首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Several 3'-[(32)P]adenylated dinucleoside polyphosphates (Np(n)N'p*As) were synthesized by the use of poly(A) polymerase (Sillero MAG et al., 2001, Eur J Biochem.; 268: 3605-11) and three of them, ApppA[(32)P]A or ApppAp*A, AppppAp*A and GppppGp*A, were tested as potential substrates of different dinucleoside polyphosphate degrading enzymes. Human (asymmetrical) dinucleoside tetraphosphatase (EC 3.6.1.17) acted almost randomly on both AppppAp*A, yielding approximately equal amounts of pppA + pAp*A and pA + pppAp*A, and GppppGp*, yielding pppG + pGp*A and pG + pppGp*A. Narrow-leafed lupin (Lupinus angustifolius) tetraphosphatase acted preferentially on the dinucleotide unmodified end of both AppppAp*A (yielding 90% of pppA + pAp*A and 10 % of pA + pppAp*A) and GppppGp*A (yielding 89% pppG + pGp*A and 11% of pG + pppGp*A). (Symmetrical) dinucleoside tetraphosphatase (EC 3.6.1.41) from Escherichia coli hydrolyzed AppppAp*A and GppppGp*A producing equal amounts of ppA + ppAp*A and ppG + ppGp*A, respectively, and, to a lesser extent, ApppAp*A producing pA + ppAp*A. Two dinucleoside triphosphatases (EC 3.6.1.29) (the human Fhit protein and the enzyme from yellow lupin (Lupinus luteus)) and dinucleoside tetraphosphate phosphorylase (EC 2.7.7.53) from Saccharomyces cerevisiae did not degrade the three 3'-adenylated dinucleoside polyphosphates tested.  相似文献   

2.
Mitochondrial location of rat liver dinucleoside triphosphatase   总被引:3,自引:0,他引:3  
Rat liver dinucleoside triphosphatase (EC 3.6.1.29) is associated with sucrose-gradient purified mitochondria and can be extracted by freeze and thaw treatment. The proportion of mitochondrial dinucleoside triphosphatase approaches 50% of total liver enzyme. Evidence is also presented that 10% of total liver bis(5'-guanosyl)tetraphosphatase (EC 3.6.1.17) might be equally linked to mitochondria. Those data suggest that diadenosine 5',5'-P1,P3-triphosphate, diadenosine 5',5'-P1,P4-tetraphosphate, or other substrates of those enzymes, might be somehow related to mitochondria or mitochondrial function(s), although the occurrence of dinucleoside polyphosphates has not been reported in that organelle.  相似文献   

3.
Dinucleoside polyphosphates have been characterised as extracellular mediators controlling numerous physiological functions like vascular tone or cell proliferation. Here we describe the isolation and identification of dinucleoside polyphosphates Ap(n)A (with n=2-3), Ap(n)G (with n=2-6) as well as Gp(n)G (with n=2-6) from adrenal glands. These dinucleoside polyphosphates are localised in granules of the adrenal glands. The dinucleoside polyphosphates diadenosine diphosphate (Ap(2)A), diadenosine triphosphate (Ap(3)A), adenosine guanosine polyphosphates (Ap(n)G) and diguanosine polyphosphates (Gp(n)G), both with phosphate group (p) numbers (n) ranging from 2 to 6, were identified by fractionating them to homogeneity by preparative size-exclusion- and affinity-chromatography as well as analytical anion-exchange and reversed-phase-chromatography from deproteinised adrenal glands and by analysis of the homogeneous dinucleoside polyphosphates containing fractions with post-source-decay (PSD) matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS). The identity of the dinucleoside polyphosphates was confirmed by retention time comparison with authentic dinucleoside polyphosphates. Enzymatic analysis demonstrated an interconnection of the phosphate groups with the adenosines in the 5(')-positions of the riboses in all dinucleoside polyphosphates purified from adrenal glands. In conclusion, the identification of these dinucleoside polyphosphates in adrenal gland granules emphasises that these dinucleoside polyphosphates can be released from the adrenal glands upon stimulation into the circulation.  相似文献   

