensin. These results indicate that synthesis of GT3 is carried out in a compartment of the proximal Golgi different from those for lactosylceramide, GM3, and GD3 synthesis. Results from the experiments with monensin point to the cis/medial Golgi as the main compartment for coupled synthesis of lactosylceramide, GM3, and GD3 and to the trans Golgi as the main compartment for synthesis of GT3.  相似文献   

10.
Eleven monoclonal antibodies to GM1 ganglioside were prepared from hybridoma clones obtained by fusion of spleen cells from mice immunized with GM1 with mouse myeloma cells. When the reactivities of these 11 monoclonal antibodies were determined by enzyme-linked immunosorbent assay with six glycosphingolipids (GM1, GD1a, GD1b, GT1b, GM2, and asialo-GM1), they showed different degrees of specificity. From their reactivity patterns, they could be divided into three groups: Group 1, those that react only with GM1 (C3 and D3); Group 2, those that react predominantly with GM1 (C6, B6, D1, e1, g1, g9, and e12); and Group 3, those that show poor discrimination (h2 and A4). The clones differed in their biological activities.  相似文献   

11.
In the present study, three extremely minor but novel Chol-1 antigens, termed X1, X2, and X3 have been isolated from bovine brain gangliosides. Based on the results of sialidase degradation, TLC-immunostaining with anti-Chol-1 antibody and fast atom bombardment mass spectrometry, their chemical structures were identified as: $$\begin{gathered} III^6 NeuAc--GgOse4Cer (X1:GM1\alpha ) \hfill \\ III^6 NeuAc,II^3 NeuAc--GgOse4Cer (X2:GT1a\alpha ) \hfill \\ III^6 NeuAc,II^3 NeuAc--NeuGc--GgOse4Cer (X3:GT1b\alpha ) \hfill \\ \end{gathered} $$ The yields of GM1α, GD1aα, and GT1bα, were approximately 150, 20, and 10 µg, respectively, from 10 g of the bovine brain ganglioside mixture. In conjunction with our previous observations, all gangliosides with anti-Chol-1 reactivity were found to contain a common sialyl α2–6N-acetylgalactosamine residue, indicating that this unique sialyl linkage is the specific antigenic determinant. We subsequently examined the biosyntheses of the three novel Chol-1 gangliosides using rat liver Golgi fraction as an enzyme source. The results showed that GM1α, GD1aα, and GT1bα were synthesized from asialo-GM1, GM1a, and GD1b, respectively, by the action of a GalNAc α2-6sialyltransferase.  相似文献   

12.
Within recent years, ganglioside patterns have been increasingly analyzed by MS. However, internal standards for calibration are only available for gangliosides GM1, GM2, and GM3. For this reason, we prepared homologous internal standards bearing nonnatural fatty acids of the major mammalian brain gangliosides GM1, GD1a, GD1b, GT1b, and GQ1b, and of the tumor-associated gangliosides GM2 and GD2. The fatty acid moieties were incorporated after selective chemical or enzymatic deacylation of bovine brain gangliosides. For modification of the sphingoid bases, we developed a new synthetic method based on olefin cross metathesis. This method was used for the preparation of a lyso-GM1 and a lyso-GM2 standard. The total yield of this method was 8.7% for the synthesis of d17:1-lyso-GM1 from d20:1/18:0-GM1 in four steps. The title compounds are currently used as calibration substances for MS quantification and are also suitable for functional studies.  相似文献   

13.
The gangliosides in the brain of a cartilaginous fish, skate (Bathyraja smirnovi), have been isolated and characterized by means of methylation analysis, antibody binding, enzymatic hydrolysis and MALDI-TOF MS. In addition to gangliosides with known structures (GM2, fucosyl-GM1, GD3, GD2, GT3 and GT2), five polysialogangliosides were isolated and characterized as having the following structures. (1) IV3NeuAc, III6NeuAc, II3NeuAc-Gg4Cer; (2) IV3NeuAc2, III6NeuAc, II3NeuAc-Gg4Cer; (3) IV3NeuAc, III6NeuAc, II3NeuAc2-Gg4Cer; (4) IV3NeuAc, III6NeuAc, II3NeuAc3-Gg4Cer; and (5) IV3NeuAc2, III6NeuAc, II3NeuAc3-Gg4Cer. These structures are 'hybrid-type' which comprise combinations of alpha-series and either a, b or c-series structures. Three gangliosides (2), (4) and (5), were novel. The main features of the ganglioside composition of skate brain were an abundance of gangliotriaosyl species, a lack of gangliotetraosyl species (except fucosyl-GM1), and an abundance of hybrid-types. These characteristics closely resemble those in shark brain which we reported previously [Nakamura, K., Tamai, Y. & Kasama, T. (1997) Neurochem. Int. 30, 593-604]. Two of the hybrid-type gangliosides (1) and (4), were examined for their neuritogenic activity toward cultured neuronal cells (Neuro-2A), and were found to have more potent activity than nonhybrid-type gangliosides such as GM1.  相似文献   

