首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tropomyosin is an extended coiled-coil protein that influences actin function by binding longitudinally along thin filaments. The present work compares cardiac tropomyosin and the two tropomyosins from Saccharomyces cerevisiae, TPM1 and TPM2, that are much shorter than vertebrate tropomyosins. Unlike cardiac tropomyosin, the phase of the coiled-coil-forming heptad repeat of TPM2 is discontinuous; it is interrupted by a 4-residue deletion. TPM1 has two such deletions, which flank the 38-residue partial gene duplication that causes TPM1 to span five actins instead of the four of TPM2. Each of the three tropomyosin isoforms modulates actin-myosin interactions, with isoform-specific effects on cooperativity and strength of myosin binding. These different properties can be explained by a model that combines opposite effects, steric hindrance between myosin and tropomyosin when the latter is bound to a subset of its sites on actin, and also indirect, favorable interactions between tropomyosin and myosin, mediated by mutually promoted changes in actin. Both of these effects are influenced by which tropomyosin isoform is present. Finally, the tropomyosins have isoform-specific effects on in vitro sliding speed and on the myosin concentration dependence of this movement, suggesting that non-muscle tropomyosin isoforms exist, at least in part, to modulate myosin function.  相似文献   

2.
The expression of the different tropomyosin isoforms was analyzed in primary granulosa cell cultures and in established granulosa cell lines cotransfected with SV40 and Ha-ras DNA which retain a high steroidogenic response to cAMP stimulation. In contrast to normal cells which greatly reduce the expression of all tropomyosin isoforms during development of steroidogenic ability, in the doubly transformed cells only the synthesis of the high molecular weight isoforms nos 2 and 3 was decreased. The expression of isoforms 1 and 5 was elevated in the cotransfected lines and that of tropomyosin 1 was further enhanced by cAMP stimulation. The increased synthesis of tropomyosins 1 and 5 is unique to SV40 transformation, since it was observed also in cells transfected with SV40 DNA alone. These cells displayed a well organized microfilament system, but have lost the ability to differentiate. The reduced expression of tropomyosins 2 and 3 and a poorly organized microfilament system appear to be a dominant feature of both the highly differentiated normal- and transformed-granulosa cells. It is suggested that the switches in tropomyosin isoform expression during development of the steroidogenic phenotype and in cell transformation may account for necessary changes in microfilament organization which accompany these cellular processes.  相似文献   

3.
4.
Cultured rat cells contain five isoforms of tropomyosin (Matsumura, F., Yamashiro-Matsumura, S., and Lin, J.J.-C. (1983) J. Biol. Chem. 258, 6636-6644). To explore the roles of the multiple tropomyosin isoforms in the microfilament organization of cultured cells, we have examined effects of tropomyosins on the bundling activity of the 55-kDa protein recently purified from HeLa cells (Yamashiro-Matsumura, S., and Matsumura, F. (1985) J. Biol. Chem. 260, 5087-5097). Maximum bundling of F-actin was observed at a molar ratio of 55-kDa protein to actin higher than 1:8. None of the isoforms of cultured rat cell tropomyosin significantly altered the F-actin-bundling activity of 55-kDa protein at this ratio, whereas skeletal muscle tropomyosin inhibited the bundling activity to about 50%. Also, cultured cell tropomyosins did not inhibit binding of 55-kDa protein to actin, whereas skeletal muscle tropomyosin inhibited it by 50%. The effect of 55-kDa protein on the binding of tropomyosin to actin varied with the isoform type of tropomyosin. Most (80%) of the tropomyosins with low Mr values (Mr 32,400 or 32,000) were caused to dissociate from actin by 55-kDa protein, but only 20% of tropomyosins with high Mr values (Mr 40,000 or 36,500) was dissociated from actin in these conditions. Immunofluorescence has shown that, while tropomyosin was localized in stress fibers, 55-kDa protein was found in microspikes as well as stress fibers, both of which are known to contain bundles of microfilaments. Therefore, we suggest that 55-kDa protein together with the multiple tropomyosin isoforms may regulate the formation of two types of actin-filament bundles, bundles containing tropomyosin and those without tropomyosin.  相似文献   