4.
Rat liver and brain differ in the distribution pattern of the total hydrolytic activity on diadenosine 5',5"'-P1,P3-triphosphate (Ap3A) between the soluble and particulate fractions. The Ap3A-hydrolase activity in both the soluble and particulate liver fractions and in the brain soluble fraction had been previously studied in detail. We report now on the brain particulate fraction which, unlike liver, showed a low unspecific phosphodiesterase I-like (PDEaseI, EC 3.1.4.1) activity relative to the specific dinucleoside triphosphatase (Ap3Aase, EC 3.6.1.29). Two PDEaseI-like forms (PDEaseI-A and PDEaseI-B), with different apparent Mrs and kinetic properties, and two Ap3Aases (Ap3Aase-alpha and Ap3Aase-beta) were solubilized with 0.5% Triton X-100 from the particulate fraction. Ap3Aase-alpha resembled the cytosolic Ap3Aase (Ap3Aase-c), a known situation in liver. Comparative to Ap3Aase-alpha, Ap3Aase-beta showed a slightly higher Km (35 vs. 15 micron) and lower isoelectric point (5.25 vs. 5.45); Ap3Aase-beta was absent from the soluble fraction, and its recovery was unaffected by proteinase inhibitors, strongly arguing for distinct soluble and particulate turnover pathways for dinucleoside polyphosphates.  相似文献   

5.
Dinucleoside(5′,5′) polyphosphates (ApnA, ApnG, GpnG, n=3–6) are new group of hormones controlling important biological processes. Because some of the dinucleoside(5′,5′) polyphosphates are commercially not available purification of chemical synthesised dinucleoside(5′,5′) polyphosphates became necessary in order to test their physiological and pharmacological properties. It was the aim of this study to find a method which allows purification of 0.1–0.2 g quantities of dinucleoside polyphosphates by analytical HPLC columns yielding products with impurities lower than 1.0%. Adenosine(5′)-polyphospho-(5′)guanosines were synthesised by mixing the corresponding mononucleotides. The reaction results in a complex mixture of ApnA, ApnG and GpnG (with n=3–6 in all cases). The reaction mixture was concentrated on a preparative C18 reversed-phase column. The concentrate was displaced on a reversed-phase stationary. As a result of displacement chromatography, anion-exchange chromatography in gradient modus yielded baseline separated dinucleoside polyphosphates (homogeneity of the fractions>99%). The identity of the substances were determined by matrix assisted laser desorption ionisation mass spectrometry.  相似文献   

6.
In former studies, dinucleoside polyphosphates were quantified using ion-pair reversed-phase perfusion chromatography columns, which allows a detection limit in the micromolar range. The aim of this study was both to describe a chromatographic assay with an increased efficiency of the dinucleoside separation, which enables the reduction of analytical run times, and to establish a chromatographic assay using conditions, which allow MALDI-mass spectrometric analysis of the resulting fractions. We compared the performance of conventional silica reversed phase chromatography columns, a perfusion chromatography column and a monolithic reversed-phase C18 chromatography column. The effects of different ion-pair reagents, flow-rates and gradients on the separation of synthetic diadenosine polyphosphates as well as of diadenosine polyphosphates isolated from human platelets were analysed. Sensitivity and resolution of the monolithic reversed-phase chromatography column were both higher than that of the perfusion chromatography and the conventional reversed phase chromatography columns. Using a monolithic reversed-phase C18 chromatography column, diadenosine polyphosphates were separable baseline not only in the presence of tetrabutylammonium hydrogensulfate (TBA) but also in the presence of triethylammonium acetate (TEAA) as ion-pair reagent. The later reagent is useful because, in contrast to TBA, it is compatible with MALDI mass-spectrometric methods. This makes TEAA particularly suitable for identification of unknown nucleoside polyphosphates. Furthermore, because of the lower backpressure of monolithic reversed-phase chromatography columns, we were able to significantly increase the flow rate, decreasing the amount of time for the analysis close to 50%, especially using TBA as ion-pair reagent. In summary, monolithic reversed phase C18 columns markedly increase the sensitivity and resolution of dinucleoside polyphosphate analysis in a time-efficient manner compared to reversed-phase perfusion chromatography columns or conventional reversed-phase columns. Therefore, further dinucleoside polyphosphate analytic assays should be based on monolithic silica C18 columns instead of perfusion chromatography or conventional silica reversed phase chromatography columns. In conclusion, the use of monolithic silica C18 columns will lead to isolation and quantification of up to now unknown dinucleoside polyphosphates. These chromatography columns may facilitate further research on the biological roles of dinucleoside polyphosphates.  相似文献   

