首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein kinase C contains two phorbol ester binding domains   总被引:10,自引:0,他引:10  
A series of deletion and truncation mutants of protein kinase C (PKC) were expressed in the baculovirus-insect cell expression system in order to elucidate the ability of various domains of the enzyme to bind phorbol dibutyrate (PDBu). A PKC truncation mutant consisting of only the catalytic domain of the enzyme did not bind [3H]PDBu, whereas a PKC truncation mutant consisting of the regulatory domain (containing the tandem cysteine-rich putative zinc finger regions) bound [3H]PDBu. Deletion of the second conserved region (C2) of PKC did not abolish [3H]PDBu binding, whereas a deletion of the first conserved region (C1) of PKC, containing the two cysteine-rich sequences, completely abolished [3H]PDBu binding. Additional truncation and deletion mutants helped to localize the region necessary for [3H]PDBu binding; all PKC mutants that contained either one of the cysteine-rich zinc finger-like regions possessed phorbol ester binding activity. Scatchard analyses of these mutants indicated that each bound [3H]PDBu with equivalent affinity (21-41 nM); approximately 10-20-fold less than the native enzyme. In addition, a peptide of 146 amino acid residues from the first cysteine-rich region, as well as a peptide of only 86 amino acids residues from the second cysteine-rich region, both bound [3H]PDBu with high affinity (31 +/- 4 and 59 +/- 13 nM, respectively). These data establish that PKC contains two phorbol ester binding domains which may function in its regulation.  相似文献   

2.
We recently demonstrated that 2,6,diamino-N-[( 1-(oxotridecyl)-2-piperidinyl]methyl)-hexanamide (NPC 15437) is a selective inhibitor of PKC interacting at the regulatory domain of the enzyme. To further investigate the interaction of NPC 15437 with PKC we expressed a series of cDNAs encoding mutant PKC molecules in COS7 cells. NPC 15437 had no effect on the protein kinase activity of mutants lacking the N-terminal region of the C1 domain. Further, NPC 15437 was a competitive inhibitor of the activation of PKC alpha by phorbol ester and attenuated the binding of phorbol ester to the enzyme in intact cells. The present study demonstrates that mutant enzyme constructs can be used to localize the site of interaction of NPC 15437 with PKC to residues 12-42, which encodes the pseudosubstrate binding domain and part of the first cysteine-rich repeat sequence.  相似文献   

3.
Monoclonal antibodies (8/1, 10/10, and 25/3) against rat brain type II protein kinase C were used for the immunochemical characterization of this kinase. These antibodies immunoprecipitated the type II protein kinase C in a dose-dependent manner but did neither to the type I nor III isozyme. Immunoblot analysis of the tryptic fragments from protein kinase C revealed that all three antibodies recognized the 27-38-kDa fragments, the phospholipid/phorbol ester-binding domain, but not the 45-48-kDa fragments, the kinase catalytic domain. The immune complexes of the kinase and the antibodies retained 70-80% of the kinase activity which was dependent on Ca2+ and phosphatidylserine and further activated by diacylglycerol or tumor-promoting phorbol ester. With antibody 8/1, the kinetic parameters with respect to Km for ATP and histone and K alpha for phosphatidylserine and phorbol 12,13-dibutyrate were not significantly influenced. However, the antibody causes variable effects on the K alpha for Ca2+ under different assay conditions. When determined in the presence of phosphatidylserine, the K alpha for Ca2+ was reduced by an order of magnitude (37 +/- 8 to 2.0 +/- 1.8 microM); in the presence of phosphatidylserine and phorbol 12,13-dibutyrate, the K alpha for Ca2+ was not significantly altered; and in the presence of phosphatidylserine and dioleoylglycerol, the kinase became an apparently Ca2+-independent enzyme. The effects of antibody 8/1 on the kinetic parameters of the enzyme for phorbol ester binding were different from those for kinase activity. This antibody causes a 20-30% reduction in phorbol ester binding and a 2-fold increase (1.9 +/- 0.2 to 3.9 +/- 0.3 micrograms/ml) in the concentration of phosphatidylserine required for half-maximal binding, but is without significant influence on those parameters for Ca2+ and phorbol 12,13-dibutyrate. The differential effects of antibody 8/1 on kinase activity and phorbol ester binding with respect to the kinetic parameter of phosphatidylserine suggest that the roles of this phospholipid in supporting phorbol ester binding and kinase activation are different. In the presence of the antibody, the autophosphorylations of the phospholipid/phorbol ester-binding domain and the kinase domain were reduced; the reduction was more pronounced for the former than for the latter. These results suggest that the epitope for antibody 8/1 is localized within the phospholipid/phorbol ester-binding domain at the region adjacent to the kinase domain so that the autophosphorylations of both domains are affected.  相似文献   