5.
Seven polypeptides (a, b, c, 1, 2, 3a, and 3b) have been previously identified as tropomyosin isoforms in chicken embryo fibroblasts (CEF) (Lin, J. J.-C., Matsumura, F., and Yamashiro-Matsumura, S., 1984, J. Cell. Biol., 98:116-127). Spots a and c had identical mobility on two-dimensional gels with the slow-migrating and fast-migrating components, respectively, of chicken gizzard tropomyosin. However, the remaining isoforms of CEF tropomyosin were distinct from chicken skeletal and cardiac tropomyosins on two-dimensional gels. The mixture of CEF tropomyosin has been isolated by the combination of Triton/glycerol extraction of monolayer cells, heat treatment, and ammonium sulfate fractionation. The yield of tropomyosin was estimated to be 1.4% of total CEF proteins. The identical set of tropomyosin isoforms could be found in the antitropomyosin immunoprecipitates after the cell-free translation products of total poly(A)+ RNAs isolated from CEF cells. This suggested that at least seven mRNAs coding for these tropomyosin isoforms existed in the cell. Purified tropomyosins (particularly 1, 2, and 3) showed different actin-binding abilities in the presence of 100 mM KCl and no divalent cation. Under this condition, the binding of tropomyosin 3 (3a + 3b) to actin filaments was significantly weaker than that of tropomyosin 1 or 2. CEF tropomyosin 1, and probably 3, could be cross-linked to form homodimers by treatment with 5,5'-dithiobis-(2-nitrobenzoate), whereas tropomyosin a and c formed a heterodimer. These dimer species may reflect the in vivo assembly of tropomyosin isoforms, since dimer formation occurred not only with purified tropomyosin but also with microfilament-associated tropomyosin. The expression of these tropomyosin isoforms in Rous sarcoma virus-transformed CEF cells has also been investigated. In agreement with the previous report by Hendricks and Weintraub (Proc. Natl. Acad. Sci. USA., 78:5633-5637), we found that major tropomyosin 1 was greatly reduced in transformed cells. We have also found that the relative amounts of tropomyosin 3a and 3b were increased in both the total cell lysate and the microfilament fraction of transformed cells. Because of the different actin-binding properties observed for CEF tropomyosins, changes in the expression of these isoforms may, in part, be responsible for the reduction of actin cables and the alteration of cell shape found in transformed cells.  相似文献   

6.
Previous studies of the tropomyosin-alpha gene using Northern blot and ribonuclease protection assay methods identified the expression of nine isoforms generated by alternative splicing of exons. Several of these isoforms were characterized as tissue-specific and/or developmentally specific. The present study used a highly sensitive RT-PCR-based strategy to assay the expression of these and many novel isoforms in a variety of adult rat tissues. All 9 isoforms were found to be expressed in all tissues evaluated. Furthermore, 20 new isoforms were identified with varying tissue specificity. Sequence analysis confirmed exon splicing patterns. This greater degree of isoform generation parallels recent findings for another tropomyosin gene, the TM-5 gene, for which the generation of new isoforms, in particular, ones using novel junctions for carboxy-terminal-coding exons, was also shown. Several of the new cDNA-based isoforms predict tropomyosin protein species that are 10 amino acids longer than previously characterized high-molecular-weight tropomyosin-alpha gene isoforms. The apparent lack of significant tissue specificity in the expression of tropomyosin isoforms suggests that many of these isoforms have more generic roles in cell function.  相似文献   

7.
Cnidaria are the most basal animal phylum in which smooth and striated muscle cells have evolved. Since the ultrastructure of the mononucleated striated muscle is similar to that of higher animals, it is of interest to compare the striated muscle of Cnidaria at the molecular level to that of triploblastic phyla. We have used tropomyosins, a family of actin binding proteins to address this question. Throughout the animal kingdom, a great diversity of tropomyosin isoforms is found in non-muscle cells but only a few conserved tropomyosins are expressed in muscle cells. Muscle tropomyosins are all similar in length and share conserved termini. Two cnidarian tropomyosins have been described previously but neither of them is expressed in striated muscle cells. Here, we have characterized a new tropomyosin gene Tpm2 from the hydrozoan Podocoryne carnea. Expression analysis by RT-PCR and by whole mount in situ hybridization demonstrate that Tpm2 is exclusively expressed in striated muscle cells of the medusa. The Tpm2 protein is shorter in length than its counterparts from higher animals and differs at both amino and carboxy termini from striated muscle isoforms of higher animals. Interestingly, Tpm2 differs considerably from Tpm1 (only 19% identity) which was described previously in Podocoryne carnea. This divergence indicates a functional separation of cytoskeletal and striated muscle tropomyosins in cnidarians. These data contribute to our understanding of the evolution of the tropomyosin gene family and demonstrate the recruitment of tropomyosin into hydrozoan striated muscles during metazoan evolution. J. Exp. Zool. (Mol. Dev. Evol.) 285:378-386, 1999.  相似文献   