7.
Two enzymatic activities that split diadenosine triphosphate have been reported in Escherichia coli: a specific Mg-dependent bis(5'-adenosyl) triphosphatase (EC 3.6.1.29) and the bis(5'-adenosyl) tetraphosphatase (EC 3.6.1.41). In addition to the activities of these two enzymes, a different enzyme activity that hydrolyzes dinucleoside polyphosphates is described. After purification and study of its molecular and kinetic properties, we concluded that it corresponded to the 5'-nucleotidase (EC 3.1.3.5) that has been described in E. coli. The enzyme was purified from sonic extracts and osmotic shock fluid. From sonic extracts, two isoforms were isolated by chromatography on ion-exchange Mono Q columns; they had a molecular mass of about 100 kilodaltons (kDa). From the osmotic shock fluid, a unique form of 52 kDa was recovered. Mild heating transformed the 100-kDa isoform to a 52-kDa form, with an increase in activity of about threefold. The existence of a 5'-nucleotidase inhibitor described previously, which associates with the enzyme and is not liberated in the osmotic shock fluid, may have been responsible for these results. The kinetic properties and substrate specificities of both forms (52 and 100 kDa) were almost identical. The enzyme, which is known to hydrolyze AMP and uridine-(5')-diphospho-(1)-alpha-D-glucose, but not adenosine-(5')-diphospho-(1)-alpha-D-glucose, was also able to split adenosine-(5')-diphospho-(5)-beta-D-ribose, ribose-5-phosphate, and dinucleoside polyphosphates [diadenosine 5',5'-P1,P2-diphosphate,diadenosine 5',5'-P1,P3-triphosphate, diadenosine 5',5'-P1,P4-tetraphosphate, and bis(5'-guanosyl) triphosphate]. The effects of divalent cations and pH on the rate of the reaction with different substrates were studied.  相似文献   

8.
The submitochondrial location of dinucleoside triphosphatase (EC 3.6.1.29), previously shown to be in part associated with mitochondria, has been studied in rat liver. The precipitability and latency of activity in organelle suspensions, and the profile of solubilization by digitonin, were like those of the matrix space marker glutamate dehydrogenase, and differed from those of other submitochondrial fractions. This, and the synthesis of diadenosine polyphosphates by mitochondrial aminoacyl-tRNA synthetases, suggest the occurrence of a pathway for the intramitochondrial turnover of diadenosine 5',5'-P1,P3-triphosphate (Ap3A).  相似文献   

9.
Adenosine 5'-polyphosphates have been identified in vitro, as products of certain enzymatic reactions, and in vivo. Although the biological role of these compounds is not known, there exist highly specific hydrolases that degrade nucleoside 5'-polyphosphates into the corresponding nucleoside 5'-triphosphates. One approach to understanding the mechanism and function of these enzymes is through the use of specifically designed phosphonate analogues. We synthesized novel nucleotides: alpha,beta-methylene-adenosine 5'-tetraphosphate (pppCH2pA), beta,gamma-methylene-adenosine 5'-tetraphosphate (ppCH2ppA), gamma,delta-methylene-adenosine 5'-tetraphosphate (pCH2pppA), alphabeta,gammadelta-bismethylene-adenosine 5'-tetraphosphate (pCH2ppCH2pA), alphabeta, betagamma-bismethylene-adenosine 5'-tetraphosphate (ppCH2pCH2pA) and betagamma, gammadelta-bis(dichloro)methylene-adenosine 5'-tetraphosphate (pCCl2pCCl2ppA), and tested them as potential substrates and/or inhibitors of three specific nucleoside tetraphosphatases. In addition, we employed these p4A analogues with two asymmetrically and one symmetrically acting dinucleoside tetraphosphatases. Of the six analogues, only pppCH2pA is a substrate of the two nucleoside tetraphosphatases (EC 3.6.1.14), from yellow lupin seeds and human placenta, and also of the yeast exopolyphosphatase (EC 3.6.1.11). Surprisingly, none of the six analogues inhibited these p4A-hydrolysing enzymes. By contrast, the analogues strongly inhibit the (asymmetrical) dinucleoside tetraphosphatases (EC 3.6.1.17) from human and the narrow-leafed lupin. ppCH2ppA and pCH2pppA, inhibited the human enzyme with Ki values of 1.6 and 2.3 nm, respectively, and the lupin enzyme with Ki values of 30 and 34 nm, respectively. They are thereby identified as being the strongest inhibitors ever reported for the (asymmetrical) dinucleoside tetraphosphatases. The three analogues having two halo/methylene bridges are much less potent inhibitors for these enzymes. These novel nucleotides should prove valuable tools for further studies on the cellular functions of mono- and dinucleoside polyphosphates and on the enzymes involved in their metabolism.  相似文献   