4.
Trypsinization of rat brain protein kinase C (80 kDa) into 50- and 32-kDa fragments occurred without inhibition of [3H]phorbol dibutyrate ([3H]PDBu) binding activity. The 50-kDa fragment, the catalytic domain (Inoue, M., Kishimoto, A., Takai, Y., and Nishizuka, Y. (1977) J. Biol. Chem. 252, 7610-7616), was further degraded by trypsin, whereas the 32-kDa fragment was resistant. Protein kinase activity and the [3H]PDBu binding activity were completely separated upon gel filtration of a solution containing Triton X-100/phosphatidylserine mixed micelles and trypsinized protein kinase C. Pooled fractions of the [3H]PDBu binding activity contained a 32-kDa fragment exclusively. The binding of [3H]PDBu to this fragment was dependent on calcium and phosphatidylserine and was of high affinity (Kd = 2.8 nM) and of essentially identical specificity to that of native protein kinase C. It is concluded that the 32-kDa fragment represents a lipid binding, regulatory domain of protein kinase C.  相似文献   

5.
6.
Monoclonal antibodies (mAbs) which distinguish Type 3 protein kinase C (PKC) from Types 1 and 2 have been obtained from mice immunized with purified Type 3 PKC from rabbit brain cytosol. Most of these mAbs (seven out of eight) selectively recognize Type 3 versus Types 1 and 2 PKC in both enzyme-linked immunosorbent and immunoblot assays. Trypsin treatment of Type 3 PKC reduced the immunoreactivity with 82-kDa PKC and generated immunoreactive fragments of 45 and 35 kDa. The mAbs can be divided into two classes based on their ability to recognize the 45-kDa catalytic fragment (5/8) or the 35 kDa regulatory domain fragment (3/8). Each of the mAbs inhibits phosphorylation of histone or lipocortin by PKC, although the extent of the inhibition varied. Only those mAbs that recognize the 35-kDa regulatory domain inhibited phorbol ester binding. The inhibition of both kinase and binding activities by this group of mAbs was sensitive to the concentration of phospholipid used in the assay. This functional inhibition suggests that these mAbs may be useful for defining the phospholipid binding domain(s) of Type 3 PKC. The mAbs recognized 82-kDa PKC in a variety of cell types; the presence of smaller molecular weight fragments was not consistently found. Distinct immunofluorescence staining patterns were observed with mAbs directed toward different epitopes, suggesting that there may be heterogeneity in the subcellular localization of PKC. The type specificity of these mAbs will make them valuable tools for studying activation and regulation of Type 3 PKC in cell culture model systems.  相似文献   