8.
9.
10.
Tropomyosin isoforms of the low Mr class were isolated from chicken intestinal epithelium and brain, and their physical and functional properties were characterized. Tropomyosin from each tissue contains four distinct polypeptides, all of about 32,000 daltons. In two-dimensional gels, brain tropomyosin contains two major and two minor polypeptides; the major epithelium isoforms coelectrophorese with the two minor brain isoforms. Conversely, only small amounts of the major brain isoforms are detected in the epithelium. Actin-binding properties of brain tropomyosin isoforms are distinct from those of the intestinal epithelium. At 2.5 mM MgCl2 and physiological ionic strength, the intestinal epithelial tropomyosin binds to filamentous actin with an apparent Ka of 8 X 10(6) M-1 whereas brain tropomyosin has an apparent Ka of 8 X 10(5) M-1. Tropomyosin from either tissue binds actin cooperatively with a Hill coefficient of 2.3 for intestinal epithelial cell and 1.95 for brain tropomyosin. Isoforms from both tissues exhibit reduced head-to-tail polymerizability as compared to muscle tropomyosin. The actin-binding properties of intestinal epithelial cell tropomyosin are therefore similar to those of the muscle tropomyosins even though the isoforms have lower molecular weight, a paracrystal structure, and reduced head-to-tail polymerizability typical of the other nonmuscle tropomyosins. These results indicate that a heterogeneity of functional properties may be expressed among the low Mr tropomyosin isoforms.  相似文献   

11.
12.
13.
14.
Leiomodin/tropomyosin interactions are isoform specific   总被引:1,自引:0,他引:1  
Leiomodins are larger homologs of tropomodulin, a tropomyosin-binding, actin-capping protein. There are several leiomodin isoforms, one of them found in smooth muscles (Lmod1) and another one found in cardiac and skeletal muscles (Lmod2). In this work, the tropomyosin-binding abilities of these two isoforms were studied. The tropomyosin-binding sites were localized in the N-terminal regions of Lmod1 and Lmod2. The affinities of the leiomodin fragments containing the tropomyosin-binding sites for tropomyosin peptides containing N-termini of different tropomyosin isoforms, alpha, gamma and delta, were determined and compared using non-denaturing gel-electrophoresis and circular dichroism. It was shown that leiomodin/tropomyosin binding is isoform-specific and differs almost 100-fold for different tropomyosin isoforms.  相似文献   

15.
Tropomodulin is a human erythrocyte membrane cytoskeletal protein that binds to one end of tropomyosin molecules and inhibits tropomyosin binding to actin filaments [Fowler, V. M. (1990) J. Cell Biol. 111, 471-482]. We have characterized the interaction of erythroid and non-erythroid tropomyosins with tropomodulin by non-denaturing gel electrophoresis and by solid-phase binding assays using 125I-tropomyosin. Non-denaturing gel analysis demonstrates that all tropomodulin molecules are able to bind tropomyosin and that tropomodulin forms complexes with tropomyosin isoforms from erythrocyte, brain, platelet and skeletal muscle tissue. Scatchard analysis of binding data using tropomyosin isoforms from these tissues indicate that tropomodulin binds preferentially to erythrocyte tropomyosin. Specificity is manifested by decreases in the apparent affinity or the saturation binding capacity of tropomodulin for non-erythrocyte tropomyosins. Erythrocyte tropomyosin saturates tropomodulin at approximate stoichiometric ratios of 1:2 and 1:4 tropomyosin/tropomodulin (apparent Kd = 14 nM-1 and 5 nM-1, respectively). Brain tropomyosin saturates tropomodulin at a 1:2 ratio of tropomyosin/tropomodulin, but with a threefold lower affinity than erythrocyte tropomyosin. Platelet tropomyosin saturates tropomodulin at a tropomyosin/tropomodulin ratio of 1:4, but with a sevenfold lower affinity than erythrocyte tropomyosin at the 1:4 ratio. These results correlate with oxidative cross-linking data which indicate that tropomodulin can self-associate to form dimers and tetramers in solution. Since tropomodulin interacts with one of the ends of tropomyosin, varying interactions of tropomyosin isoforms with tropomodulin probably reflect the heterogeneity in N-terminal or C-terminal sequences characteristic of the different tropomyosin isoforms. Isoform-specific interactions of tropomodulin with tropomyosins may represent a novel mechanism for selective regulation of tropomyosin/actin interactions.  相似文献   