14.
猪脑神经节苷脂的测定及其分析   总被引:3,自引:0,他引:3  
神经节苷脂是神经酰胺寡糖苷类物质.在脊椎动物的中抠神经系统中含量十分丰富.猪脑神经节苷脂经分离、纯化后的成分和含量的分析显示,猪脑神经节苷脂的含量占猪脑组织重量的0.0894%(W/W),是猪脑总脂含量的0.39%(W/W).主要成分是GM1,GD3,GD1a,GD1b和GT1b,其中GM1和GD1a明显高于人脑.  相似文献   

15.
Abstract— The ganglioside composition of the brain of a patient with Tay-Sachs disease (TS-brain) was determined by a newly developed ganglioside-mapping procedure and compared with that of an age-matched control brain. GM2 ganglioside was the predominant component in TS-brain and the following gangliosides were also found, GM1, GD1a, GD1b and GT1 (major gangliosides in normal brain), and GM3, GD3, GD2 and GD1a-GAN (minor or undetectable components of normal brain). Individual gangliosides were isolated by column chromatography using a combination of DEAE-Sepharose, Iatrobeads and Silica Gel 60 and their structures were confirmed by comparing them with authentic standards using TLC, analysing their carbohydrate compositions by gas-liquid chromatography and cleaving them sequentially with glycosidases. The amounts of individual components were measured by quantitative densitometric scanning of the thin-layer plates. As a reflection of myelin breakdown, no sialosylgalactosyl ceramide was detectable in TS-brain. Although the total amounts of all gangliosides except GM2 in TS-brain were low, there were normal molar ratios of the main gangliosides in normal brain, that is, GM1, GD1a, GD1b and GT1. In comparison with the amount of GDla ganglioside, the amounts of GM2, GD2 and GD1a-GAN, which contain N-acetylgalactosamine as a terminal carbohydrate residue, were all elevated in TS-brain. The long chain bases of individual gangliosides contained both C-18 and C-20 sphingosine in different ratios and the ratio of C-20 to C-18 increased in the gangliosides in the order: GM2 < GM1 < GD1a < GD1a-GAN < GD1b < GT1 in both normal brain and TS-brain. In contrast, GD2 and GD3 gangliosides consisted mainly of C-18 sphingosine. The C-20 to C-18 ratios of individual gangliosides in the TS-brain were lower than those of age-matched control brain. Hexosaminidase from Turbo cornutus showed the same specific activity and Km value in catalysing the cleavage of terminal N-acetylgalactosaminyl residues from GM2, GD2 and GD1a-GAN, suggesting that the brain gangliosides that increase in Tay-Sachs disease may be cleaved by the same enzyme.  相似文献   

16.
We established six murine monoclonal antibodies (MAbs) specific for b-pathway ganglio-series gangliosides by immunizing C3H/HeN mice with these purified gangliosides adsorbed to Salmonella minnesota mutant R595. The binding specificities of these MAbs were determined by an enzyme-linked immunosorbent assay and immunostaining on thin-layer chromatogram. These six MAbs, designated GGB19, GMR2, GMR7, GGR12, GMR5, and GGR13 reacted strongly with the gangliosides GD3, O-Ac-GD3, GD2, GD1b, GT1b, and GQ1b, respectively, that were used as immunogens. All these MAbs except GGB19 showed highly restricted binding specificities, reacting only with the immunizing ganglioside. None of other various authentic gangliosides or neutral glycolipids were recognized. On the other hand, MAb GGB19 exhibited a broader specificity, cross-reacting weakly with O-Ac-GD3, GQ1b, and GT1a, but not with other gangliosides or neutral glycolipids. Using these MAbs, we determined the expression of these gangliosides, especially GD1b, GT1b, and GQ1b on mouse, rat, and human leukemia cells. GD1b was expressed on rat leukemia cells, but not on mouse and human leukemia cells tested. Neither GT1b nor GQ1b was detected in these cell lines.  相似文献   

17.
Bovine brain microvascular endothelial cells (BMECs) express GM3 (NeuAc) and GM3 (NeuGc) as the major gangliosides, and GM1, GD1a, GD1b, GT1b as well as sialosylparagloboside and sialosyllactosaminylparagloboside as the minor species. To investigate the metabolic basis of this ganglioside pattern, the activities of eight glycosyltransferases (GM3-, GD1a-, GD3-, LM1-, GM2 (NeuAc)-, GM2 (NeuGc)-, LacCer-, and GM1-synthases) in cultured BMECs were studied. It was found that BMECs possessed high activities of GM3- and GD1a-synthases, and low activities of GM2-, GM1-, and GD3-synthases. Thus, the present study provides evidence that endothelial cells are capable of synthesizing gangliosides in situ and that the high content of GM3 in BMEC is closely associated with high activities of GM3-synthase and low activities of GM2-, GM1-, and GD3-synthases.  相似文献   

