首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heptyl-physostigmine (Heptyl-Phy; MF-201) is a new carbamate derivative of physostigmine (Phy) with greater lipophilicity and longer inhibitory action on cholinesterase (ChE) activity than the parent compound. Following single dose administration of 5 mg/kg heptyl-Phy i.m., maximal whole brain acetylcholinesterase (AChE) inhibition (82%) if reached at 60 min. Inhibition of plasma BuChE butyrylcholinesterase (BuChE) remains close to the steady state level (60%) between 120 and 360 min. At 360 min, whole brain AChE activity is still 67% inhibited compared to controls. Inhibition of AChE activity displays brain regional differences which are more significant at 360 min. At this time point, AChe activity in cerebellum is only 40% inhibited while frontal cortex and medial septum are still 80% inhibited. Increases in acetycholine (ACh) levels also show regional differences, however, there is no direct relationship between AChE inhibition and ACh increase. The electrically evoked [3H]ACh release in cortical slices was inhibited only by the highest concentration of heptyl-Phy tested (10–4M). At this concentration ChE activity was 97% inhibited in vitro. In conclusion, our results demonstrate that heptyl-Phy compares favorably to other reversible cholinesterase inhibitors (ChEI), particularly to Phy as far as producing a more long-lasting inhibition of AChE and a more prolonged increase of ACh in brain with less severe side effects. Therefore, it represents an interesting candidate for cholinomimetic therapy of Alzheimer disease (AD).Dept. of Pharmacology, Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 20031 China.Special issue dedicated to Dr. Paola S. Timiras  相似文献   

2.
The total ACh content and AChE activity were determined 1 hr after the i.p. injection of different doses of thiopental sodium (5, 10 and 20 mg/ml/100 g body wt) and barbitone sodium (20, 40 and 80 mg/ml/100 g body wt). The effect of different time intervals (1 min, 10 min, 30 min, 1 hr, 2.5 hr, 5 hr, 8 hr, 12 hr, 24 hr and 48 hr) on the total ACh content and AChE activity was investigated after i.p. injection of 10 mg thiopental sodium and 40 mg barbitone sodium/ml/100 g body wt. Both thiopental sodium and barbitone sodium increased the total ACh content in the brain tissue of Arvicanthis niloticus. Both drugs inhibited the brain AChE activity. It is thought that the increase in the total ACh content in the brain tissue of Arvicanthis niloticus may be due to a decrease in the release of ACh from the neuronal tissue and a decrease in AChE activity.  相似文献   

3.
Central cholinergic systems are involved in a plethora of brain functions and are severely and selectively damaged in neurodegenerative diseases such as Alzheimer's disease and dementia with Lewy bodies. Cholinergic dysfunction is treated with inhibitors of acetylcholinesterase (AChE) while the role of butyrylcholinesterase (BChE) for brain cholinergic function is unclear. We have used in vivo microdialysis to investigate the regulation of hippocampal acetylcholine (ACh) levels in mice that are devoid of AChE (AChE-/- mice). Extracellular ACh levels in the hippocampus were 60-fold elevated in AChE-/- mice compared with wild-type (AChE+/+) animals. In AChE-/- mice, calcium-free conditions reduced hippocampal ACh levels by 50%, and infusion of tetrodotoxin by more than 90%, indicating continuous ACh release. Infusion of a selective AChE inhibitor (BW284c51) caused a dose-dependent, up to 16-fold increase of extracellular ACh levels in AChE+/+ mice but did not change ACh levels in AChE-/- mice. In contrast, infusion of a selective inhibitor of BChE (bambuterol) caused up to fivefold elevation of ACh levels in AChE-/- mice, but was without effect in AChE+/+ animals. These results were corroborated with two other specific inhibitors of AChE and BChE, tolserine and bis-norcymserine, respectively. We conclude that lack of AChE causes dramatically increased levels of extracellular ACh in the brain. Importantly, in the absence of AChE, the levels of extracellular ACh in the brain are controlled by the activity of BChE. These results point to a potential usefulness of BChE inhibitors in the treatment of central cholinergic dysfunction in which brain AChE activity is typically reduced.  相似文献   