16.
Tropomyosin is an actin-binding cytoskeletal protein which has been extensively characterized in a variety of cell types and tissues, with the exception of very early developmental stages during which cellular polarization first occurs. We have identified five polypeptides in mouse preimplantation conceptuses which show many of the characteristics of tropomyosin. They form the major portion of the heat-stable cytoskeletal protein fraction of blastomeres and have the characteristic isoelectric and SDS–PAGE migration characteristics on 1-D and 2-D gels. All five polypeptides were synthesized in late 2- and 4-cell, and all 8-cell stages, with three of the five polypeptides showing lower synthetic levels in fertilized eggs and early 2-cell conceptuses. These heat-stable proteins showed specific differences from proteins isolated from mouse 3T3 fibroblasts by the same method, namely higherMrisoforms were not represented, also some of the isoforms can be labeled by incorporation of [14C]proline. The cellular distribution of tropomyosin in early stage conceptuses was examined using monoclonal and affinity-purified polyclonal antibodies. Tropomyosin becomes associated both with the blastomere cortex postfertilization and with the cleavage furrow during cytokinesis. The interphase cortical association is uniform until the 8-cell stage, when tropomyosin becomes associated with the developing apical pole and is excluded from the basolateral cortex. This polar localization is inherited along with the pole at the 8- to 16-cell division, but experiments in which cell division is artificially prolonged show that tropomyosin localization does not represent a permanent marking of the pole. We conclude that the early mouse conceptus contains a unique and specific set of tropomyosins which respond to polarizing signals.  相似文献   

17.
Two tropomyosin isoforms, human Tm5(NM1) and Tm3, were over-expressed in B35 rat neuro-epithelial cells to examine preferential associations between specific actin and tropomyosin isoforms and to determine the role tropomyosin isoforms play in regulating the drug susceptibility of actin filament populations. Immunofluorescence staining and Western blot analysis were used to study the organisation of specific filament populations and their response to treatment with two widely used actin-destabilising drugs, latrunculin A and cytochalasin D. In Tm5(NM1) cells, we observed large stress fibres which showed predominant co-localisation of beta-actin and low-molecular-weight gamma-tropomyosin isoforms. Tm3 cells had an abundance of cellular protrusions which contained both the beta- and gamma-actin isoforms, predominately populated by high-molecular-weight alpha- and beta-tropomyosin isoforms. The stress fibres observed in Tm5(NM1) cells were more resistant to both latrunculin A and cytochalasin D than filaments containing the high-molecular-weight tropomyosins observed in Tm3 cells. Knockdown of the over-expressed Tm5(NM1) isoform with a human-specific Tm5(NM1) siRNA reversed the phenotype and caused a reversal in the observed drug resistance. We conclude that there are preferential associations between specific actin and tropomyosin isoforms, which are cell type specific, but it is the tropomyosin composition of a filament population which determines the susceptibility to actin-targeting drugs.  相似文献   