7.
While phorbol ester-binding sites within protein kinase C alpha (PKCalpha) have been identified and characterized utilizing fragments of the enzyme, it remains unclear whether additional regions within the enzyme may play an important role in its ability to be activated by phorbol ester. To examine this hypothesis, we generated 20 glutathione-S-transferase-tagged, V1-deficient, human PKCalpha holoenzyme constructs in which tandem six or 12 amino acid residue stretches along the full regulatory domain were changed to alanine residues. Each protein was assessed for its ability to bind phorbol ester and to induce growth repression when its catalytic activity was activated by phorbol ester upon expression in yeast cells. Mutagenesis of residues 99-158 potently reduced phorbol binding, consistent with previously published findings on the importance of the C1b region in phorbol binding. In addition, we identified a number of regions within the PKC regulatory domain that, when mutagenized, blocked the activation of PKC-mediated growth repression by phorbol ester while actually enhancing phorbol ester binding in vitro (residues 33-62, and 75-86). This study thus helps distinguish regions important for phorbol binding from regions important for the ability of phorbol ester to activate the enzyme. Our findings also suggest that multiple regions within C2 are necessary for full activation of the enzyme by phorbol ester, in particular residues 231-254. Finally, three regions, when mutagenized, completely, blocked catalytic domain activity in vivo (residues 33-62, 75-86, and 123-146), underscoring the important role of regulatory domain sequences in influencing catalytic domain function, even in the absence of the V1 region containing the pseudosubstrate sequence. This is the first tandem mutagenesis study for PKC that assesses the importance of regions for both phorbol binding and for phorbol-dependent activation in the context of the entire holoenzyme.  相似文献   

8.
Talin, consisting of a 47-kDa N-terminal head domain (residues 1-433) and a 190-kDa C-terminal rod domain (residues 434-2541), links integrins to the actin cytoskeleton. We previously reported that the binding stoichiometry of integrin alpha(IIb)beta(3):talin is approximately 2:1. More recently, an integrin binding site has been localized to the talin head domain. In the present study, we identified another integrin binding site at the C-terminal region of the talin rod domain. In a solid phase binding assay, RGD affinity-purified alpha(IIb)beta(3) bound in a dose-dependent manner to microtiter wells coated with the isolated 190-kDa proteolytic fragment of the talin rod domain. Additionally, alpha(IIb)beta(3) also bound to the talin rod domain captured by 8d4, an anti-talin monoclonal antibody. Polyclonal antibodies raised against a recombinant protein fragment corresponding to the entire talin rod domain (anti-talin-R) inhibited alpha(IIb)beta(3) binding to intact talin by approximately 50% but completely blocked alpha(IIb)beta(3) binding to the talin rod domain. To localize the integrin binding site, we examined alpha(IIb)beta(3) binding to recombinant polypeptide fragments corresponding to partial sequences of the talin rod domain. Whereas alpha(IIb)beta(3) bound effectively to talin-(1075-2541) and talin-(1984-2541), it failed to bind to talin-(434-1076) and talin-(434-1975). Furthermore, the binding of alpha(IIb)beta(3) to talin-(1984-2541) was inhibited by anti-talin-R. These results indicate that an integrin binding site is located within residues 1984-2541 of the talin rod domain. Thus, talin contains two integrin binding sites, one in the homologous FERM (band four-point-one, ezrin, radixin, moesin) domain and another near its C terminus. Because talin exists as an anti-parallel homodimer in focal adhesions, the two integrin binding sites in the adjacent talin molecules would be in close proximity with each other.  相似文献   

9.
C1 domains mediate the recognition and subsequent signaling response to diacylglycerol and phorbol esters by protein kinase C (PKC) and by several other families of signal-transducing proteins such as the chimerins or RasGRP. MRCK (myotonic dystrophy kinase-related Cdc42 binding kinase), a member of the dystrophia myotonica protein kinase family that functions downstream of Cdc42, contains a C1 domain with substantial homology to that of the diacylglycerol/phorbol ester-responsive C1 domains and has been reported to bind phorbol ester. We have characterized here the interaction of the C1 domains of the two MRCK isoforms alpha and beta with phorbol ester. The MRCK C1 domains bind [20-(3)H]phorbol 12,13-dibutyrate with K(d) values of 10 and 17 nm, respectively, reflecting 60-90-fold weaker affinity compared with the protein kinase C delta C1b domain. In contrast to binding by the C1b domain of PKCdelta, the binding by the C1 domains of MRCK alpha and beta was fully dependent on the presence of phosphatidylserine. Comparison of ligand binding selectivity showed resemblance to that by the C1b domain of PKCalpha and marked contrast to that of the C1b domain of PKCdelta. In intact cells, as in the binding assays, the MRCK C1 domains required 50-100-fold higher concentrations of phorbol ester for induction of membrane translocation. We conclude that additional structural elements within the MRCK structure are necessary if the C1 domains of MRCK are to respond to phorbol ester at concentrations comparable with those that modulate PKC.  相似文献   