4.
N-tert-butyl-alpha-phenylnitrone (PBN), a widely used nitrone-based free radical trap was recently shown to prevent acetylcholinesterase (AChE) inhibitors induced muscle fasciculations and brain seizures while being ineffective against glutamergic or cholinergic receptor agonist induced seizures. In the present study we compared the effects on AChE activity of four free radical spin traps PBN, alpha-(4-pyridil-1)-N-tert-butyl nitrone (POBN), N-tert-butyl-alpha-(2-sulfophenyl)-nitrone (S-PBN) and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO). The kinetics of AChE inhibition were studied in vitro using a spectrophotometric kinetic assay with AChE from rat brain, diaphragm, electric eel and mouse brain. Spin trapping compounds S-PBN and DEPMPO, in concentrations up to 3 mM did not inhibit hydrolysis of ACh, while PBN and POBN inhibited hydrolysis of ACh in a reversible and concentration-dependent manner. Double reciprocal plots of the reaction velocity against varying ACh concentrations at each inhibitor concentration were linear and generally indicated mixed type inhibition. PBN was the most potent inhibitor of mouse AChE with Ki and Ki' of 0.58 and 2.99 mM, respectively, and the weakest inhibitor of electric eel AChE. In contrast, POBN showed the highest affinity for electric eel enzyme, with Ki and Ki' values of 1.065 and 3.15 mM, respectively. These findings suggest that the effect of PBN and POBN on AChE activity does not depend on trapping of damaging reactive oxygen and that in addition to their antioxidant action other pharmacological effects of these compounds should be considered when neuroprotective actions of PBN or POBN are investigated.  相似文献   

5.
Cypermethrin at sublethal concentrations induced significant changes in acetylcholinesterase (AChE) activity and acetylcholine (ACh) content in the brain tissue of both juvenile and adult-fish. Maximum inhibition of AChE activity is noticed at 6h and 12h after exposure to cypermethrin in juvenile and adult fish respectively. In contrast, the ACh levels registered an elevation in both the cases. During subsequent periods the rate of recovery in AChE activity and ACh content is variable in both the groups.  相似文献   

6.
Acetylcholine (ACh, 1 μM) stimulates the activity of contractile vacuole of the amoeba Amoeba proteus. The ACh action is not reproduced by ACh analogs carbacholine and 5-methylfurmethide that are not hydrolized by acetylcholinesterase (AChE). The ACh effect is not blocked by M-cholinolytics (atropine and metylone), but is suppressed by the N-cholynolytic tubocurarine (0.01 μM). The AChE inhibitors eserine (0.001 μM) and armine (0.01 μM) suppress action of ACh on the amoeba contractile vacuole. ACh does not affect the contractile vacuole activation produced by arginine-vasopressin (AVP, 1 μM), but blocks the contractile vacuole activation caused by the ligand of opioid receptors dynorphin A (1–13) at a concentration of 0.1 μM. Based on comparison of the obtained results with literature data, the conclusion is drawn that, in the described ACh effects, the enzyme AChE plays the role of synergist, but not of antagonist. Regulation of the contractile vacuole activity and, hence, the water-salt homeostasis of A. proteus is provided by three independent mechanisms through receptors of the AVP, ACh, and opioid systems.  相似文献   

7.
Acetylcholine (ACh, 1 microM) stimulates activity of the contractile vacuole of proteus. The effect of ACh is not mimicked by its analogs which are not hydrolyzed by acetylcholinesterase (AChE), i. e., carbacholine and 5-methylfurmethide. The effect of ACh is not sensitive to the blocking action of M-cholinolytics, atropine and mytolone, but is suppressed by N-cholinolytic, tubocurarine. The inhibitors of AChE, eserine (0.01 microM) and armine (0.1 microM), suppress the effect of ACh on amoeba contractile vacuole. ACh does not affect activation of contractile vacuole induced by arginine-vasopressin (1 microM), but it blocks such effect of opiate receptors agonist, dynorphin A1-13 (0.01 microM). This effect of ACh is also suppressed by the inhibitors of AChE. These results suggest that, in the above-described effects of ACh, AChE acts not as an antagonist, but rather as a synergist.  相似文献   