10.
It is known that the interferon-inducible 2',5'-oligoadenylate synthetase can catalyze the 2'-adenylation of various diadenosine polyphosphates. However, catabolism of those 2'-adenylated compounds has not been investigated so far. This study shows that the mono- and bis-adenylated (or mono- and bis-deoxyadenylated) diadenosine triphosphates are not substrates of the human Fhit (fragile histidine triad) protein, which acts as a typical dinucleoside triphosphate hydrolase (EC 3.6.1.29). In contrast, the diadenosine tetraphosphate counterparts are substrates for the human (asymmetrical) Ap(4)A hydrolase (EC 3.6.1.17). The relative rates of the hydrolysis of 0.15 mM AppppA, (2'-pdA)AppppA, and (2'-pdA)AppppA(2"'-pdA) catalyzed by the latter enzyme were determined as 100:232:38, respectively. The asymmetrical substrate was hydrolyzed to ATP + (2'-pdA)AMP (80%) and to (2'-pdA)ATP + AMP (20%). The human Fhit protein, for which Ap(4)A is a poor substrate, did not degrade the 2'-adenylated diadenosine tetraphosphates either. The preference of the interferon-inducible 2'-5' oligoadenylate synthetase to use Ap(3)A over Ap(4)A as a primer for 2'-adenylation and the difference in the recognition of the 2'-adenylated diadenosine triphosphates versus the 2'-adenylated diadenosine tetraphosphates by the dinucleoside polyphosphate hydrolases described here provide a mechanism by which the ratio of the 2'-adenylated forms of the signalling molecules, Ap(3)A and Ap(4)A, could be regulated in vivo.  相似文献   