10.
A protein kinase C alpha (PKC alpha) cDNA confers increased phorbol ester binding activity to intact cells when transiently expressed in COS cells or expressed stably in transfected rat 3Y1 fibroblasts. A point mutant (PKC alpha K----R) of PKC alpha, where Lys368 at the putative ATP-binding site is replaced with Arg, confers enhanced phorbol ester binding activity to both transiently and stably expressed COS and 3Y1 cells, respectively. Like endogenous and exogenously expressed wild type PKC alpha, the mutant PKC alpha K----R is translocated from the cytosol to the particulate fraction when cells are treated with a phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA). On the other hand, the mutant PKC alpha K----R is not degraded when cells are treated with TPA, making a clear contrast to wild type PKC alpha; i.e. the mutant is resistant to TPA-mediated down-regulation. The mutant lacks kinase activity as expected, as judged by autophosphorylation and by a kinase assay using a peptide substrate, although the phorbol ester binding activity remains intact. These results suggest a link between the kinase activity of PKC alpha and the sensitivity to TPA-mediated proteolytic degradation. We propose that autophosphorylation of PKC alpha is a prerequisite for proteolytic cleavage associated with the down-regulation of PKC alpha.  相似文献   

11.
The oxidant mitogen/tumor promoter, periodate, was used to selectively modify either the regulatory domain or the catalytic domain of protein kinase C (PKC) to induce oxidative activation or inactivation of PKC, respectively. Periodate, at micromolar concentrations, modified the regulatory domain of PKC as determined by the loss of ability to stimulate kinase activity by Ca2+/phospholipid, and also by the loss of phorbol ester binding. This modification resulted in an increase in Ca2+/phospholipid-independent kinase activity (oxidative activation). However, at higher concentrations (greater than 100 microM) periodate also modified the catalytic domain, resulting in complete inactivation of PKC. The oxidative modification induced by low periodate concentrations (less than 0.5 mM) was completely reversed by a brief treatment with 2 mM dithiothreitol. In this aspect, the modification induced by periodate was different from that of the previously reported irreversible modification of PKC induced by H2O2. However, the inactivation of PKC induced by periodate at concentrations greater than 1 mM was not reversed by dithiothreitol. Among the phospholipids and ligands of the regulatory domain tested, only phosphatidylserine protected the regulatory domain from oxidative modification. In the presence of phosphatidylserine, the catalytic site was selectively modified by periodate, resulting in formation of a form of PKC that exhibited phorbol ester binding but not kinase activity. Both reversible and irreversible oxidative activation and inactivation of PKC also were observed in intact cells treated with periodate. Taken together these results suggest that periodate, by virtue of having a tetrahedral structure, binds to the phosphate-binding regions present within the phosphatidylserine-binding site of the regulatory domain and the ATP-binding site of the catalytic domain, and modifies the vicinal thiols present within these sites. This results in the formation of intramolecular disulfide bridge(s) within the regulatory domain or catalytic domain leading to either reversible activation or inactivation of PKC, respectively. Thus, oxidant mitogen/tumor promoters such as periodate may be able to bypass normal transmembrane signalling systems to directly activate pathways involved in cellular regulation.  相似文献   