8.
The influence of neonatal thyroidectomy (Tx) on developmental changes in dopamine (DA), acetylcholine (ACh), and acetylcholinesterase (AChE) was studied in the whole brain of rats. In control animals, brain levels of ACh gradually increased and attained adult values at the 70th day. In contrast, AChE activity showed a rapid increase between the 7th and 30th days. Levels of DA were low during the early postnatal life but markedly increased to reach adult values of 1.47 mug/g at the 30th day, after which no further enhancement was noted. Neonatal Tx interfered with the normal growth of the animals, decreased brain weights, and markedly influenced the developmental pattern of both DA and ACh in the brain. The concentration of DA in 30-day-old hypothyroid rats was 46% of the control values. In contrast, brain ACh levels in Tx rats were consistently above those seen in controls, being significantly higher, by 49 and 64%, at 15 and 30 days, respectively. Activity of AChE in brains of hypothyroid animals was not significantly different from that in controls. Treatment of Tx rats with thyroid hormone virtually restored the levels of DA and ACh to values in control animals.  相似文献   

9.
The effect of exogenous acetylcholine (ACh) on potassium currents in the motor nerve ending (NE) has been studied in neuromuscular preparations of the frog cutaneous-sternal muscle by extracellular recording of evoked electrical potentials from the NE. The investigation was performed during inhibition of acetylcholinesterase (AChE) activity by specific inhibitors and AChE removal from the synaptic cleft by collagenase. After AChE inhibition by either armine or proserine, or after treatment of the preparation with collagenase, no effect of exogenous ACh in concentrations of 1·10–4–6·–4 mole/liter was observed, in contrast to results from preparations with intact AChE. However, under the same conditions, as in the case of active AChE, ACh in concentrations of 7·10–4–2·10–3 mole/liter inhibited Ca-activated potassium current of the NE membrane. Experiments with dipyroxim, a synaptic AChE reactivator, have shown that the ACh effect on the potential-dependent potassium current is mediated by specific AChE. The role of AChE is discussed in respect to its significance for realization of the ACh action on potential-dependent potassium current in NE.Translated from Neirofiziologiya, Vol. 25, No. 2, pp. 146–149, March–April, 1993.  相似文献   

10.
It was found that acetylcholine (ACh) at the concentration of 10(-3) M inhibited ADH-stimulated water transport through the wall of amphibian urinary bladder. This effect was suggested to be caused by an interaction of ACh with acetylcholinesterase (AChE) rather than by a stimulation of the M- or N-cholinoreceptor. The inhibitory action of ACh was completely suppressed in the presence of various AChE inhibitors (physostigmine, proserine, armine, Gd-42, acridine-iodmethylate), while an inhibitor of butyrylcholinesterase (BuChE), AD-4, failed to affect it. In accord with this observation the activity of AChE (but not of BuChE) was demonstrated in the urinary bladder epithelium. Since, in addition to the hydrosmotic effects of pituitrine, 8-arginine-vasopressin or oxytocin, ACh blocked also effects of forskolin or cyclic AMP, one may conclude that it acts at some post-cyclic AMP production stage. AChE-dependent inhibition of the ADH-stimulated water transport decreased significantly when the serosal pH was raising from 7.2 to 8.0, but was augmented by serosal acidification (pH 6.8), whereas such pH alterations did not affect the activity of the epithelium AChE. The effect of ACh under consideration was suppressed by adding amiloride (10(-4) M) to the serosal solution. Similarly, the ACh effect was blocked by an inhibitor of Ca-dependent K+ channels, 4-aminopyrdine, which in addition prevented the inhibition of the ADH-stimulated water transport by the serosal acidification. It was noteworthy that some other K+ channel blockers (Ba2+, Cs+, tetraethylammonium, apamine, quinine) did not affect either the water transport or the antipituitrine effect of ACh. In conclusion, we suggest that the inhibitory action of ACh on the ADH-stimulated water transport in the urinary bladder is mediated through the intracellular acidification resulting from ACh interaction with AChE. It is unlikely that the acidification is merely a consequence of the ACh hydrolysis, rather the ACh-AChE interaction induces directly an increase in the proton conductivity of the basolateral membrane of the urinary bladder epithelium.  相似文献   