18.
NanoMate robot was coupled to a high-capacity ion trap (HCT) mass spectrometer to create a system merging automatic chip-based electrospray ionization (ESI) infusion, ultrafast ion detection, and multistage sequencing at superior sensitivity. The interface between the NanoMate and HCT mass spectrometer consists of an in-laboratory constructed mounting device that allows adjustment of the robot position with respect to the mass spectrometer inlet. The coupling was optimized for ganglioside (GG) high-throughput analysis in the negative ion mode and was implemented in clinical glycolipidomics for identification and structural characterization of anencephaly-associated species. By NanoMate HCT mass spectrometry (MS), data corroborating significant differences in GG expression in anencephalic versus age-matched normal brain tissue were collected. The feasibility of chip-based nanoESI HCT multistage collision-induced dissociation (CID MSn) for polysialylated GG fragmentation and isomer discrimination was tested on a GT1 (d18:1/18:0) anencephaly-associated structure. MS2-MS4 obtained by accumulating scans at variable fragmentation amplitudes gave rise to the first fragmentation patterns from which the presence of GT1b structural isomer could be determined unequivocally without the need for supplementary investigation by any other analytical or biochemical methods.  相似文献   

19.
Composition of gangliosides from ovine testis and spermatozoa   总被引:1,自引:0,他引:1  
Gangliosides were extracted and purified from ovine testis and ejaculated spermatozoa which contained, respectively, 57 and 9 nmol lipid-bound sialic acid per gram wet weight. Fourteen gangliosides were resolved by thin-layer chromatography of testicular gangliosides, of which eleven were purified in sufficient quantity to enable a complete compositional analysis of the carbohydrate residues to be performed. None of the gangliosides contained fucose, but several contained N-glycolylneuraminic acid as a component of the sialic acid species. Relative migration on thin-layer chromatograms relative to known standards, compositional analysis, and selective degradation by specific enzymes were used as the basis for identification. Testis contained members of the ganglio series (GM1, GD1a, GD1b, GT1b, GQ1b), hematoside series (GM3, GD3), and sialosylparagloboside in the molar ratio of 54:40:6, respectively. Testicular GM3, GM1, GD3, GD1a, GD1b and GT1b ran as double bands on thin-layer chromatography which could be accounted for by observed differences in the fatty acid moiety. In addition, the slower migrating band of each pair contained some or all of its sialic acid residues as N-glycolylneuraminic acid, whereas the faster migrating band contained exclusively N-acetylneuraminic acid, except for GM3 where N-acetylneuraminic acid was the sole species in both bands. Thin-layer chromatography of sperm gangliosides revealed seven bands comigrating with equivalent testicular gangliosides. These coincided with the slower migrating bands of testicular GM3, GM1, GD3, GD1a, both bands of GD1b, and possibly both bands of GT1b. Sperm contained only trace amounts of sialosylparagloboside but, in addition, two unidentified bands which were absent from testis were also observed. The molar ratio of the ganglio series to the hematoside series in sperm was 42:58 with GM3 accounting for 42% of total gangliosides.  相似文献   

20.
Gangliosides shed by tumors enhance tumor formation, possibly by suppressing host antitumor immune function, and gangliosides purified from animal tissues and cultured cells inhibit human cellular immune function in vitro. Determination of immunosuppressive activity of highly purified gangliosides, to uncover structure-activity relationships, is therefore important. Here we have studied a series of gangliosides obtained from human tissue and determined their effects on human natural killer (NK) activity. Total gangliosides from human brain tissue were moderately inhibitory; 100 nmol/ml reduced NK activity of human nonadherent PBMC by 43%. The influence of carbohydrate structure upon inhibitory activity was determined by study of eight highly (HPLC) purified individual gangliosides. Of these, we unexpectedly found that the two minor brain gangliosides with the simplest carbohydrate structures, GM2 and GM3, were very active inhibitors (75 and 47%, respectively, at 50 nmol/ml). In contrast, the structurally more complex major species, GM1, GD1a, GD1b, GT1b, and two other minor gangliosides, GD2 and GD3, were inactive. Reduced effector-target binding in a single-cell binding assay by GM2 but not GM3 suggests different mechanisms of inhibition by these two active gangliosides. Since GM2 and GM3 are present in high concentrations in, and are shed by, several common human tumors (e.g., neuroblastoma, melanoma, and glioma), their ability to inhibit NK cytotoxicity supports the hypothesis of a role of shed tumor gangliosides in the enhancement of tumor formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号