12.
Protein kinase C (PKC) comprises a family of distinct isoenzymes that are involved in signal transduction pathways linking the cell to triggers perceived via membrane receptors. These isoenzymes differ in their tissue distribution, activation requirements, and substrate specificity. One common denominator among different PKC subspecies is their activation by phorbol esters. We have developed a sensitive method permitting the measurement of phorbol ester binding sites, their quantitation, as well as their dissociation kinetics, by performing cytofluorometric analyses on intact cells or on isolated PKC associated to phosphatidylserine vesicles incubated in the presence of fluorochrome-labeled phorbol ester. Both PKC isozymes beta I/beta II and alpha from brain and spleen after incorporation into phosphatidylserine vesicles, display affinities with apparent Kd of 120 and 50 nM, respectively; although PKC gamma from brain exhibits a Kd of 210 nM. In addition to these receptors, on PKC isozymes from spleen, an intermediate affinity phorbol ester receptor (Kd of 3 nM) and an additional high affinity phorbol ester binding site with a Kd of 0.1 to 0.5 nM were also detected. This latter receptor comigrates with high m.w. PKC isoforms. In different cell lines, the phorbol ester binding patterns, as well as the expression of individual PKC isoenzymes, could be positively correlated.  相似文献   

13.
Whereas retinoic acids control nuclear events, a second class of retinol metabolites, that is, the hydroxylated forms exemplified by 14-hydroxy-retro-retinol (HRR), operate primarily in the cytoplasm. They function as regulatory cofactors for cell survival/cell death decisions. In accordance with these biological aspects, we demonstrate that these retinoids bound protein kinase C (PKC) alpha with nanomolar affinity and markedly enhance the activation of PKC alpha and the entire downstream MAP kinase pathway by reactive oxygen species. HRR was 10 times more efficient than retinol, and the optimum doses are 10-7 and 10-6 M, respectively. PKC alpha activation was reversed rapidly by imposition of reducing conditions. The retinoid binding site was mapped to the first cysteine-rich region in the regulatory domain, C1A, yet was distinct from the binding sites of diacylglycerol and phorbol esters. The C1B domain bound retinoids poorly. The emerging theme is that retinoids serve as redox regulators of protein kinase C.  相似文献   

14.
Limited tryptic digestion of protein kinase C purified from mouse brain generated a 36-kDa fragment which no longer required Ca2+ and phospholipid for activity or bound phorbol ester. Under appropriate conditions, the isolated fragment was stable for several months at 4 degrees C or upon freezing and storage at -70 degrees C. Kinetic characteristics of the fragment were similar to those for the intact protein kinase. Although the fragment did not require phospholipid for activity, anionic phospholipids affected the extent of its activity in a pH-, substrate-, and substrate concentration-dependent manner. This effect appeared to be due to complex formation between the phospholipid and substrate. The catalytic fragment thus permits detection of a second point of interaction of phospholipid with the protein kinase C system in addition to the already described phospholipid regulatory domain.  相似文献   

15.
In this study, the role of interdomain interactions involving the C1 and C2 domains in the mechanism of activation of PKC was investigated. Using an in vitro assay containing only purified recombinant proteins and the phorbol ester, 4 beta-12-O-tetradecanoylphorbol-13-acetate (TPA), but lacking lipids, it was found that PKC alpha bound specifically, and with high affinity, to a alpha C1A-C1B fusion protein of the same isozyme. The alpha C1A-C1B domain also potently activated the isozyme in a phorbol ester- and diacylglycerol-dependent manner. The level of this activity was comparable with that resulting from membrane association induced under maximally activating conditions. Furthermore, it was found that alpha C1A-C1B bound to a peptide containing the C2 domain of PKC alpha. The alpha C1A-C1B domain also activated conventional PKC beta I, -beta II, and -gamma isoforms, but not novel PKC delta or -epsilon. PKC delta and -epsilon were each activated by their own C1 domains, whereas PKC alpha, -beta I, -beta II, or -gamma activities were unaffected by the C1 domain of PKC delta and only slightly activated by that of PKC epsilon. PKC zeta activity was unaffected by its own C1 domain and those of the other PKC isozymes. Based on these findings, it is proposed that the activating conformational change in PKC alpha results from the dissociation of intra-molecular interactions between the alpha C1A-C1B domain and the C2 domain. Furthermore, it is shown that PKC alpha forms dimers via inter-molecular interactions between the C1 and C2 domains of two neighboring molecules. These mechanisms may also apply for the activation of the other conventional and novel PKC isozymes.  相似文献   