11.
Abstract: In atropine-pretreated rats, HI-6 (125 mg/kg i.p.) raised the LD50 of Soman (subcutaneous) 5.7 times. Addition of HI-6 (25 μg i.c. v.) failed to enhance this protection further. HI-6 (intraperitoneal) also protected animals from intracerebroventricular Soman. HI-6, administered intracerebroventricularly either alone or in combination with intraperitoneal HI-6, failed to increase protection, nor did it reactivate Soman-inhibited acetylcholinesterase (AChE) in several brain areas. HI-6 (125 or 62.5 mg/kg i.p.) protected rats from Sarin lethality, but only the higher dose significantly altered the brain AChE activity. Furthermore, HI-6 (intraperitoneal) failed to block the Soman-induced increase in acetylcholine (ACh) or choline (Ch) levels in any of the brain areas examined. These data indicate that HI-6 is a very beneficial therapy against Soman, but that no definitive central anticholinergic activity of the compound could be found to explain its protective effects. It is possible that HI-6 acts by noncholinergic central mechanisms, or that it produces its beneficial effects outside the CNS. Furthermore, brain AChE activity does not appear to be indicative of protective effects of this oxime. ACh or Ch levels in this study were not good parameters to predict the outcome of Soman poisoning.  相似文献   

12.
The effects of neurotensin (NT) on endogenous acetylcholine (ACh) release from basal forebrain, frontal cortex, and parietal cortex slices were tested. The results show that NT differentially regulates evoked ACh release from frontal and parietal cortex slices without altering either spontaneous or evoked ACh release from basal forebrain slices. In the frontal cortex, NT significantly inhibited evoked ACh release by a tetrodotoxin (TTX)-insensitive mechanism, suggesting an action directly on cholinergic terminals. In the parietal cortex, NT enhanced evoked ACh release by a TTX-sensitive mechanism, suggesting an action of NT on the cholinergic neuron or in close proximity to the cholinergic neuron. The effects of NT on ACh release were confined to evoked ACh release; that is, spontaneous ACh release was not affected. NT did not affect spontaneous or potassium-evoked ACh release from occipital cortex slices. The second set of experiments tested the effects of quinolinic acid (QUIN) lesions of the basal forebrain cell bodies on the NT-induced regulation of evoked ACh release in the cerebral cortex. QUIN lesions of basal forebrain cell bodies caused decreases in choline acetyltransferase activity (27 and 28%), spontaneous ACh release (14 and 21%), and evoked ACh release (38 and 44%) in frontal and parietal cortex, respectively. In addition, 11 days following QUIN lesions of basal forebrain cell bodies, the action of NT to regulate evoked ACh release in frontal cortex or parietal cortex was no longer observed. The results suggest that in the rat frontal and parietal cortex, NT differentially regulates the activity of cholinergic neurons by decreasing and increasing evoked ACh release, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Acetylcholinesterase (AChE, EC 3.1.1.7) is an important enzyme for cholinergic nerve transmission. The action of toxic organophosphates such as nerve agents is based on AChE inhibition. The death following acute nerve agent poisoning is due to central or peripheral respiratory/cardiac failure. Therefore, the changes in AChE activity following nerve agents acting predominantly on the central (sarin, soman) or peripheral (VX) level were studied. It is known that AChE activity in different structures exists in relative excess. Female Wistar rats intoxicated with sarin, soman, and VX in different doses (0.5-2.0xLD(50)) were divided into groups of survived and died animals. AChE activities in diaphragm, brain parts (pontomedullar area, frontal cortex, basal ganglia, in some cases other parts of the brain) were determined and the rest of activity (in %) was correlated with survival/death of animals. More precise elucidation of action of nerve agents and the assessment of minimal AChE activity in different organs compatible with the survival of organism poisoned with nerve agents were the aims of this study.  相似文献   

14.
Diurnal rhythmicity of nervous activity in Periplaneta americana was investigated, using acetylcholine (ACh) content, acetylcholinesterase (AChE) and spontaneous electrical activities as indices. AChE and electrical activities were maximum at 0 hr and minimum at 12 hr, while ACh showed an opposite rhythm. Central nervous system extract from cockroaches at 12 hr elevated the electrical activity while 0 hr-extract exerted inhibition. Lower concentrations of ACh had an elevatory influence while higher concentrations inhibited the electrical activity. A hypothesis is proposed, suggesting synthetic and releasing phases of ACh in a regular diurnal cycle, to explain the results obtained.  相似文献   