11.
Acyl coenzyme A (CoA) synthetase (EC 6.2.1.8) from Pseudomonas fragi catalyzes the synthesis of adenosine 5′-tetraphosphate (p4A) and adenosine 5′-pentaphosphate (p5A) from ATP and tri- or tetrapolyphosphate, respectively. dATP, adenosine-5′-O-[γ-thiotriphosphate] (ATPγS), adenosine(5′)tetraphospho(5′)adenosine (Ap4A), and adenosine(5′)pentaphospho(5′)adenosine (Ap5A) are also substrates of the reaction yielding p4(d)A in the presence of tripolyphosphate (P3). UTP, CTP, and AMP are not substrates of the reaction. The Km values for ATP and P3 are 0.015 and 1.3 mM, respectively. Maximum velocity was obtained in the presence of MgCl2 or CoCl2 equimolecular with the sum of ATP and P3. The relative rates of synthesis of p4A with divalent cations were Mg = Co > Mn = Zn >> Ca. In the pH range used, maximum and minimum activities were measured at pH values of 5.5 and 8.2, respectively; the opposite was observed for the synthesis of palmitoyl-CoA, with maximum activity in the alkaline range. The relative rates of synthesis of palmitoyl-CoA and p4A are around 10 (at pH 5.5) and around 200 (at pH 8.2). The synthesis of p4A is inhibited by CoA, and the inhibitory effect of CoA can be counteracted by fatty acids. To a lesser extent, the enzyme catalyzes the synthesis also of Ap4A (from ATP), Ap5A (from p4A), and adenosine(5′)tetraphospho(5′)nucleoside (Ap4N) from adequate adenylyl donors (ATP, ATPγS, or octanoyl-AMP) and adequate adenylyl acceptors (nucleoside triphosphates).Dinucleoside polyphosphates have been detected in a wide variety of eukaryotic and prokaryotic organisms (13). In higher organisms, their concentrations are generally on the order of 0.01 to 1 μM. Human blood platelets and chromaffin cells of bovine adrenal medulla contain diadenosine polyphosphates located in the dense bodies (10, 26, 35) and chromaffin granules (32, 38), respectively, where they may reach higher local concentrations. The occurrence of dinucleoside polyphosphates has been described for lower eukaryotic (Saccharomyces cerevisiae, Dictyostelium discoideum, and Physarum polycephalum) and for prokaryotic (Salmonella typhimurium, Escherichia coli, and Clostridium acetobutylicum) organisms (13).Dinucleoside tetraphosphates participate in the control of purine nucleotide metabolism (36), where Ap4A is an activator of both the IMP-GMP-specific cytosolic 5′-nucleotidase (EC 3.1.3.5) and AMP deaminase (EC 3.5.4.6) (Ka, micromolar range) and Gp4G is an activator of GMP reductase (EC 1.6.6.8) (Ka, nanomolar range) (36). As the concentration of dinucleoside polyphosphates increases under unfavorable environmental conditions, they have been implicated in the cellular response to stress (31). A role of Ap4A in DNA synthesis has been proposed elsewhere (14). Dinucleoside polyphosphates are also transition state analogs of some kinases (37). More recently, the dinucleoside triphosphatase activity of a putative tumor suppressor gene product has been described (3).The nucleoside 5′-polyphosphates (pnN) are another family of related compounds, p4A has been detected in rabbit and horse muscle (41), rat liver (44), S. cerevisiae spores (19), and chromaffin granules (38). As p4A is a very strong inhibitor (Ki, nanomolar range) of asymmetrical dinucleoside tetraphosphatase (EC 3.6.1.17) (22), changes in the level of p4A could affect the concentration and physiological roles of Ap4A. Other enzymes known to be inhibited (Ki, micromolar range) by p4N are guanylate cyclase (EC 4.6.1.2) (p4A and p4G) (18) and phosphodiesterase I (EC 3.1.4.1) (p4G) (9). Effects of p4A on the tone of the vascular system, mediated by P2 receptors, have also been described elsewhere (21).The cellular level of dinucleoside polyphosphates results from their rate of degradation and synthesis. The following specific enzymes, implicated in the cleavage of dinucleoside polyphosphates, have been described (see reference 15 for a review): asymmetrical dinucleoside tetraphosphatase (EC 3.6.1.17), symmetrical dinucleoside tetraphosphatase (EC 3.6.1.41), dinucleoside tetraphosphate phosphorylase (EC 2.7.7.53), and dinucleoside triphosphatase (EC 3.6.1.29). In addition, there are other unspecific enzymes able to catalyze the hydrolysis of dinucleoside polyphosphates like E. coli 5′-nucleotidase (34) and phosphodiesterase I (9, 15, 26).This paper deals with the synthesis of (di)nucleoside polyphosphates. It has been known since 1966 that some aminoacyl tRNA synthetases (30, 45) catalyze the synthesis of Ap4A through reactions 1 and 2: reaction 1 reaction 2 The possibility that other enzymes (mainly synthetases and some transferases) which catalyze the formation of AMP, via nucleotidyl-containing intermediates and by releasing PPi, could catalyze the synthesis of dinucleoside polyphosphates was later raised (17). Luciferase (EC 1.13.12.7), considered as an oxidoreductase, catalyzes the synthesis of Ap4A with ATP as substrate and luciferin as an essential activator (27, 40): reaction 3 reaction 4 Acetyl-CoA synthetase (EC 6.2.1.1) from S. cerevisiae also catalyzes the synthesis of p4A and p5A, from ATP and P3 and P4, respectively (16). In the reactions catalyzed by luciferase and acetyl-CoA synthetase, ATP is a very good substrate for the formation of the E · X-AMP complex (X = the appropriate acyl residue), whereas any NTP (or even P3) is an acceptor (particularly in the case of luciferase) of the AMP moiety of the complex, provided that it has an intact terminal pyrophosphate (27, 40).Here we show that acyl-CoA synthetase from Pseudomonas fragi catalyzes the synthesis of p4A, p5A, Ap4A, Ap5A, and a variety of Ap4Ns. In our view, these findings widen the knowledge of the mechanisms of synthesis of (di)nucleoside polyphosphates in prokaryotes and, by extrapolation, also in eukaryotes.  相似文献   