18.
《The Journal of cell biology》1986,103(6):2173-2183
We have used a monoclonal antibody (CL2) directed against striated muscle isoforms of tropomyosin to selectively isolate a class of microfilaments (skeletal tropomyosin-enriched microfilaments) from differentiating muscle cells. This class of microfilaments differed from the one (tropomyosin-enriched microfilaments) isolated from the same cells by a monoclonal antibody (LCK16) recognizing all isoforms of muscle and nonmuscle tropomyosin. In myoblasts, the skeletal tropomyosin-enriched microfilaments had a higher content of alpha-actin and phosphorylated isoforms of tropomyosin as compared with the tropomyosin-enriched microfilaments. Moreover, besides muscle isoforms of actin and tropomyosin, significant amounts of nonmuscle isoforms of actin and tropomyosin were found in the skeletal tropomyosin-enriched microfilaments of myoblasts and myotubes. These results suggest that different isoforms of actin and tropomyosin can assemble into the same set of microfilaments, presumably pre-existing microfilaments, to form the skeletal tropomyosin-enriched microfilaments, which will eventually become the thin filaments of myofibrils. Therefore, the skeletal tropomyosin-enriched microfilaments detected here may represent an intermediate class of microfilaments formed during thin filament maturation. Electron microscopic studies of the isolated microfilaments from myoblasts and myotubes showed periodic localization of tropomyosin molecules along the microfilaments. The tropomyosin periodicity in the microfilaments of myoblasts and myotubes was 35 and 37 nm, respectively, whereas the nonmuscle tropomyosin along chicken embryo fibroblast microfilaments had a 34-nm repeat.  相似文献   

19.
The molecular heterogeneity and tissue specificity of crustacean tropomyosin were investigated, using muscle and nonmuscle tissues from the crayfish, Cambarus clarki. In muscle, three types of tropomyosin isoforms were found on two-dimensional gel electrophoresis. One of them was specific to cardiac muscle, and the other two were shared by skeletal and visceral muscles. In nonmuscle tissues, four types of isoforms were found on two-dimensional gel electrophoresis and in immunoreplica tests using an antiserum against crayfish skeletal muscle tropomyosin. Two of them were common to the muscle isoforms, but the other two were not detected in muscles. Furthermore, nonmuscle tissues contained several peculiar isoforms, the electrophoretic mobilities of which were considerably higher than those of the other isoforms mentioned above. When tropomyosin was purified from the mid-gut gland, these isoforms with high mobilities were found in the crude tropomyosin preparation. These results showed that the crayfish tropomyosin was heterogeneous and that the isoforms were distributed in a tissue-specific manner, like vertebrate tropomyosin. However, the results did not coincide with those of our previous study on horseshoe crab tropomyosin, which showed molecular heterogeneity but no tissue specificity. In view of the difference in the isoform distributions between the two major groups (Crustacea and Merostomata) of Arthropoda, the significance of the tissue specificity of tropomyosin isoforms was discussed.  相似文献   

20.
The tropomyosin gene tmy-1/lev-11 of Caenorhabditis elegans spans 14.5 kb and encodes three isoforms by alternative splicing. To identify, characterize and compare the genome and tissue expression of a fourth isoform, the technique of rapid amplification of cDNA ends and microinjection with lacZ and gfp fusion plasmids were employed. We elucidated CeTMIV, a fourth isoform of tmy-1, which encoded a 256 residue polypeptide. CeTMIV isoform had a similar promoter region to CeTMIII isoform, but was alternatively spliced to generate a cDNA that differed in two exons. The tmy-1::lacZ and tmy-1::gfp fusion genes, with 3.2 kb promoter sequence and 1.1 kb of CeTMIV isoform specific exons, were expressed in the pharyngeal and intestinal cells. Further unidirectional deletion of the sequence located the primary promoter region 853 bp upstream from the initial codon. We show within the upstream region, the presence of B and C subelement-like sequences of myo-2, which may be used to stimulate pharyngeal expression. Despite the presence of a ges-1 like sequence, we were unable to locate the two GATA sites required for intestinal expression. Reassessing tissue expression for CeTMIII isoform with newly constructed fusion plasmids, we showed further expression in germ-line tissue and intestinal cells in addition to pharyngeal expression. Finally, to demonstrate that tropomyosin is essential for development, we inactivated the body wall and pharynx-specific isoforms by RNA-mediated interference. In addition to 50-75 % embryonic lethality in both cases, the worms that survived body wall interference had abnormal body morphology and uncoordinated movements, and those that survived pharynx interference had deformed pharynges and gut regions. These results show the function of tropomyosin in normal muscle filament assembly and embryonic development, and illustrate the different expression patterns characteristic of tropomyosin isoforms in C. elegans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号