15.
The rat myenteric plexus was used as a peripheral model for studying muscarinic modulation of acetylcholine (ACh) release from presynaptic muscarinic neurons during development of tolerance to the anticholinesterase agent, diisopropylfluorophosphate (DFP). DFP in arachis oil was administered subcutaneously to intact animals according to both acute and chronic regimens, with arachis oil injections serving as controls. Post-mortem analyses showed that the mean AChE activity level in whole brain was reduced under all DFP conditions to 18.0 +/- 1.4% when compared with the control level. After 10 days of DFP treatment, the AChE level was 22.3 +/- 2.1% of control in the myenteric plexus. There were no significant differences among the treatment groups in resting ACh release. Release evoked by electrical stimulation (difference between stimulated and resting release) in the absence of atropine, i.e., "basal rate," for strips taken at various times after a single injection of DFP did not differ from that for strips from animals receiving arachis oil only. However, basal release for strips from chronically treated subjects was significantly greater than that of controls (p less than 10(-3), although not different from each other. Analysis of variance (ANOVA) for repeated measures showed that there existed a highly significant atropine dependency in strips from all treatments when they were stimulated in concentrations of atropine from 10(-9) to 10(-5) M (p less than 10(-10). Further analyses established that the increases in rates of evoked ACh release as concentrations of atropine increased were similar for strips from chronically treated DFP and arachis oil animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
gamma-Aminobutyric acid (GABA) was applied to the superior cervical ganglion (SCG) of CFY rats in vitro and in vivo, with or without implantation of a hypoglossal nerve, to evaluate the effects of these experimental interventions on the acetylcholine (ACh) system, which mainly serves the synaptic transmission of the preganglionic input. Long-lasting GABA microinfusion into the SCG in vivo apparently resulted in a "functional denervation." This treatment reduced the acetylcholinesterase (AChE; EC 3.1.1.7) activity by 30% (p less than 0.01) and transiently increased the number of nicotinic acetylcholine receptors, but had no significant effect on the choline acetyltransferase (acetyl-coenzyme A:choline-O-acetyltransferase; EC 2.3.1.6) activity, the ACh level, or the number of muscarinic acetylcholine receptors. The relative amounts of the different molecular forms of AChE did not change under these conditions. In vivo GABA application to the SCG with a hypoglossal nerve implanted in the presence of intact preganglionic afferent synapses exerted a significant modulatory effect on the AChE activity and its molecular forms. The "hyperinnervation" of the ganglia led to increases in the AChE activity (to 142.5%, p less than 0.01) and the 16S molecular form (to 200%, p less than 0.01). It is concluded that in vivo GABA microinfusion and GABA treatment in the presence of additional cholinergic synapses has a modulatory effect on the elements of the ACh system in the SCG of CFY rats.  相似文献   

17.
It is well known that the principal biomolecules involved in Alzheimer’s disease (AD) are acetylcholinesterase (AChE), acetylcholine (ACh) and the amyloid beta peptide of 42 amino acid residues (Aβ42). ACh plays an important role in human memory and learning, but it is susceptible to hydrolysis by AChE, while the aggregation of Aβ42 forms oligomers and fibrils, which form senile plaques in the brain. The Aβ42 oligomers are able to produce hydrogen peroxide (H2O2), which reacts with metals (Fe2+, Cu2+, Cr3+, Zn2+, and Cd2+) present at high concentrations in the brain of AD patients, generating the hydroxyl radical (·OH) via Fenton (FR) and Fenton-like (FLR) reactions. This mechanism generates high levels of free radicals and, hence, oxidative stress, which has been correlated with the generation and progression of AD. Therefore, we have studied in vitro how AChE catalytic activity and ACh levels are affected by the presence of metals (Fe3+, Cu2+, Cr3+, Zn2+, and Cd2+), H2O2 (without Aβ42), and · OH radicals produced from FR and FLR. The results showed that the H2O2 and the metals do not modify the AChE catalytic activity, but the ·OH radical causes a decrease in it. On the other hand, metals, H2O2 and ·OH radicals, increase the ACh hydrolysis. This finding suggests that when H2O2, the metals and the ·OH radicals are present, both, the AChE catalytic activity and ACh levels diminish. Furthermore, in the future it may be interesting to study whether these effects are observed when H2O2 is produced directly from Aβ42.  相似文献   