12.
Novel properties of the primer independent synthesis of poly(A), catalyzed by the yeast poly(A) polymerase are presented. The commercial enzyme from yeast, in contrast to the enzyme from Escherichia coli, is unable to adenylate the 3'-OH end of nucleosides, nucleotides or dinucleoside polyphosphates (NpnN). In the presence of 0.05 mm ATP, dinucleotides (at 0.01 mm) activated the enzyme velocity in the following decreasing order: Gp4G, 100; Gp3G, 82; Ap6A, 61; Gp2G, 52; Ap4A, 51; Ap2A, 41; Gp5G, 36; Ap5A, 27; Ap3A, 20, where 100 represents a 10-fold activation in relation to a control without effector. The velocity of the enzyme towards its substrate ATP displayed sigmoidal kinetics with a Hill coefficient (nH) of 1.6 and a Km(S0.5) value of 0.308 +/- 0.120 mm. Dinucleoside polyphosphates did not affect the maximum velocity (Vmax) of the reaction, but did alter its nH and Km(S0.5) values. In the presence of 0.01 mm Gp4G or Ap4A the nH and Km(S0.5) values were (1.0 and 0.063 +/- 0.012 mm) and (0.8 and 0.170 +/- 0.025 mm), respectively. With these kinetic properties, a dinucleoside polyphosphate concentration as low as 1 micro m may have a noticeable activating effect on the synthesis of poly(A) by the enzyme. These findings together with previous publications from this laboratory point to a potential relationship between dinucleoside polyphosphates and enzymes catalyzing the synthesis and/or modification of DNA or RNA.  相似文献   

13.
Dinucleoside diphosphates, Ap(2)A, Ap(2)G, and Gp(2)G represent a new class of growth-promoting extracellular mediators, which are released from granules after activation of platelets. The presence of theses substances was shown after purification from a platelet concentrate. The substances were identified by UV spectrometry, retention time comparison with authentic substances, matrix-assisted laser desorption/ionization mass spectrometry, post-source-decay matrix-assisted laser desorption/ionization mass spectrometry, and enzymatic analysis. Ap(2)A, Ap(2)G, and Gp(2)G have growth-stimulating effects on vascular smooth muscle cells in nanomolar concentrations as shown by [(3)H]thymidine incorporation measurements. The calculated EC(50) (log m; mean +/- S.E.) values were -6.07 +/- 0.14 for Ap(2)A, -6.27 +/- 0.25 for Ap(2)G, and -6.91 +/- 0.44 for Gp(2)G. At least 61.5 +/- 4.3% of the dinucleoside polyphosphates are released by platelet activation. The intraplatelet concentrations suggest that, in the close environment of a platelet thrombus, similar dinucleoside polyphosphate concentrations can be found as in platelets. Intraplatelet concentration can be estimated in the range of 1/20 to 1/100 of the concentration of ATP. In conclusion, Ap(2)A, Ap(2)G, and Gp(2)G derived from releasable granules of human platelets may play a regulatory role in vascular smooth muscle growth as growth-promoting mediators.  相似文献   