16.
Protein kinase C was measured in the cytoskeletal fraction of lymphocytes, platelets and HL60 cells, by specific binding of [3H]phorbol dibutyrate and by immunoblotting with antibody to a consensus sequence in the regulatory domain of alpha-, beta- and gamma-isozymes of protein kinase C. Treatment of cells for 40 min with a combination of zinc (2-50 microM), zinc ionophore pyrithione and unlabelled phorbol dibutyrate (200 nM) caused up to a ten-fold increase in cytoskeletal protein kinase C and a corresponding decrease in other cellular compartments. Omission of any of the reagents resulted in much less or no translocation. These effects were inhibited by 1,10-phenanthroline, which chelates zinc, and were not seen with calcium. Increase in cytoskeletal protein kinase C persisted for several hours and appeared to involve attachment of the enzyme to actin microfilaments. We propose that zinc, like calcium, regulates the distribution of PKC in cells. However, unlike calcium which controls the binding of PKC to the lipid component on cell membranes, zinc controls the distribution of PKC to membrane cytoskeleton, possibly actin.  相似文献   

17.
The receptor for tumor-promoting phorbol esters has been shown to be the Ca+2/phospholipid dependent enzyme protein kinase C (PKC). There are two major groups of PKC, the conventional PKC isotypes alpha, beta I, beta II, gamma) and the novel Ca+2-independent PKC (delta, epsilon, zeta, eta). Phorbol esters previously have been demonstrated to increase human IFN-gamma gene expression after treatment of a murine T cell line (Cl 9) that has been transfected with human IFN-gamma genomic DNA. In contrast, treatment with Ca+2 ionophore alone or in combination with phorbol ester did not enhance IFN-gamma production in a synergistic manner above the level obtained with phorbol ester treatment alone. To determine whether the lack of effect of Ca+2 ionophore is due to a defect in PKC, we compared the level of PKC autophosphorylation in the mouse T cell line (Cl 9), a mouse epidermal cell line (JB6), and purified rat brain PKC by in vitro kinase assays. The results demonstrate that instead of the expected 80-kDa autophosphorylated PKC band seen in purified rat brain PKC or mouse JB6 cell lysates, only a novel 97-kDa Ca+2-independent phosphoprotein was observed in Cl 9 cells. To ascertain if there was any nucleic acid sequence similarity to PKC epsilon, we hybridized Cl 9 poly(A+) RNA with a cloned fragment of the PKC epsilon gene and observed two hybridizing RNA bands (4.4 and 4.0 kb). Our results suggest that the 97-kDa phosphoprotein is similar to, but not identical with, PKC epsilon and is the major PKC expressed in the Cl 9 murine T cell line. These data suggested that the 97-kDa PKC may be responsible for the induction of both the transfected human IFN-gamma gene and the endogenous murine IL-2R alpha-chain.  相似文献   

18.
To test the hypothesis that Na+/K+-ATPase works as an (alpha beta)2-diprotomer with interacting catalytic alpha-subunits, tryptic digestion of pig kidney enzyme, that had been inactivated with substitution-inert MgATP complex analogues, was performed. This led to the demonstration of coexisting C-terminal Na+-like 80-kDa as well as K+-like 60-kDa peptides and N-terminal 40-kDa peptides of the alpha-subunit. To localize the ATP binding sites on tryptic peptides, studies with radioactive MgATP complex analogues were performed: Co(NH3)4-8-N3-ATP specifically modified the E2ATP (low affinity) binding site of Na+/K+-ATPase with an inactivation rate constant (k2) of 12 x 10-3.min-1 at 37 degrees C and a dissociation constant (Kd) of 207 +/- 28 microm. Tryptic digestion of the [gamma32P]Co(NH3)4-8-N3-ATP-inactivated and photolabelled alpha-subunit (Mr = 100 kDa) led, in the absence of univalent cations, to a K+-like C-terminal 60-kDa fragment which was labelled in addition to an unlabelled Na+-like C-terminal 80-kDa fragment. Tryptic digestion of [alpha32P]-or [gamma32P]Cr(H2O)4ATP - bound to the E1ATP (high affinity) site - led to the labelling of a Na+-like 80-kDa fragment besides the immediate formation of an unlabelled K+-like N-terminal 40-kDa fragment and a C-terminal 60-kDa fragment. Because a labelled Na+-like 80-kDa fragment cannot result from an unlabelled K+-like 60-kDa fragment, and because unlabelled alpha-subunits did not show any catalytic activity, the findings are consistent with a situation in which Na+- and K+-like conformations are stabilized by tight binding of substitution-inert MgATP complex analogues to the E1ATP and E2ATP sites. Hence, all data are consistent with the hypothesis that ATP binding induces coexisting Na+ and K+ conformations within an (alphabeta)2-diprotomeric Na+/K+-ATPase.  相似文献   