18.
Tabun belongs to the most toxic nerve agents. Its mechanism of action is based on acetylcholinesterase (AChE) inhibition at the peripheral and central nervous systems. Therapeutic countermeasures comprise administration of atropine with cholinesterase reactivators able to reactivate the inhibited enzyme. Reactivation of AChE is determined mostly biochemically without specification of different brain structures. Histochemical determination allows a fine search for different structures but is performed mostly without quantitative evaluation. In rats intoxicated with tabun and treated with a combination of atropine and HI-6, obidoxime, or new oxime K048, AChE activities in different brain structures were determined using biochemical and quantitative histochemical methods. Inhibition of AChE following untreated tabun intoxication was different in the various brain structures, having the highest degree in the frontal cortex and reticular formation and lowest in the basal ganglia and substantia nigra. Treatment resulted in an increase of AChE activity detected by both methods. The highest increase was observed in the frontal cortex. This reactivation was increased in the order HI-6 < K048 < obidoxime; however, this order was not uniform for all brain parts studied. A correlation between AChE activity detected by histochemical and biochemical methods was demonstrated. The results suggest that for the mechanism of action of the nerve agent tabun, reactivation in various parts of the brain is not of the same physiological importance. AChE activity in the pontomedullar area and frontal cortex seems to be the most important for the therapeutic effect of the reactivators. HI-6 was not a good reactivator for the treatment of tabun intoxication.  相似文献   

19.
The effects of physostigmine, tetrahydroaminoacridine (THA) and LF-14 [3,3-dimethyl-1(4- amino-3-pyridyl)urea], a 3,4-diaminopyridine derivative, were compared on inhibition of acetyl- cholinesterase (AChE) activity, and release of [3H]acetylcholine (ACh) from rat brain cortical and hippocampal slices. All three compounds caused a concentration dependent inhibition of AChE, with an order of potency physostigmine > THA > LF-14. The electrically stimulated release of ACh from hippocampal and cortical slices was decreased by 10−5M physostigmine, although the effect was significant only in cortex. THA (5 × 105M) caused a slight, but not significant, decrease in ACh release from both tissues. In contrast, LF-14 (5 × 10−5 M) caused an approx. 3-fold enhancement of stimulated release. When AChE was inhibited by prior addition of physostigmine, THA caused only a slight enhancement of ACh release, whereas LF-14 greatly increased release. ACh release was also reduced by stimulation of presynaptic muscarinic receptors with oxotremorine. In this case, THA had no effect on ACh release, while LF-14 was able to reverse the inhibition. This study suggests that LF-14 acts to promote ACh release through blocking K+ channels, and has a less potent AChE inhibitory effect. It is possible that a compound like LF-14 could be useful in treating diseases of cholinergic dysfunction such as Alzheimer's disease, by both promoting the release of ACh and inhibiting its breakdown.  相似文献   

20.
Tabun belongs to the most toxic nerve agents. Its mechanism of action is based on acetylcholinesterase (AChE) inhibition at the peripheral and central nervous systems. Therapeutic countermeasures comprise administration of atropine with cholinesterase reactivators able to reactivate the inhibited enzyme. Reactivation of AChE is determined mostly biochemically without specification of different brain structures. Histochemical determination allows a fine search for different structures but is performed mostly without quantitative evaluation. In rats intoxicated with tabun and treated with a combination of atropine and HI-6, obidoxime, or new oxime K048, AChE activities in different brain structures were determined using biochemical and quantitative histochemical methods. Inhibition of AChE following untreated tabun intoxication was different in the various brain structures, having the highest degree in the frontal cortex and reticular formation and lowest in the basal ganglia and substantia nigra. Treatment resulted in an increase of AChE activity detected by both methods. The highest increase was observed in the frontal cortex. This reactivation was increased in the order HI-6 < K048 < obidoxime; however, this order was not uniform for all brain parts studied. A correlation between AChE activity detected by histochemical and biochemical methods was demonstrated. The results suggest that for the mechanism of action of the nerve agent tabun, reactivation in various parts of the brain is not of the same physiological importance. AChE activity in the pontomedullar area and frontal cortex seems to be the most important for the therapeutic effect of the reactivators. HI-6 was not a good reactivator for the treatment of tabun intoxication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号