14.
Diadenosine polyphosphates (diadenosine 5',5'-P(1),P(n)-polyphosphate (Ap(n)A)) are 5'-5'-phosphate-bridged dinucleosides that have been proposed to act as signaling molecules in a variety of biological systems. Isothermal titration calorimetry was used to measure the affinities of a variety of metal cations for ATP, diadenosine 5',5'-P(1),P(3)-triphosphate (Ap(3)A), diadenosine 5',5'-P(1),P(4)-tetraphosphate (Ap(4)A), and diadenosine 5',5'-P(1),P(5)-pentaphosphate (Ap(5)A). The binding of Mg(2+), Ca(2+), and Mn(2+) to ATP is shown to take place with the beta,gamma-phosphates (primary site) and be endothermic in character. The binding of Ni(2+), Cd(2+), and Zn(2+) to ATP is found to take place at both the primary site and at a secondary site identified as N-7 of the adenine ring. Binding to this second site is exothermic in character. Generally, the binding of metal cations to diadenosine polyphosphates involves a similar primary site to ATP. No exothermic binding events are identified. Critically, the binding of Zn(2+) to diadenosine polyphosphates proves to be exceptional. This appears to involve a very high affinity association involving the N-7 atoms of both adenine rings in each Ap(n)A, as well as the more usual endothermic association with the phosphate chain. The high affinity association is also endothermic in character. A combination of NMR and CD evidence is provided in support of the calorimetry data demonstrating chemical shift changes and base stacking disruptions entirely consistent with N-7 bridging interactions. N-7 bridging interactions are entirely reversible, as demonstrated by EDTA titration. Considering the effects of Zn(2+) on a wide variety of dinucleoside polyphosphate-metabolizing enzymes, we examine the possibility of Zn(2+) acting as an atomic switch to control the biological function of the diadenosine polyphosphates.  相似文献   

15.
A novel tandem synthetic-biosynthetic procedure is described for the synthesis of four new fluorescent dinucleoside polyphosphates: mant-Ap4A, mant-AppCH2ppA, TNP-Ap4A and TNP-AppCH2ppA. These compounds are expected to supplement the existing etheno (epsilon) and 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) labelled derivatives, being the fluorescent probes of choice to investigate polyphosphate/enzyme binding behaviour.  相似文献   

16.
An enzyme able to cleave dinucleoside triphosphates has been purified 3,750-fold from Saccharomyces cerevisiae. Contrary to the enzymes previously shown to catabolize Ap4A in yeast, this enzyme is a hydrolase rather than a phosphorylase. The dinucleoside triphosphatase molecular ratio estimated by gel filtration is 55,000. Dinucleoside triphosphatase activity is strongly stimulated by the presence of divalent cations. Mn2+ displays the strongest stimulating effect, followed by Mg2+, Co2+, Cd2+, and Ca2+. The Km value for Ap3A is 5.4 microM (50 mM Tris-HCl [pH 7.8], 5 mM MgCl2, and 0.1 mM EDTA; 37 degrees C). Dinucleoside polyphosphates are substrates of this enzyme, provided that they contain more than two phosphates and that at least one of the two bases is a purine (Ap3A, Ap3G, Ap3C, Gp3G, Gp3C, m7Gp3A, m7Gp3G, Ap4A, Ap4G, Ap4C, Ap4U, Gp4G, and Ap5A are substrates; AMP, ADP, ATP, Ap2A, and Cp4U are not). Among the products, a nucleoside monophosphate is always formed. The specificity of cleavage of methylated dinucleoside triphosphates and the molecular weight of dinucleoside triphosphatase indicate that this enzyme is different from the mRNA decapping enzyme previously characterized (A. Stevens, Mol. Cell. Biol. 8:2005-2010, 1988).  相似文献   

17.
Three nucleoside analogues, 3'-fluoro-2',3'-dideoxythymidine (FLT), 3'-azido-2',3'-dideoxythymidine (AZT), and 2',3'-dideoxy-3'-thiacytidine (3TC) were conjugated with three different dicarboxylic acids to afford the long chain dicarboxylate esters of nucleosides. In general, dinucleoside ester conjugates of FLT and 3TC with long chain dicarboxylic acids exhibited higher anti-HIV activity than their parent nucleosides. Dodecanoate and tetradecanoate dinucleoside ester derivatives of FLT were found to be the most potent compounds with EC(50) values of 0.8-1.0nM and 3-4nM against HIV-1(US/92/727) and HIV-1(IIIB) cells, respectively. The anti-HIV activity of the 3TC conjugates containing long chain dicarboxylate diester (EC(50)=3-60nM) was improved by 1.5-66 fold when compared to 3TC (EC(50)=90-200nM). This study reveals that the symmetrical ester conjugation of dicarboxylic acids with a number of nucleosides results in conjugates with improved anti-HIV profile.  相似文献   