19.
Interactions of types I, II, and III protein kinase C (PKC) with phospholipids were investigated by following the changes in protein kinase activity and phorbol ester binding. The acidic phospholipids such as phosphatidylserine (PS), phosphatidic acid, phosphatidyl-glycerol, and cardiolipin, which are activators of PKC in the assay of protein phosphorylation, could differentially inactivate PKC I, II, and III during preincubation in the absence of divalent cation. The phospholipid-induced inactivation of PKC was concentration and time dependent and only affected the kinase activity without influencing phorbol ester binding. PKC I was the most susceptible to the phospholipid-induced inactivation, and PKC III was the least. The IC50 values of PS for PKC I, II, and III were 5, 45, and greater than 120 microM, respectively. Addition of divalent cation such as Ca2+ or Mg2+ suppressed the phospholipid-induced inactivation of PKC. In the absence of divalent cation, PKC I, II, and III all formed complexes with PS vesicles, although to a slightly different degree, as analyzed by molecule sieve chromatography. [3H]Phorbol 12,13-dibutyrate binding for PKC I, II, and III was recovered after chromatography; however, the kinase activities of all these enzymes were greatly reduced. In the presence of Ca2+, all three PKCs formed complexes with PS vesicles, and both the kinase and phorbol ester-binding activities of PKC II and III were recovered following chromatography. Under the same conditions, the phorbol ester-binding activity of PKC I was also recovered, but the kinase activity was not. The phospholipid-induced inactivation of PKC apparently results from a direct interaction of phospholipid with the catalytic domain of PKC; this interaction can be suppressed by divalent cations. In the presence of divalent cations, PS interacted preferentially with the regulatory domain of PKC and resulted in the activation of the kinase.  相似文献   

20.
Apolipoprotein (apo) E contains two structural domains, a 22-kDa (amino acids 1-191) N-terminal domain and a 10-kDa (amino acids 223-299) C-terminal domain. To better understand apoE-lipid interactions on lipoprotein surfaces, we determined the thermodynamic parameters for binding of apoE4 and its 22- and 10-kDa fragments to triolein-egg phosphatidylcholine emulsions using a centrifugation assay and titration calorimetry. In both large (120 nm) and small (35 nm) emulsion particles, the binding affinities decreased in the order 10-kDa fragment approximately 34-kDa intact apoE4 > 22-kDa fragment, whereas the maximal binding capacity of intact apoE4 was much larger than those of the 22- and 10-kDa fragments. These results suggest that at maximal binding, the binding behavior of intact apoE4 is different from that of each fragment and that the N-terminal domain of intact apoE4 does not contact lipid. Isothermal titration calorimetry measurements showed that apoE binding to emulsions was an exothermic process. Binding to large particles is enthalpically driven, and binding to small particles is entropically driven. At a low surface concentration of protein, the binding enthalpy of intact apoE4 (-69 kcal/mol) was approximately equal to the sum of the enthalpies for the 22- and 10-kDa fragments, indicating that both the 22- and 10-kDa fragments interact with lipids. In a saturated condition, however, the binding enthalpy of intact apoE4 (-39 kcal/mol) was less exothermic and rather similar to that of each fragment, supporting the hypothesis that only the C-terminal domain of intact apoE4 binds to lipid. We conclude that the N-terminal four-helix bundle can adopt either open or closed conformations, depending upon the surface concentration of emulsion-bound apoE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号