18.
A comparative study of an enzymatic activity present in Artemia salina and rat liver which specifically splits dinucleoside tetraphosphates is presented. All the purine and pyrimidine dinucleoside tetraphosphates tested, i.e. diadenosine, diguanosine, dixanthosine and diuridine tetraphosphates, were substrates of both enzymes with similar maximum velocities and Km values, (around 10 muM). The inhibition by nucleotides of the enzyme from the two sources is also similar. Particularly relevant is the strong inhibition caused by nucleoside tetraphosphates which have Ki values in the nanomolar range. The Artemia enzyme has a slightly lower molecular weight (17 500) than the liver enzyme (21 000) and is more resistant to acidic pH. Based on previous findings, the enzyme from Artemia salina was named diguanosinetetraphosphatase (EC 3.6.1.17) by the Enzyme Commission. The results presented in this paper show that the liver and Artemia enzymes are similar, and we propose to name this enzyme as dinucleosidetetraphosphatase or dinucleoside-tetraphosphate nucleotidehydrolase.  相似文献   

19.
A total of 17 Nudix hydrolases were tested for their ability to hydrolyze 5-phosphoribosyl 1-pyrophosphate (PRPP). All 11 enzymes that were active toward dinucleoside polyphosphates with 4 or more phosphate groups as substrates were also able to hydrolyze PRPP, whereas the 6 that could not and that have coenzyme A, NDP-sugars, or pyridine nucleotides as preferred substrates did not degrade PRPP. The products of hydrolysis were ribose 1,5-bisphosphate and P(i). Active PRPP pyrophosphatases included the diphosphoinositol polyphosphate phosphohydrolase (DIPP) subfamily of Nudix hydrolases, which also degrade the non-nucleotide diphosphoinositol polyphosphates. K(m) and k(cat) values for PRPP hydrolysis for the Deinococcus radiodurans DR2356 (di)nucleoside polyphosphate hydrolase, the human diadenosine tetraphosphate hydrolase, and human DIPP-1 (diadenosine hexaphosphate and diphosphoinositol polyphosphate hydrolase) were 1 mm and 1.5 s(-1), 0.13 mm and 0.057 s(-1), and 0.38 mm and 1.0 s(-1), respectively. Active site mutants of the Caenorhabditis elegans diadenosine tetraphosphate hydrolase had no activity, confirming that the same active site is responsible for nucleotide and PRPP hydrolysis. Comparison of the specificity constants for nucleotide, diphosphoinositol polyphosphate, and PRPP hydrolysis suggests that PRPP is a significant substrate for the D. radiodurans DR2356 enzyme and for the DIPP subfamily. In the latter case, generation of the glycolytic activator ribose 1,5-bisphosphate may be a new function for these enzymes.  相似文献   

20.
Fhits (fragile histidine triad proteins) occur in eukaryotes but their function is largely unknown, although human Fhit is believed to act as a tumour suppressor. Fhits also exhibit dinucleoside triphosphatase, adenylylsulfatase and nucleoside phosphoramidase activities that in each case yield nucleoside 5′-monophosphate as a product. Due to the dinucleoside triphosphatase activity, Fhits may also be involved in mRNA decapping. In the present study, we demonstrate Fhit-catalysed ammonolysis of adenosine 5′-phosphosulfate, which results in the formation of adenosine 5′-phosphoramidate. This reaction has previously been associated with adenylylsulfate–ammonia adenylyltransferase (EC 2.7.7.51). Our finding shows that the capacity to catalyse ammonolysis is another inherent property of Fhits. Basic kinetic parameters and substrate specificity of this reaction catalysed by human Fhit are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号